
TTIC	31210:
Advanced	Natural	Language	Processing

Kevin	Gimpel
Spring	2017

Lecture	15:
Structured	Prediction

1

• No	class	Monday	May	29	(Memorial	Day)
• Final	class	is	Wednesday	May	31

2

• Assignment	3	has	been	posted,	due	Thursday	June	1
• Final	project	report	due	Friday,	June	9

3

Modeling,	Inference,	Learning

Structured	Prediction:	
size	of	output	space	is	exponential	in	size	of	input
or	is	unbounded	(e.g.,	machine	translation)
(we	can’t	just	enumerate	all	possible	outputs)

learning:	choose	_

modeling:	define		score	functioninference:	solve														_

4

• 2	categories	of	structured	prediction:
score-based	and	search-based

5

Score-Based	Structured	Prediction
• focus	on	defining	the	score	function	of	the	
structured	input/output	pair:

• cleanly	separates	score	function,	inference	
algorithm,	and	training	loss

6

Modeling	in	Score-Based	SP
• define	score	as	a	sum	or	product	over	“parts”	
of	the	structured	input/output	pair:

7

Parts	Functions	in	Score-Based	SP

• for	an	HMM:

• each	word-label	pair	forms	a	part,	and	each	
label	bigram	forms	a	part

8

Parts	Functions	in	Score-Based	SP

• for	a	linear	chain	CRF:

• each	label	bigram	forms	a	part	(each	of	which	
includes	entire	input!)

9

Parts	Functions	in	Score-Based	SP

• for	a	PCFG:

• each	context-free	grammar	rule	forms	a	part

10

Parts	Functions	in	Score-Based	SP

• for	an	arc-factored	dependency	parser:

• each	dependency	arc	forms	a	part

11

Inference	in	Score-Based	SP
• inference	algorithms	are	defined	based	on	
decomposition	of	score	into	parts

• smaller	parts	=	easier	to	define	efficient	exact	
inference	algorithms

12

Inference	Algorithms	for	Score-Based	SP

• exact	inference	algorithms	are	often	based	on	
dynamic	programming

13

Dynamic	Programming	(DP)
• a	class	of	algorithms	that	break	problems	into	
smaller	pieces	and	reuse	solutions	for	pieces
– applicable	if	problem	has	certain	properties	(optimal	
substructure	and	overlapping	sub-problems)

• in	NLP,	we	use	DP	to	iterate	over	exponentially-large	
output	spaces	in	polynomial	time
– Viterbi	and	forward/backward	for	HMMs
– CKY	for	PCFGs
– Eisner	algorithm	for	(arc-factored)	dependency	parsing

14

Viterbi	Algorithm
• recursive	equations	+	memoization:

15

base	case:	
returns	score	of	sequence	starting	with	label	y for	first	word

recursive	case:
computes	score	of	max-scoring	label	sequence	
that	ends	with	label	y at	position	t

final	value	is	in:

Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:

16

space	complexity:
size	of	memoization table,	which	is	#	of	unique	indices	of	recursive	equations

so,	space	complexity	is	O(|x|	|L|)

length	of	
sentence

number	
of	labels*

Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:

17

time	complexity:
size	of	memoization table	*	complexity	of	computing	each	entry

so,	time	complexity	is	O(|x|	|L|	|L|)	=	O(|x|	|L|2)	

length	of	
sentence

number	
of	labels*

each	entry	requires	
iterating	through	the	labels*

Feature	Locality

• feature	locality:	how	big	are	the	parts?
• for	efficient	inference	(w/	DP	or	other	
methods),	we	need	to	be	mindful	of	this

• parts	can	be	arbitrarily	big	in	terms	of	input,	
but	not	in	terms	of	output!

• HMM	parts	are	small	in	both	the	input	and	
output	(only	two	pieces	at	a	time)

18

Learning	with	Score-Based	SP:
Empirical	Risk	Minimization

19

Cost	Functions
• cost	function:	how	different	are	these	two	structures?

• typically	used	to	compare	predicted	structure	to	gold	standard
• should	reflect	evaluation	metric	for	task

• usual	conventions:
• for	classification,	what	cost	should	we	use?

20

Cost	Functions

• for	classification,	we	used:

• how	about	for	sequences?

– “Hamming	cost”:	

– “0-1	cost”:

21

Empirical	Risk	Minimization

22

• this	is	intractable	so	we	typically	minimize	a	surrogate	
loss	function instead

Loss	Functions	for	Score-Based	SP

23

name loss where	used

cost	
(“0-1”) MERT	(Och,	2003)

percep-
tron

structured	
perceptron	

(Collins,	2002)

hinge
structured	SVMs
(Taskar et	al.,	
inter	alia)

Loss	Functions	for	Score-Based	SP

24

name loss where	used

cost	
(“0-1”) MERT	(Och,	2003)

percep-
tron

structured	
perceptron	

(Collins,	2002)

hinge
structured	SVMs
(Taskar et	al.,	
inter	alia)

Loss	Functions	for	Score-Based	SP

25

name loss where	used

cost	
(“0-1”) MERT	(Och,	2003)

percep-
tron

structured	
perceptron	

(Collins,	2002)

hinge
structured	SVMs
(Taskar et	al.,	
inter	alia)

log CRFs	(Lafferty	et	
al.,	2001)

Loss	Functions	for	Score-Based	SP

26

name loss where	used

cost	
(“0-1”) MERT	(Och,	2003)

percep-
tron

structured	
perceptron	

(Collins,	2002)

hinge
structured	SVMs
(Taskar et	al.,	
inter	alia)

log CRFs	(Lafferty	et	
al.,	2001)

softma
x-

margin

Povey et	al.	
(2008),	Gimpel	&	
Smith	(2010)

27

Perceptron

Max-Margin Softmax-Margin

Conditional
Likelihood

add	cost	
function

max	to	softmax

max	to	softmax

add	cost	
function

28

add	cost	
function

max	to	softmax

max	to	softmax

add	cost	
function

Results:	Named	Entity	Recognition
(Gimpel	&	Smith,	2010)

Softmax-Margin
F1:	86.03

Conditional
Likelihood
F1:	85.54

Max-Margin
F1:	85.55

Perceptron
F1:	85.27

Inference	Algorithms	for	Score-Based	SP

• dynamic	programming
– exact,	but	parts	must	be	small	for	efficiency

• dynamic	programming	+	“cube	pruning”
– permits	approximate	incorporation	of	large	parts	
(“non-local	features”)	while	still	using	dynamic	
program	backbone

• integer	linear	programming

29

Cube	Pruning
(Chiang,	2007;	Huang	&	Chiang,	2007)

• Modification	to	dynamic	programming	algorithms	for	
decoding	to	use	non-local	features	approximately

• Keeps	a	k-best	list	of	derivations	for	each	item

• Applies	non-local	feature	functions	on	these	derivations	when	
defining	new	items

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

There near the top of the list is quarterback Troy Aikman

S

VP

NP

NP

VBZ

0 1 7

NN NNP NNP

NP

PP

NP

CKY	Algorithm

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

“NGramTree” feature
(Charniak	&	Johnson,	2005)

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

“NGramTree” feature
(Charniak	&	Johnson,	2005)

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

“NGramTree” feature
(Charniak	&	Johnson,	2005)

Non-local	features	break	dynamic	programming!

There near the top of the list is quarterback Troy Aikman

S

VP

NP

NP

VBZ

0 1 7

NN NNP NNP

NP

PP

NP

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

CNP,0,1 =

CPP,1,7 =

There

RB

NP

There

NNP

NP

There

EX

NP

0.2 0.1 0.05

0.4 0.3 0.02

near the top of the list

IN

NP

PP

PP

NP

DT NN DT NNIN

NP

near the top of the list

IN

NP

PP

PP

NP

DT JJ DT NNIN

NP

near the top of the list

RB

NP

PP

PP

NP

DT NN DT NNIN

NP

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.08 0.04 0.02

0.03 0.0150.06

0.1

0.4

0.3

0.002 0.0010.0040.02

CNP,0,1
CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

λNP→NP PP = 0.5

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.08 × 0.5 0.04 × 0.5 0.02 × 0.5

0.03 × 0.5 0.015 × 0.50.06 × 0.5

0.1

0.4

0.3

0.002 × 0.5 0.001 × 0.50.004 × 0.50.02

CNP,0,1
CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.04 0.02 0.01

0.015 0.00750.03

0.1

0.4

0.3

0.001 0.00050.0020.02

CNP,0,1
CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

0.2

0.04 × 0.2 0.02 × 0.2 0.01

0.015 0.00750.03

0.1

0.4

0.3

0.001 0.00050.0020.02

CNP,0,1
CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

There near the top of the list

EX IN

NP

NP

NP

PP

PP

NP

DT NN DT NNIN

NP

λThere EX NP NP PP IN near = 0.2

0.2

0.04 × 0.2 0.02 × 0.2 0.01 × 0.1

0.015 × 0.6 0.0075 × 0.40.03 × 0.6

0.1

0.4

0.3

0.001 × 0.1 0.0005 × 0.20.002 × 0.10.02

CNP,0,1
CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

λThere EX NP NP PP IN near = 0.2

λThere RB NP NP PP IN near = 0.6

λThere NNP NP NP PP IN near = 0.1

λThere EX NP NP PP RB near = 0.1

λThere RB NP NP PP RB near = 0.4

λThere NNP NP NP PP RB near = 0.2

0.2

0.008 0.004 0.001

0.009 0.0030.018

0.1

0.4

0.3

0.0001 0.00010.00020.02

CNP,0,1
CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

0.2

0.008 0.004 0.001

0.009 0.0030.018

0.4

0.3

0.0001 0.00010.00020.02

CNP,0,1
CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.050.1

0.2

0.008 0.004 0.001

0.009 0.0030.018

0.4

0.3

0.0001 0.00010.00020.02

CNP,0,1
CPP,1,7

CNP,0,7

There

RB

NP

There

NNP

NP

There

EX

NP

There near the top ...

RB IN

NP

NP

NP

PP

DT NN

NP
...

There near the top ...

EX IN

NP

NP

NP

PP

DT NN

NP
...

There near the top ...

RB IN

NP

NP

NP

PP

DT JJ

NP
...

0.050.1

0.018 0.0080.009

Clarification
• Cube	pruning	does	not	actually	expand	all	k2 proofs	as	this	

example	showed

• It	uses	a	fast	approximation	that	only	looks	at	O(k) proofs

Integer	Linear	Programming
• (on	board)

51

