
TTIC 31210: Advanced Natural Language Processing
Assignment 3: Generative Modeling and Structured Prediction

Kevin Gimpel
Assigned: May 22, 2017

Due: 11:00 pm, June 1, 2017
Submission: email to kgimpel@ttic.edu

Submission Instructions
Package your report and code in a single zip file or tarball, name the file with your last name followed
by “ hw3”, and email the file to kgimpel@ttic.edu by 11:00 pm on the due date. For the report, use
LaTeX and some standard style files, such as those prepared for ACL or ICLR. Your report should be a
maximum of 6 pages.

Collaboration Policy
You are welcome to discuss assignments with others in the course, but solutions and code must be
written individually. You may modify code you find online, but you must be sure you understand it!

Lateness Policy
We want you to do the assignments, even if that means turning them in late (whether partially or fully).
There will likely be a penalty assessed if assignments are turned in after the due dates, but we will
continue to accept late submissions of assignments until the end of the quarter.

Overview

In this assignment, you will do part-of-speech tagging using some of the methods you’ve learned from
the generative modeling and structured prediction segments of the course.

Data

You should use the English Universal Dependencies dataset available here: https://github.com/
UniversalDependencies/UD_English. Use the following two files:

• en-ud-train.conllu: training data; contains 12,543 annotated sentences.

• en-ud-dev.conllu: development data; contains 2,002 annotated sentences.

Lines beginning with # are comments and can be skipped. Each other non-blank line corresponds to a
single word in a sentence. Blank lines separate sentences.

You only need to worry about the first few fields in each line for this assignment. In particular, the
second field in each line is the word, the fourth field in the line is the universal part-of-speech tag for
the word, and the fifth field is the fine-grained part-of-speech tag for the word. For this assignment, you
should use the 17-tag universal tag set. So you can discard all fields from each non-blank line other than
the word (second field) and its universal POS tag (fourth field).

1

https://github.com/UniversalDependencies/UD_English
https://github.com/UniversalDependencies/UD_English

Hidden Markov Models for Tagging

We will use a hidden Markov model (HMM) for part-of-speech tagging. We will use Yt to denote the
random variable corresponding to the label (tag) at position t. We will useXt to denote the random vari-
able corresponding to the symbol (word) at position t. A typical HMM uses the following conditional
independence assumptions:

for k > 1 : Yt ⊥⊥ Yt−k | Yt−1 (1)
for k > 1 : Yt ⊥⊥ Yt+k | Yt+1 (2)
for k 6= 0 : Xt ⊥⊥ Yt+k | Yt (3)

We will use Yi:j to denote the set of random variables Yi, Yi+1, ..., Yj−1, Yj . We will use lowercase letters
to denote values of random variables.

The probability of a length-T sequence of labels and symbols is:

p(X1:T = x1:T , Y1:T = y1:T) = p(〈EOS 〉 | YT = yT)
T∏
t=1

p(Yt = yt | Yt−1 = yt−1)p(Xt = xt | Yt = yt)

where 〈EOS 〉 is the end-of-sentence label and where we fix Y0 = 〈BOS 〉, where 〈BOS 〉 is the start-of-
sentence label.

The parameters of the P (Yt | Yt−1) distributions are called the transition probabilities and the parame-
ters of the P (Xt | Yt) distributions are called the emission probabilities.

1. Your Tasks (50 points + up to 10 points extra credit)

1.1 Understanding HMMs (5 points)

Explain why an HMM must include the generation of the “stop” label 〈EOS 〉. Hint: in what way would
the model no longer be a probabilistic model over arbitrary-length sequences?

1.2 Supervised Learning for HMMs: Implementation (15 points)

• (a) (10 points) Implement a supervised HMM for POS tagging. Use maximum likelihood estima-
tion for learning, i.e., “count and normalize”:

P (Yt = y | Yt−1 = y′)← count(〈y′, y〉)∑
y′′ count(〈y′, y′′〉)

(4)

P (Xt = x | Yt = y)← count(〈y, x〉)∑
x′ count(〈y, x′〉)

(5)

where count(〈y′, y〉) is the number of times in the training set that the tag bigram “y′ y” was
observed, and count(〈y, x〉) is the number of times in the training set that word x was tagged with
tag y.

Smooth the emission distributions by including an extra special symbol “UNK” designated for
unknown words. Assign a count of 1 to the emission of UNK from each tag.1 When you encounter
new words in the development set, convert them to the special UNK symbol. You do not have to

1In general, this is a bad way to smooth, but it’s ok for the purposes of this assignment.

2

smooth the transition distributions.

Note: you may want to implement this in the log domain. That is, instead of storing probabilities,
store log-probabilities. When you would ordinarily multiply together two probabilities, instead
just add their log-probabilities. When you would ordinarily add together two probabilities,
instead log-add their log-probabilities. The log-add function can be found in standard libraries or
pseudocode can be found online. You probably do not need to do this until you start doing Gibbs
sampling though.

Submit your code.

• (b) (5 points) After estimating the parameters, print the top 10 most probable words emitted by
the adjective tag (“ADJ”), along with their probabilities. Also, print the 5 tags that are most likely
to follow the proper noun (“PROPN”) tag.

1.3 Gibbs Sampling for Decoding (30 points)

For supervised HMMs, we can use maximum likelihood estimation to estimate the transition and
emission parameters of the HMM, as you did above. There is no inference required during learning.

However, to use the model to tag new data, we need to solve the following:

ŷ1:T = argmax
y1:T

p(Y1:T = y1:T | X1:T = x1:T) (6)

Typically, the Viterbi algorithm is used to exactly solve this test-time inference (“decoding”) problem.

Instead of the Viterbi algorithm, you will use Gibbs sampling for decoding. Gibbs sampling defines
a way to draw samples from p(Y1:T = y1:T | X1:T = x1:T) by repeatedly sampling from p(Yt = yt |
Y−t = y−t, X1:T = x1:T) where Y−t represents all Y random variables other than Yt and y−t denotes their
values.

• (a) (5 points) Show that

p(Yt = yt | Y−t = y−t, X1:T = x1:T) ∝ p(Yt = yt | Yt−1 = yt−1)p(Xt = xt | Yt = yt)p(Yt+1 = yt+1 | Yt = yt)

• (b) (2 points) Write down the two special cases below:

p(Y1 = y1 | Y−1 = y−1, X1:T = x1:T) ∝ ?

p(YT = yT | Y−T = y−T , X1:T = x1:T) ∝ ?

• (c) (10 points) Implement Gibbs sampling for your HMM using the above formulas.

You have to start your Gibbs sampler by initializing the state of the sampler. Here, the state
consists of values for the Yt variables. Initialize by sampling each tag uniformly at random from
the set of tags (excluding the special start and end tags).

Let’s define an iteration of Gibbs sampling as the sampling of each Yt in the sequence conditioned
on all other Yt values in the current state. So a single Gibbs sampling iteration for a sentence with
T words will require T sampling steps, each time sampling from the conditional distribution of

3

one Yt conditioned on all others. Implement the ability to run the sampler for a given number of
iterations. At the end of that number of iterations, evaluate the state by comparing its tags to the
ground truth tags and recording the number that match. Run a completely new Gibbs sampler for
k iterations on each sentence in the development set. Compute tagging accuracy by accumulating
the counts of matching tags and total tags across all sentences and dividing.

During implementation and debugging, you can print the number of sampling steps in which
a random variable actually changed its value. You should see this number decrease and
then stabilize after a small number of iterations (though it should not actually shrink to zero
assuming the posterior has nonzero probability mass on multiple taggings, which it typically will).

Submit your code.

• (d) (5 points) Run k iterations of Gibbs sampling for each sentence in the development set, for
k ∈ {1, 2, 5, 10, 100, 500, 1000, 2000}, then take the final sample and record its counts of correct
and total tags in order to compute the tagging accuracy of the entire development set. Report the
tagging accuracies for all k values. Note that for each k value, you should run a completely new
sampler for each development set sentence.

• (e) (4 points) Since we are doing test-time inference, we are interested in getting a setting of the
variables Yt that maximizes the posterior, rather than just generate samples from the posterior.
One way to approximate this is to sharpen each conditional distribution in the sampler by raising
every probability to the power β and then renormalizing to get a distribution. For β < 1, this will
flatten the distribution, and for β > 1, this will sharpen the distribution.

The experiments in (d) used β = 1. Repeat the experiments from (d) (for all k values) but now
vary β. Experiment with β ∈ {0.5, 2, 5} and report your tagging accuracies for all k values and all
β values.

• (f) (4 points) Repeat (e) but this time begin with β = 0.1 for each sentence and then increase β
by adding 0.1 after each sampling iteration for that sentence. For the next sentence’s sampler,
reset β again to 0.1 and repeat. Report your tagging accuracies for all k values considered above.
Experiment with a few other schedules of varying β across iterations to see if you can get better
resulting tagging accuracies.

This practice is often described as “annealing” as it is similar to methods like simulated annealing
and deterministic annealing. Starting with β < 1 helps the sampler to mix faster (in order to
converge to generating samples from the true posterior), then increasing β over time causes
the sampler to generate samples from the sharpened posterior. As β increases, sampling from
the sharpened posterior should get closer and closer to the argmax operation that the Viterbi
algorithm performs.

1.4 Extra Credit: Gibbs Sampling for Minimum Bayes Risk Decoding (up to 10 points extra)

The Viterbi algorithm solves the argmax decoding problem, which is often called maximum a posteriori or
MAP inference. However, there are other decoding criteria that can work better in practice, especially
for structured prediction.

4

One popular generalizing decoding framework is that of minimum Bayes risk (MBR) decoding. For
HMMs, MBR decoding has the following form:

ŷ1:T = argmin
y1:T

∑
y′1:T

p(Y1:T = y′1:T | X1:T = x1:T)cost(y1:T , y
′
1:T) (7)

We’ll consider two cost functions. First let’s define the 0-1 cost:

cost0−1(y1:T , y
′
1:T) = I[y1:T 6= y′1:T]

where I[f] returns 1 if f is true and 0 otherwise. The second is the Hamming cost:

costHamming(y1:T , y
′
1:T) =

T∑
t=1

I[yt 6= y′t]

This cost function counts the number of tags that don’t match between the two tag sequences.

• (a) (3 points) Show that MBR decoding (solving Eq. 7) reduces to MAP inference (solving Eq. 6)
when using 0-1 cost.

• (b) (7 points) It can be shown that MBR decoding with Hamming cost reduces to

for all t, ŷt = argmax
y

p(Yt = y | X1:T = x1:T)

You do not need to prove this.
Note that your Gibbs sampler gives you samples from

p(Y1:T | X1:T = x1:T)

For MBR decoding, we need to calculate

p(Yt = y | X1:T = x1:T) =
∑
y−t

p(Yt = y, Y−t = y−t | X1:T = x1:T)

We can use our samples from our Gibbs sampler to approximate this summation!

Use your Gibbs sampler’s samples to estimate the posteriors of individual variables Yt in order
to do MBR decoding. The decoding rule for a given position t ends up having a very simple
form given a set of samples. Compare tagging accuracies across different numbers of sampling
iterations, in particular when using k ∈ {1, 2, 5, 10, 100, 500, 1000, 2000} and fixing β = 1. Then
experiment with different fixed values of β and report how the results vary with different β values.

5

