TTIC 31210: Advanced Natural Language Processing

Kevin Gimpel Spring 2017

Lecture 14:

Finish up Bayesian/Unsupervised NLP, Start Structured Prediction

- Today and Wednesday: structured prediction
- No class Monday May 29 (Memorial Day)
- Final class is Wednesday May 31

- Assignment 3 has been posted, due Thursday June 1
- Final project report due Friday, June 9

Key Quantities

 $p(x, z, \theta \mid \alpha) = p(\theta \mid \alpha) \ p(z \mid \theta) \ p(x \mid z, \theta)$ Our data is a set of samples: $x^{(1)}, x^{(2)}, ..., x^{(n)}$

joint:
$$p(x^{(1)}, ..., x^{(n)}, z^{(1)}, ..., z^{(n)}, \theta \mid \alpha)$$

= $p(\theta \mid \alpha) \left(\prod_{i=1}^{n} p(z^{(i)} \mid \theta) p(x^{(i)} \mid z^{(i)}, \theta) \right)$

posterior: $p(z^{(1)}, ..., z^{(n)}, \theta \mid x^{(1)}, ..., x^{(n)}, \alpha)$ collapsed posterior: $p(z^{(1)}, ..., z^{(n)} \mid x^{(1)}, ..., x^{(n)}, \alpha)$

Gibbs Sampling Template

 $U_1, ..., U_p =$ latent variables

 U_{-i} = all latent variables other than U_i

X = all observed data and hyperparameters

Gibbs sampling: initialize all U_i to values u_i repeat until convergence: sample u from $p(U_i \mid u_{-i}, \mathbf{X})$ set $U_i \leftarrow u$

LDA

Generative Story: $\beta_k \sim \text{Dirichlet}(\psi)$ $\theta^{(i)} \sim \text{Dirichlet}(\alpha)$ $Z^{(i,j)} \sim \text{Multinomial}(\theta^{(i)})$

Posteriors:

 $\begin{array}{l} \beta_k \mid \text{ everything else} \sim \text{Dirichlet}(\psi + n_k) \\ \\ \theta^{(i)} \mid \text{ everything else} \sim \text{Dirichlet}(\alpha + m^{(i)}) \\ \\ Z^{(i,j)} \mid \text{ everything else} \sim \text{Multinomial}(\theta^{(i)} \odot \beta_{\cdot,w^{(i,j)}}) \end{array}$

Expectation Maximization (EM)

$$\max_{\theta} \prod_{i} \sum_{z} p(x^{(i)}, z \mid \theta)$$

 EM is an algorithmic template that finds a local maximum of the marginal likelihood of the observed data

EM

• "E" step:

- compute posteriors over latent variables:

for each *i*,
$$q_i(z) = p(z \mid x^{(i)}, \theta)$$

• "M" step:

- update parameters given posteriors:

$$\theta = \underset{\theta'}{\operatorname{argmax}} \sum_{i} \sum_{z} q_i(z) \log \frac{p(x^{(i)}, z \mid \theta')}{q_i(z)}$$

Different Views of the Dirichlet Process (DP)

- last time we discussed the "stick-breaking" view of the DP
- today we'll briefly discuss the "Chinese Restaurant Process" view
- with both views, we still have the same DP hyperparameters

(base distribution & concentration parameter)

Base Distribution G_0 for DP

- our unbounded distribution over items will choose them from the base distribution
- base distribution usually has infinite support
- simple example base distribution for our morph lexicon:

$$G_0(m) = p_{\text{len}}(|m|) \prod_{i=1}^{|m|} p_{\text{char}}(m_i)$$

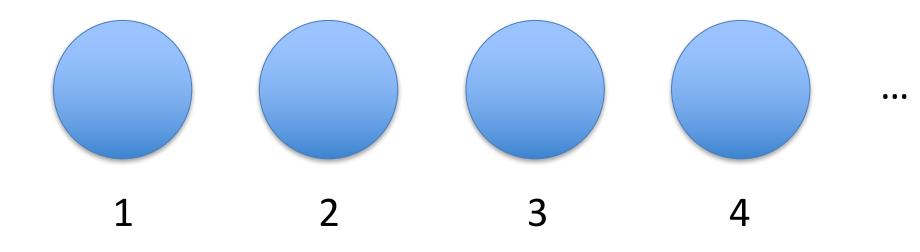
Concentration Parameter

- in stick-breaking process, concentration parameter determines how much of the stick we break off each time
- high concentration == small parts of stick



- the stick-breaking construction of the DP is useful for specifying models and defining inference algorithms
- another useful way of representing a draw from a DP is with the Chinese Restaurant Process (CRP)
 - CRP provides a distribution over partitions with an unbounded number of parts

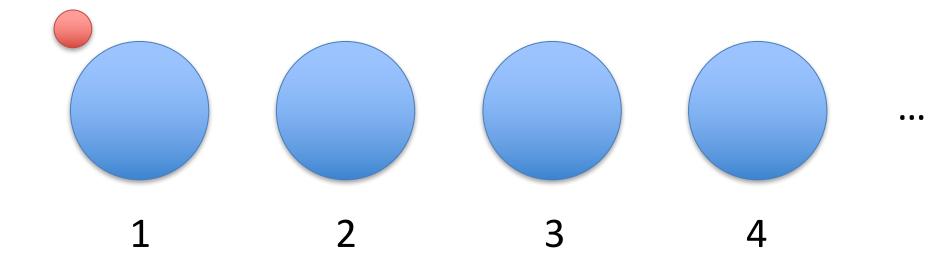
• imagine a Chinese restaurant with an infinite number of tables...



• first customer sits at first table:

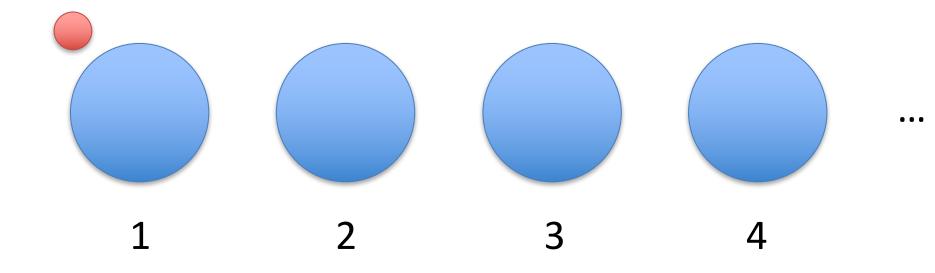


• second customer enters, chooses a table:



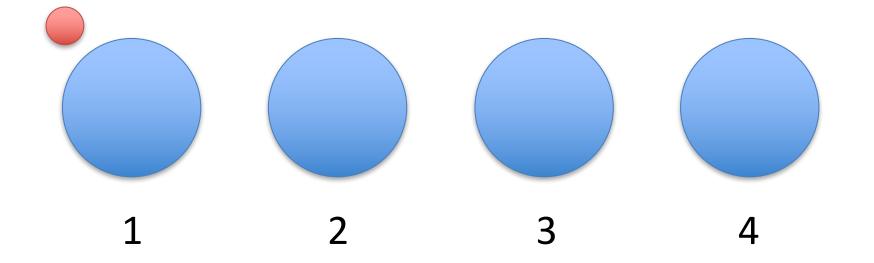
second customer lenters,

chooses table 1: $p(Y^{(2)} = 1 | Y^{(1)}, s) = \frac{1}{1+s}$

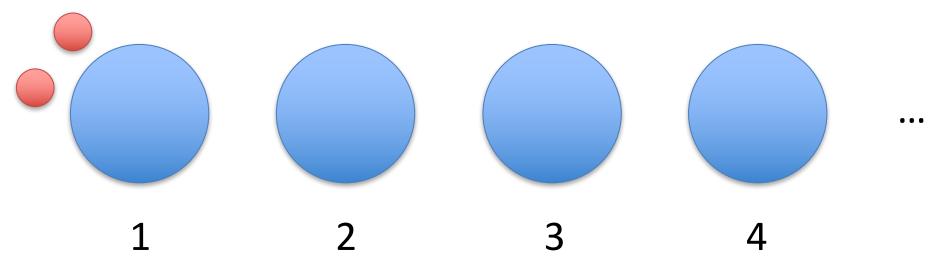


second customer lenters,

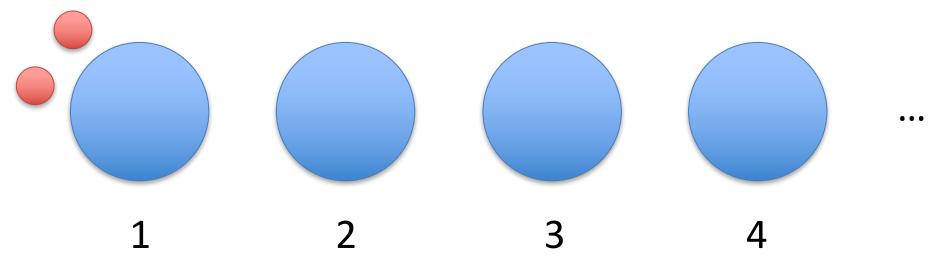
chooses table 1: $p(Y^{(2)} = 1 | Y^{(1)}, s) = \frac{1}{1+s}$ chooses new table: $p(Y^{(2)} = 2 | Y^{(1)}, s) = \frac{s}{1+s}$



chooses table 1



• third customer lenters,

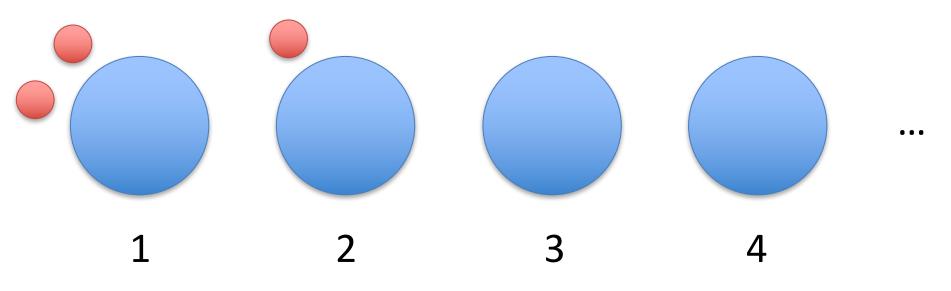


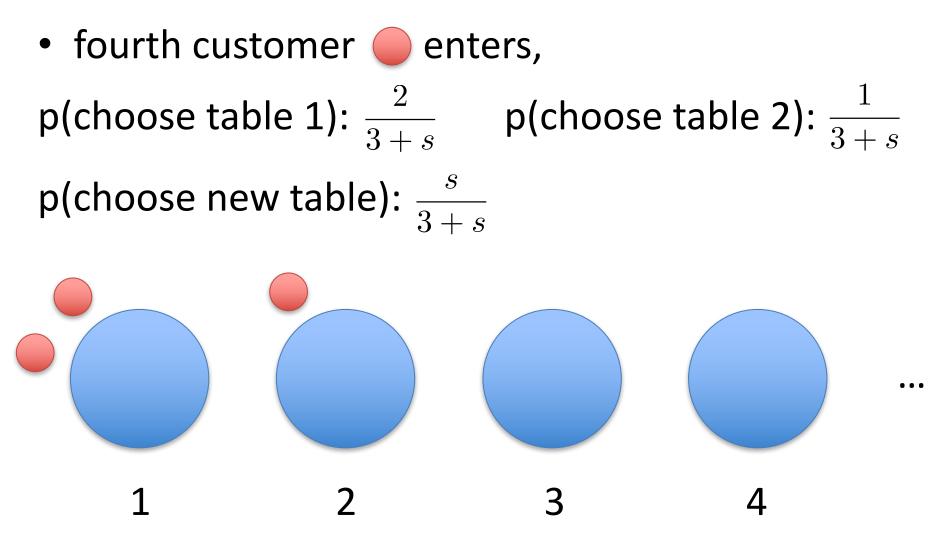
• third customer 🔵 enters,

chooses table 1: $p(Y^{(3)} = 1 | Y^{(1)}, Y^{(2)}, s) = \frac{2}{2+s}$ chooses new table: $p(Y^{(3)} = 2 | Y^{(1)}, Y^{(2)}, s) = \frac{s}{2+s}$

 • third customer lenters,

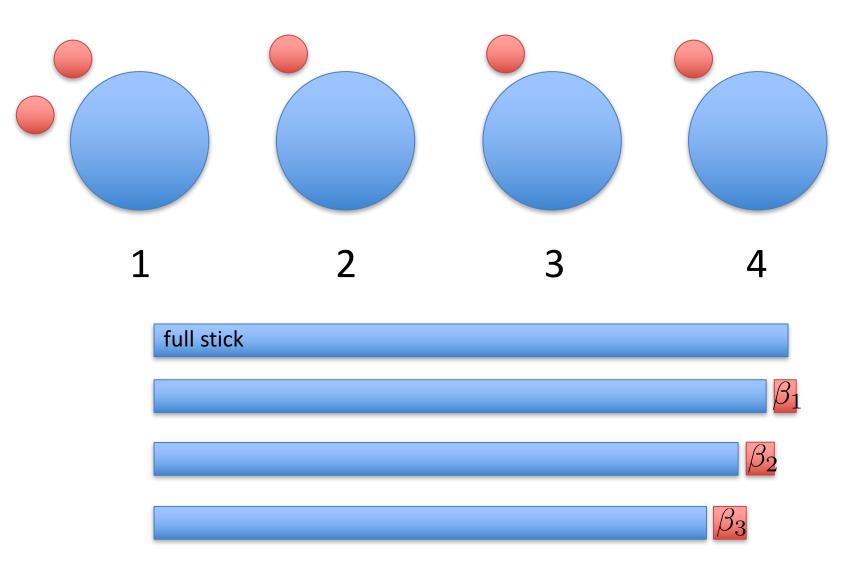
chooses new table



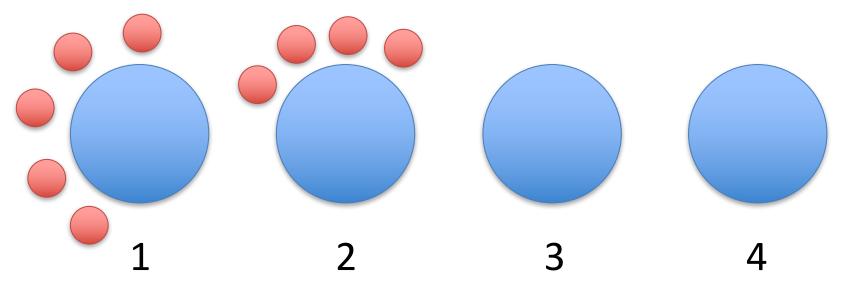




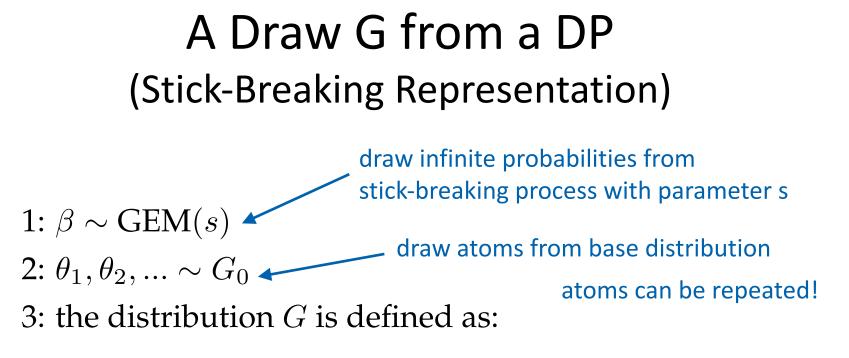
• large value of concentration parameter:



• small value of concentration parameter:



...



$$G(\theta) = \sum_{k=1}^{\infty} \beta_k \mathbb{I}[\theta = \theta_k]$$

$$G(\text{"ing"}) = \sum_{k=1}^{\infty} \beta_k \mathbb{I}[\text{"ing"} = \theta_k]$$

A Representation of G Drawn from a DP (Chinese Restaurant Process Representation)

 $\begin{array}{c} \text{draw table assignments for } n \text{ customers} \\ \text{with parameter } s \\ 1: \ y^{(1)}, \dots, y^{(n)} \sim \operatorname{CRP}(s) \\ 2: \ \phi_1, \dots, \phi_{y_{\max}} \sim G_0 \\ 1: \ y^{(1)}, \dots, \phi_{y_{\max}} \sim G_0 \\ 2: \ \phi_1, \dots, \phi_{y_{\max}} \sim G_0 \\ 3: \ \text{set each } \theta^{(i)} \text{ to } \phi_{y^{(i)}} \text{ for } i \in \{1, \dots, n\} \\ 3: \ \text{set each } \theta^{(i)} \text{ to } \phi_{y^{(i)}} \text{ for } i \in \{1, \dots, n\} \\ each \ draw \ \text{from G is an atom, where its} \\ probability \ \text{comes from the number of} \\ number \ \text{of} \end{array}$

customers at its table

tables occupied

When to be Bayesian?

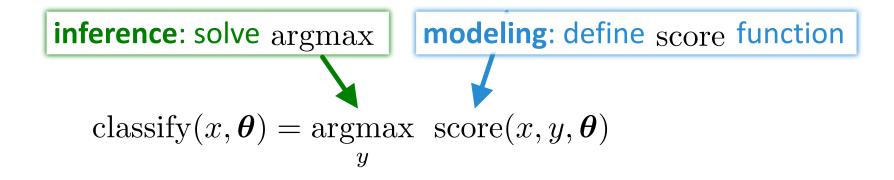
- if you're doing unsupervised learning or learning with latent variables
- if you want to marginalize out some model parameters
- if you want to learn the structure/architecture of your model
- if you want to learn a potentially-unbounded lexicon (Bayesian nonparametrics)

What is Structured Prediction?

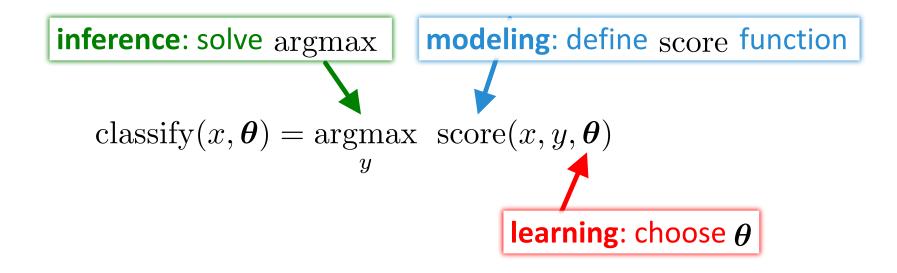
classify
$$(x, \theta) = \underset{y}{\operatorname{argmax}} \operatorname{score}(x, y, \theta)$$

classify
$$(x, \theta) = \underset{y}{\operatorname{argmax}} \operatorname{score}(x, y, \theta)$$

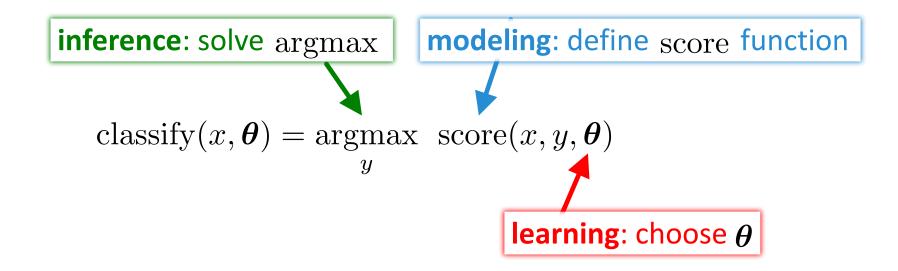
Modeling: How do we assign a score to an (x,y) pair using parameters θ?



• Inference: How do we efficiently search over the space of all labels?



• Learning: How do we choose θ ?



Structured Prediction:

size of output space is exponential in size of input or is unbounded (e.g., machine translation) (we can't just enumerate all possible outputs)

Simplest kind of structured prediction: Sequence Labeling

Part-of-Speech Tagging

<mark>determiner</mark> Some				noi	in p		<mark>adj.</mark> first	noun product
<mark>modal</mark> would		<mark>adjective</mark> breakaway			· ·	. 'r		punc.

Formulating segmentation tasks as sequence labeling via B-I-O labeling:

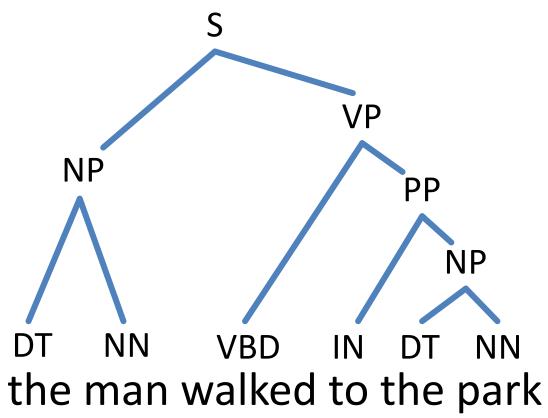
Named Entity Recognition

0 **B-PERSON** I-PERSON 0 0 0 0 \mathbf{O} Some questioned if 'S first product Tim Cook 0 0 0 0 **B-ORGANIZATION** 0 0 0 would be a breakaway hit for Apple .

> B = "begin" I = "inside" O = "outside"

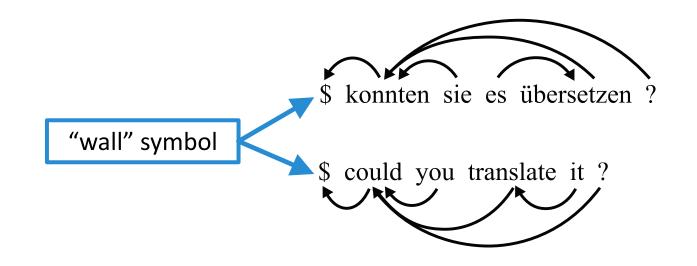
Constituent Parsing

(S (NP the man) (VP walked (PP to (NP the park))))



Key: S = sentence NP = noun phrase VP = verb phrase PP = prepositional phrase DT = determiner NN = noun VBD = verb (past tense) IN = preposition

Dependency Parsing



Coreference Resolution

As we head towards training camp, the **Philadelphia Eagles** have finally filled most of their needs on offense.

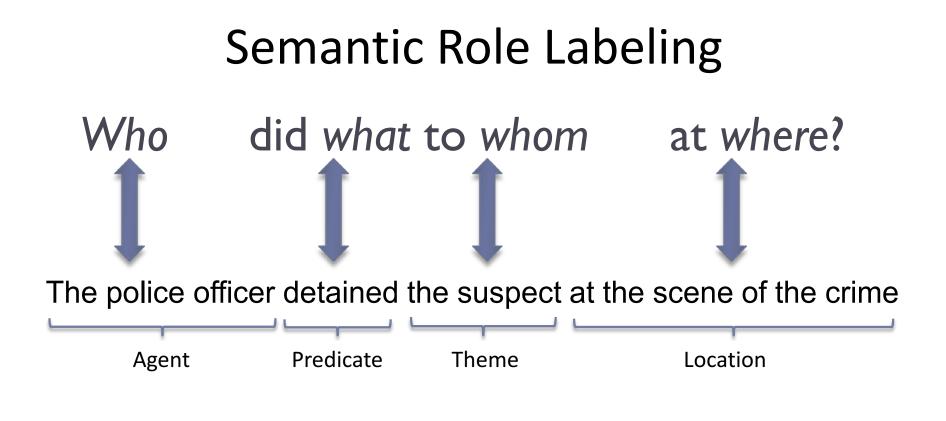
One of the main goals for this off-season was to find weapons for **the team's** franchise quarterback, **Carson Wentz**. **The Eagles** needed a wide receiver who could stretch the field and give **Wentz** the opportunity to throw the long ball.

They signed receiver Torrey Smith to a 3-year deal. While the signing of Smith was huge for the team, the biggest signing the Eagles made was former Chicago Bears receiver Alshon Jeffery. He had a solid 5-year stint in Chicago, but as the team started to fall apart, Jeffery was forced to explore other options.

Coreference Resolution

input: a document

output: a set of "mentions" (textual spans in document), and memberships of those mentions in clusters

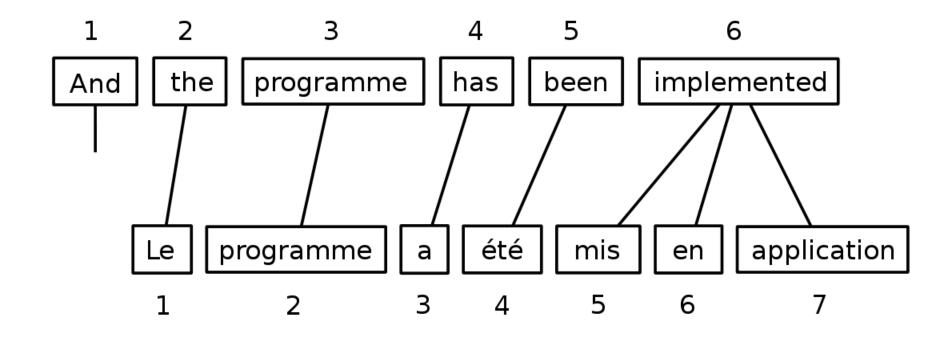


input: a sentence

output: one span in the sentence identified as a *predicate*, and a set of other spans identified as particular *roles* for that predicate

Supervised Word Alignment

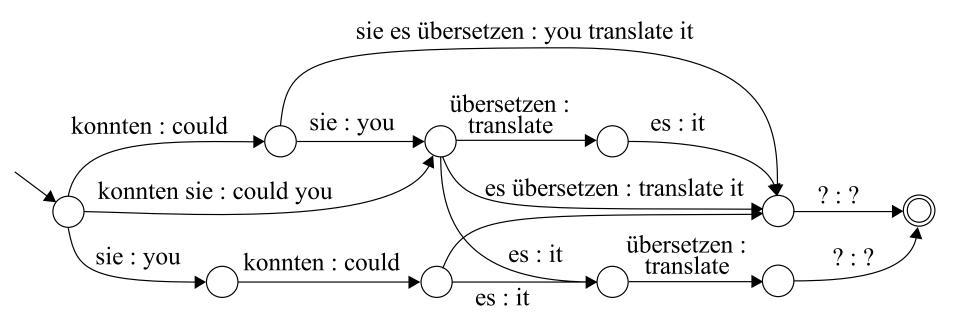
given parallel sentences, predict word alignments:



Brown et al. (1990)

Machine Translation

• phrase-based model (Koehn et al., 2003):



input: a sentence in the source language

output: a segmentation of the source sentence into segments, a translation of each segment, and an ordering of the translations

Key Categories of Structured Prediction

 I think of structured prediction methods in two primary categories:

score-based and search-based

Score-Based Structured Prediction

focus on defining the score function of the structured input/output pair:

 $\operatorname{score}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\theta})$

 in dependency parsing, this is called "graph-based parsing" because minimum spanning tree algorithms can be used to find the globally-optimal max-scoring tree

Search-Based Structured Prediction

- focus on the procedure for searching through the structured output space (usually involves simple greedy or beam search)
- design a classifier to score a small number of decisions at each position in the search
 - this classifier can use information about the current state as well as the entire history of the search
- in dependency parsing, this is called "transitionbased parsing" because it consists of greedily, sequentially deciding what parsing decision to make

Structured Prediction

- to make SP practical, we need to decompose the SP problem into parts
- this is true whether we are going to use search-based or score-based SP
 - score-based: score function decomposes additively into scores of parts
 - search-based: search factors into a sequence of decisions, each one adding a part to the final output structure