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e Assignment 2 has been posted, due May 17

* Grades for Assignment 1 will be emailed to
you soon

* Project proposal details posted, due May 10



Additional Reading

* For thIS Segment Of the % MORGAN & CLAYPOOL PUBLISHERS
course, the optional

text is Cohen (2016) Bayesian Analysis
, . in Natural Language
* Thereis a copy in the Processing
TTIC library
* Readings will be drawn
from this book for the Shay Cohen

next few lectures

SYNTHESIS LECTURES ON

HuMaN LANGUAGE TECHNOLOGIES

Gracme Hirst, Series Editor



Motivation

* in most neural NLP, we assume parameters
and architectures are fixed

* consider a one-hidden-layer MLP:

exp{w, tanh (Wg(x))}
Z

p(Y =y |x) =
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* in most neural NLP, we assume parameters
and architectures are fixed

* consider a one-hidden-layer MLP:

oy — | a) = E2S 1o (Wo(z)

* now let’s be more explicit about what we’re
conditioning on:
exp{wg;r tanh (Wg(x))}

plY =y |x,0={w,W}) = —
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Motivation

exp{w, tanh (Wg(x))}

plY =y |xz,0={w,W}) = -

* how do we get backto p(Y =y | x)?
* marginalize over new random variables:

p<Y=y\m>:/@p<Y=y,@={w,W}\w)d@

p(Y =y,0={w,W}|z)=pY =y |0 ={w, W}, z)p(O0 ={w,W} | x)



Going Further...

* marginalize over architectures & parameters:
exp{w, tanh (Wg(x))}
A

pY =yl @)= [ pY = 5.4 = MLP(w, W) | 2)aA

pY =y |x,A=MLP(w,W)) =




Going Further...

* marginalize over architectures & parameters:
exp{w, tanh (Wg(x))}
A

pY =yl @)= [ pY = 5.4 = MLP(w, W) | 2)aA

pY =y |x,A=MLP(w,W)) =

* the Bayesian framework gives us a vocabulary
to discuss this kind of thing and methods for
approximating these computations



Why “Bayesian”?

Likelihood

Probability of collecting

this data when ou
hypothesis is true

r

Bill Howe, UW

Prior
The probability of the

P(DIH) P(H) hypothesis being true

before collecting data

P(H|D) =

Posterior

The probability of our
hypothesis being true given
the data collected

P(D)

Marginal
What is the probability of

collecting this data under
all possible hypotheses?
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Bayesian NLP

typically used with unsupervised learning:
— we have data

— we hypothesize some latent variables through
which the data are generated

— we define the “generative story” that describes
how latent variables are generated, then how
data is generated using latent variables

— we parameterize the distributions & add the
parameters themselves to the generative story



Generative Story Template

1: Draw a set of parameters 6 from p(©)
2: Draw a latent structure z from p(Z | 6)
3: Draw the observed data x from p(X | z,0)

p(z,z,0) = p(0)p(z | O)p(z | 2,0)



Multinomial Distribution

 parameterized by a vector of probabilities,
one for drawing each outcome

* ji.e., prob. of drawing outcome i for variable A:



Multinomial Distribution

 parameterized by a vector of probabilities,
one for drawing each outcome

* ji.e., prob. of drawing outcome i for variable A:

* when we want to draw from this distribution,
we will write:

a ~ Multinomial(8)



* we should more accurately call this a
“categorical distribution”

e a multinomial is more general (permits more
than 1 instance of an event)

* but multinomial is used frequently to mean

categorical in this literature, so we’ll often use
multinomial



Latent Dirichlet Allocation

David M. Blei BLEI@CS.BERKELEY.EDU
Computer Science Division

University of California
Berkeley, CA 94720, USA

Andrew Y. Ng ANG@CS.STANFORD.EDU
Computer Science Department

Stanford University
Stanford, CA 94305, USA

Michael I. Jordan JORDAN@CS.BERKELEY.EDU
Computer Science Division and Department of Statistics

University of California

Berkeley, CA 94720, USA

e generative model for document collections
using latent variables that can be interpreted
as “topics”

e |earns a multinomial distribution over words
for each topic



Latent Dirichlet Allocation
(Blei et al., 2003)

multinomial distributions over words for four topics:

“Arts” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER

ACTOR NEW SAYS BENNETT
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Topics

gene 0.04
dna 0.02
genetic 0.01

Topic proportions and

Documents )
assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all char far apare.” cspecially m

How many genes does anBRRRSI negd 10 comparison to the 73,000 senes o the hu
suEive! Last week ar the genome meeting e, notes Siv Anderssop S Ty
here ™ twogenome researcherswith radically - University in S0 arrived ars
different approaches presented complemen- SO0 T but coming up with i oer

tary views of the basic genes needed fio -lilife.: sus tnswer may be more than just o n
('71“- roseaare || LA, usinge computer analy I'.‘lllll‘\'l‘ = T — n.u'.‘lr'. _ nore ‘l'u.:.
ses to compare known genomes, concludad  more genomes are g c SETURGUR. o
that oday ' JOFBREIAS can be sustained with sequenced. “1e may be a way of organie
just 230 wenes, and that the earliest life forms— any newly sequenced genome.” explains
required a mere 128 penes. The — Arcady Mushegian, a computational mo
other researcher mappad senes : lecular biologist at the Nati

ma \lllll'd' i‘.lrl‘lll' .!n\' st
mated that for this organism, |
SO0 genes are plenty todothe |
job—but that anvthing short
of 100 wouldn't be enovgh.
-\Ilhl '|l'_'h 'l\\' :]lilll‘f‘l'l\ Ll-."\.'
match precisely, those predictions

* Genome Mapping and Sequenc- S
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 810 12. mate of the minimum modemn and ancient genomes

SCIENCE o VOL. 272 o 24 MAY 1996
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Generative Story for Simple LDA

* simplified LDA model, and only showing generative story for a
single document:

1: Draw a multinomial topic distribution 6 from some distribution p(O)
2: For each position 7 in document:
a: Draw a topic z; ~ Multinomial(6)

b: Draw a word w; ~ Multinomial(/,,)
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multinomial distribution over words for topic z;



Generative Story for Simple LDA

* simplified LDA model, and only showing generative story for a
single document:

1: Draw a multinomial topic distribution 6 from some distribution p(O)
2: For each position 7 in document:
a: Draw a topic z; ~ Multinomial(6)

b: Draw a word w; ~ Multinomial(/,,)

what should we keep in mind
when choosing this distribution?



Dirichlet Distribution

e distribution over vectors with entries that are
all positive and sumto 1

e 50 it’s kind of like a “distribution over
(multinomial) distributions”

p(@=9\a)=%&)1—[9§“_1

1

normalization term that depends on &



Dirichlet Distribution

 parameterized by a positive vector «

p(©=10]a) HHO”_1

0 ~ Dirichlet(«)



[see Jupyter Notebook]



Generative Story for Simple LDA

* simplified LDA model, and only showing generative story for a
single document:

1: Draw a multinomial topic distribution 6 ~ Dirichlet(«)
2: For each position ¢ in document:
a: Draw a topic z; ~ Multinomial(#)

b: Draw a word w; ~ Multinomial(/,, )



Generative Story for LDA

1: For each topic, draw a multinomial word distribution 3; ~ Dirichlet(n)

2: For each document d:
a: Draw a multinomial topic distribution 6 ~ Dirichlet(«)
b: For each position ¢ in document d:
i: Draw a topic z; ~ Multinomial(6)

ii: Draw a word w; ~ Multinomial(/3,,)

* now we show explicitly the generation of the word
multinomials (once for the document collection)

* where should the hyperparameters (alpha and psi)
come from?



Graphical Model for LDA

HC}Q\B k

OFO+0—@

o o) Z w N




