TTIC 31210: Advanced Natural Language Processing

Kevin Gimpel Spring 2017

Lecture 15: Structured Prediction

- No class Monday May 29 (Memorial Day)
- Final class is Wednesday May 31

- Assignment 3 has been posted, due Thursday June 1
- Final project report due Friday, June 9

Modeling, Inference, Learning

Structured Prediction:

size of output space is exponential in size of input or is unbounded (e.g., machine translation) (we can't just enumerate all possible outputs) 2 categories of structured prediction: score-based and search-based

Score-Based Structured Prediction

focus on defining the score function of the structured input/output pair:

 $\operatorname{score}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\theta})$

 cleanly separates score function, inference algorithm, and training loss

Modeling in Score-Based SP

 define score as a sum or product over "parts" of the structured input/output pair:

$$ext{score}(oldsymbol{x},oldsymbol{y},oldsymbol{ heta}) = \sum_{\langleoldsymbol{x}_r,oldsymbol{y}_r
angle\in ext{parts}(oldsymbol{x},oldsymbol{y})} ext{score}(oldsymbol{x}_r,oldsymbol{y}_r,oldsymbol{ heta}) = \prod_{\langleoldsymbol{x}_r,oldsymbol{y}_r
angle\in ext{parts}(oldsymbol{x},oldsymbol{y})} ext{score}(oldsymbol{x}_r,oldsymbol{y}_r,oldsymbol{ heta}) = \prod_{\langleoldsymbol{x}_r,oldsymbol{y}_r
angle\in ext{parts}(oldsymbol{x},oldsymbol{y})} ext{score}(oldsymbol{x}_r,oldsymbol{y}_r,oldsymbol{ heta}) = \prod_{\langleoldsymbol{x}_r,oldsymbol{y}_r
angle\in ext{parts}(oldsymbol{x},oldsymbol{y})} ext{score}(oldsymbol{x}_r,oldsymbol{y}_r,oldsymbol{ heta})$$

• for an HMM:

$$\text{parts}_{\text{HMM}}(\boldsymbol{x}, \boldsymbol{y}) = \{\langle x_t, y_t \rangle\}_{t=1}^T \cup \{\langle \emptyset, y_{t-1:t} \rangle\}_{t=1}^T$$

 each word-label pair forms a part, and each label bigram forms a part

• for a linear chain CRF:

parts_{chainCRF}
$$(\boldsymbol{x}, \boldsymbol{y}) = \{\langle \boldsymbol{x}, y_{t-1:t} \rangle\}_{t=1}^{T}$$

 each label bigram forms a part (each of which includes entire input!)

• for a PCFG:

$$\operatorname{parts}_{\operatorname{PCFG}}(\boldsymbol{x}, \boldsymbol{y}) = \left(\bigcup_{(y \to x) \in \boldsymbol{y}} \langle x, y \rangle\right) \cup \left(\bigcup_{(y \to y_1, y_2) \in \boldsymbol{y}} \langle \emptyset, \langle y, y_1, y_2 \rangle \rangle\right)$$

• each context-free grammar rule forms a part

• for an arc-factored dependency parser:

parts_{arcdep}($\boldsymbol{x}, \boldsymbol{y}$) = { $\langle \boldsymbol{x}, y_t \rangle$ } $_{t=1}^{T}$ where y_t is the index of the parent of x_t in \boldsymbol{y}

• each dependency arc forms a part

Inference in Score-Based SP

inference algorithms are defined based on decomposition of score into parts

$$\operatorname{score}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\theta}) = \sum_{\langle \boldsymbol{x}_r, \boldsymbol{y}_r \rangle \in \operatorname{parts}(\boldsymbol{x}, \boldsymbol{y})} \operatorname{score}(\boldsymbol{x}_r, \boldsymbol{y}_r, \boldsymbol{\theta})$$

 smaller parts = easier to define efficient exact inference algorithms Inference Algorithms for Score-Based SP

 exact inference algorithms are often based on dynamic programming

Dynamic Programming (DP)

- a class of algorithms that break problems into smaller pieces and reuse solutions for pieces
 - applicable if problem has certain properties (optimal substructure and overlapping sub-problems)
- in NLP, we use DP to iterate over exponentially-large output spaces in polynomial time
 - Viterbi and forward/backward for HMMs
 - CKY for PCFGs
 - Eisner algorithm for (arc-factored) dependency parsing

Viterbi Algorithm

• recursive equations + memoization:

base case:

returns score of sequence starting with label y for first word

$$V(1, y) = \operatorname{score}(x_1, y) \operatorname{score}(\emptyset, \langle, \langle s \rangle, y \rangle)$$
$$V(t, y) = \max_{y' \in \mathcal{L}} (\operatorname{score}(x_t, y) \operatorname{score}(\emptyset, \langle y', y \rangle) V(t - 1, y'))$$

recursive case:

computes score of max-scoring label sequence that ends with label y at position t

final value is in:
$$V(|m{x}|+1,<\!/\,{
m s}>)$$

Viterbi Algorithm

- space and time complexity?
- can be read off from the recursive equations:

space complexity:

size of memoization table, which is # of unique indices of recursive equations

so, space complexity is O(|x| |L|)

Viterbi Algorithm

- space and time complexity?
- can be read off from the recursive equations:

time complexity:

size of memoization table * complexity of computing each entry

so, time complexity is $O(|x| |L| |L|) = O(|x| |L|^2)$

Feature Locality

- **feature locality**: how big are the parts?
- for efficient inference (w/ DP or other methods), we need to be mindful of this
- parts can be arbitrarily big in terms of input, but not in terms of *output*!
- HMM parts are small in both the input and output (only two pieces at a time)

Learning with Score-Based SP: Empirical Risk Minimization

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} \sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle \in \mathcal{D}} \operatorname{cost}(\boldsymbol{y}, \operatorname{predict}(\boldsymbol{x}, \boldsymbol{\theta}))$$

$$\operatorname{predict}(\boldsymbol{x},\boldsymbol{\theta}) = \operatorname{argmax}_{\boldsymbol{y}} \operatorname{score}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{\theta})$$

Cost Functions

• **cost function**: how different are these two structures?

 $\mathrm{cost}:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}_{\geq 0}$

- typically used to compare predicted structure to gold standard
- should reflect evaluation metric for task
- usual conventions: $cost(\boldsymbol{y}, \boldsymbol{y}) = 0$

$$\operatorname{cost}(\boldsymbol{y}, \boldsymbol{y}') = \operatorname{cost}(\boldsymbol{y}', \boldsymbol{y})$$

Cost Functions

• for classification, we used:

$$cost(y, y') = \mathbb{I}[y \neq y']$$

• how about for sequences?

- "Hamming cost":
$$\operatorname{cost}(\boldsymbol{y}, \boldsymbol{y}') = \sum_{t=1}^{|\boldsymbol{y}|} \mathbb{I}[y_t \neq y_t']$$

– "0-1 cost": $\operatorname{cost}(\boldsymbol{y},\boldsymbol{y}') = \mathbb{I}[\boldsymbol{y} \neq \boldsymbol{y}']$

Empirical Risk Minimization

$$\hat{oldsymbol{ heta}} = rgmin_{\langleoldsymbol{x},oldsymbol{y}
angle\in\mathcal{D}} \sum_{ ext{cost}(oldsymbol{y}, ext{predict}(oldsymbol{x},oldsymbol{ heta}))$$

$$\operatorname{predict}(\boldsymbol{x},\boldsymbol{\theta}) = \operatorname{argmax}_{\boldsymbol{y}} \operatorname{score}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{\theta})$$

 this is intractable so we typically minimize a surrogate loss function instead

name	loss	where used
cost ("0-1")	$\mathrm{cost}(oldsymbol{y},\mathrm{predict}(oldsymbol{x},oldsymbol{ heta}))$	
percep- tron		
hinge		

name	loss	where used
cost ("0-1")	$\mathrm{cost}(oldsymbol{y},\mathrm{predict}(oldsymbol{x},oldsymbol{ heta}))$	MERT (Och, 2003)
percep- tron	$- ext{score}(oldsymbol{x},oldsymbol{y},oldsymbol{ heta}) + \max_{oldsymbol{y}'} ext{ score}(oldsymbol{x},oldsymbol{y}',oldsymbol{ heta})$	structured perceptron (Collins, 2002)
hinge	$- ext{score}(oldsymbol{x},oldsymbol{y},oldsymbol{ heta})+ ext{max}_{oldsymbol{y}'} \ (ext{score}(oldsymbol{x},oldsymbol{y}',oldsymbol{ heta})+ ext{cost}(oldsymbol{y},oldsymbol{y}'))$	structured SVMs (Taskar et al., <i>inter alia</i>)

name	loss	where used
cost ("0-1")	$\mathrm{cost}(oldsymbol{y},\mathrm{predict}(oldsymbol{x},oldsymbol{ heta}))$	MERT (Och, 2003)
percep- tron	$- ext{score}(oldsymbol{x},oldsymbol{y},oldsymbol{ heta})+\max_{oldsymbol{y}'} ext{ score}(oldsymbol{x},oldsymbol{y}',oldsymbol{ heta})$	structured perceptron (Collins, 2002)
hinge	$- ext{score}(oldsymbol{x},oldsymbol{y},oldsymbol{ heta})+ ext{max}_{oldsymbol{y}'} (ext{score}(oldsymbol{x},oldsymbol{y}',oldsymbol{ heta})+ ext{cost}(oldsymbol{y},oldsymbol{y}'))$	structured SVMs (Taskar et al., inter alia)
log	$-\operatorname{score}({m x},{m y},{m heta}) + \log \sum_{{m y}'} \; \exp\left\{\operatorname{score}({m x},{m y}',{m heta}) ight\}$	CRFs (Lafferty et al., 2001)

name	loss	where used
cost ("0-1")	$\mathrm{cost}(oldsymbol{y},\mathrm{predict}(oldsymbol{x},oldsymbol{ heta}))$	MERT (Och, 2003)
percep- tron	$- ext{score}(oldsymbol{x},oldsymbol{y},oldsymbol{ heta})+\max_{oldsymbol{y}'} ext{ score}(oldsymbol{x},oldsymbol{y}',oldsymbol{ heta})$	structured perceptron (Collins, 2002)
hinge	$-\operatorname{score}(oldsymbol{x},oldsymbol{y},oldsymbol{ heta})+\max_{oldsymbol{y}'} \ (\operatorname{score}(oldsymbol{x},oldsymbol{y}',oldsymbol{ heta})+\operatorname{cost}(oldsymbol{y},oldsymbol{y}'))$	structured SVMs (Taskar et al., <i>inter alia</i>)
log	$-\operatorname{score}({m x},{m y},{m heta}) + \log \sum_{{m y}'} \; \exp\left\{\operatorname{score}({m x},{m y}',{m heta}) ight\}$	CRFs (Lafferty et al., 2001)
softma x- margin	$-\operatorname{score}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{ heta}) + \log \sum_{\boldsymbol{y}'} \; \exp\left\{\operatorname{score}(\boldsymbol{x}, \boldsymbol{y}', \boldsymbol{ heta}) + \operatorname{cost}(\boldsymbol{y}, \boldsymbol{y}') ight\}$	Povey et al. (2008), Gimpel & Smith (2010)

Results: Named Entity Recognition (Gimpel & Smith, 2010)

Inference Algorithms for Score-Based SP

- dynamic programming

 exact, but parts must be small for efficiency
- dynamic programming + "cube pruning"
 - permits approximate incorporation of large parts ("non-local features") while still using dynamic program backbone
- integer linear programming

Cube Pruning (Chiang, 2007; Huang & Chiang, 2007)

- Modification to dynamic programming algorithms for decoding to use non-local features approximately
- Keeps a *k*-best list of derivations for each item
- Applies non-local feature functions on these derivations when defining new items

CKY Algorithm

 $C(Z, i, j) = \max_{k} \max_{A, B} \left(C(A, i, k) C(B, k, j) \operatorname{score}(\langle Z \to A B \rangle) \right)$

$$C_{NP,0,7} = C_{NP,0,1} \times C_{PP,1,7} \times \lambda_{NP \to NP PP}$$

$$C_{NP,0,7} = C_{NP,0,1} \times C_{PP,1,7} \times \lambda_{NP \to NP PP}$$

$$C_{NP,0,7} = C_{NP,0,1} \times C_{PP,1,7} \times \lambda_{NP \to NP PP}$$

$$C_{NP,0,7} = C_{NP,0,1} \times C_{PP,1,7} \times \lambda_{NP \to NP PP}$$

Clarification

- Cube pruning does not actually expand all k² proofs as this example showed
- It uses a fast approximation that only looks at O(k) proofs

Integer Linear Programming

• (on board)