TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2019

Lecture 8:
Structured Prediction 2

Roadmap

structured prediction (4 lectures)
— introducing/formalizing structured prediction, categories of structures
— inference: dynamic programming, greedy algorithms, beam search
— inference with non-local features
— learning in structured prediction

generative models, latent variables, unsupervised learning,
variational autoencoders (2 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)

Assignments

* Assignment 2 due in one week

* for the report, please use either pdf format or a
Jupyter notebook (no plain text)

Modeling, Inference, Learning

inference: solve argmax modeling: define score function

v

classify(ax, @) = argmax score(x,y, 0)
Y !

learning: choose 6

Working definition of structured prediction:
size of output space is exponential in size of input
or is unbounded (e.g., machine translation)

(we can’t just enumerate all possible outputs)

What is Structured Prediction?

 when we use a structured scoring function or
structured loss function

 we may be predicting a structure, but we
might not necessarily be building a
“structured predictor”

* we will use the terms “unstructured
predictor” or “local predictor” in such cases

Structured Prediction

e a structured score/loss function does not
decompose across “minimal parts” of output

* to apply this definition we defined “parts” and
“minimal parts”

Sequence Labeling
(e.g., Part-of-Speech Tagging)

proper proper

determiner verb (past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’s first product
proper

modal verb det. adjective noun prep. noun punc.

would be a breakaway hit for Apple

* parts:

proper proper

determiner verb (past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’s first product
proper

Imodal verbI det. Iadjectivel noun prep.| noun punc.

would || be | a breakaway hit for | Apple

* minimal parts:

determiner

Some

verb (past)
guestioned

proper proper
prep. noun noun poss. adij. noun

if Tim Cook ’'s first product
proper

I modal IIverbI Iadjectivel noun prep. nNoun punc.

would

be

d

breakaway hit for Apple

* parts:
— each “part” is a subcomponent of entire input/output pair

— “parts function” = decomposition of input/output pair into a
set of parts

— parts functions defined for score/loss function, rather than
for task (many parts functions possible for a task)

— parts may overlap

* minimal parts:
— smallest possible parts for the task

— minimal parts function defined for task (structured output
space), not for structured score/loss function

— minimal parts are non-overlapping

Parts and Score Functions

— given a “parts” function

parts(z, y)

— our score function is then defined:

score(x,y,0) = Z Scorepart (Tr, Yr, 0)
(@ ,Yyr)Eparts(z,y)

— score function decomposes additively across parts
— each part is a subcomponent of input/output pair

Structured Prediction Tasks

task output structure minimal parts

set containing L
individual labels in mp(y) = Y1, Yn'}

label set where each y; € {0,1}

multi-label set of N labels, each of
classification | which can be true or false

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .-, Y~}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

Feed-Forward POS Tagger

pO(Y | Lt—15 Lt xt—l—l)

A
(1\

lossiog = —log pe(Y = vz | Tt—1, T¢, Te11)

what is the parts function for this
model & loss?

parts(a:,y) = {<wt—1:t+1ayt> 1<t < T}

emb(xi—1) emb(xy) emb(Tit1)

13

Feed-Forward POS Tagger

pO(Y | Lt—15 Lt xt—l—l)
A

(1\

lossiog = —log pe(Y = vz | Tt—1, T¢, Te11)

what is the parts function for this
model & loss?

parts(:c,y) = {<J3t—1:t+1ayt> 1<t < T}

is this a structured predictor? no.
parts functions decomposes like
the minimal parts (in terms of y)

emb(xi—1) emb(xy) emb(Tit1) 14

Forward RNN for Part-of-Speech Tagging

. if the car ...

.. IN DT NN ...

hidden vector used to compute

probability distribution over Do ()/t | ml:t)
tags at each position:

Forward RNN for Part-of-Speech Tagging

o if the car ...

.. IN DT NN ...

loss: — Zlogpg(Yt = Y | 5131:15)
¢

Forward RNN for Part-of-Speech Tagging
. if

Yt—1 Yt Yt+1

what is the parts function for this model & loss?

parts(x,y) = {{(x1.4,y:) : 1 <t < T}

is this a structured predictor? no

Forward RNN for Part-of-Speech Tagging with Previous Label

this model uses the previous y
to compute a hidden vector

Forward RNN for Part-of-Speech Tagging with Previous Label

hidden vector used to compute Do (Yt ‘ I1.t, yl-t—l)
probability distribution over | |

tags at each position:

Forward RNN for Part-of-Speech Tagging with Previous Label

. IN DT NN ...

loss: — Zlong(Yt — Yt \ Cl?l:t,yu—l)
t

Forward RNN for Part-of-Speech Tagging with Previous Label

what is the parts function for this model & loss?

parts(z,y) = {(@1:4, Y1) 1 <t < T}

Forward RNN for Part-of-Speech Tagging with Previous Label

o if the car ...
S.

is this a structured predictor? ye

parts functions does not decompose
like minimal parts (in terms of y) 1 j
.. IN DT NN ...

parts(z,y) = {(@1:4, Y1) 1 <t < T}

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .-, Y~}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .-, Y~}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

labeled
segmentation

Named Entity Recognition

Some questioned if Tim Cook’s first product would be a breakaway hit for Apple.

a_l

PERSON ORGANIZATION

25

Labeled Segmentation as Sequence Labeling

@) @) O B-PERSON I-PERSON O O O
Some questioned if Tim Cook ’s first product
@) @) O O O O B-ORGANIZATION O

would be a breakaway hit for Apple
B = “begin”
| = “inside”

O = “outside”

26

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .-, Y~}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

labeled
segmentation

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .-, Y~}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

labeled
segmentation

unlabeled
dependency

parsing

Dependency Trees

a dependency is a relation between a word (a head or
parent) and its dependent (its modifier or child)

a dependency tree for a sentence contains a dependency
for each word in the sentence

drawn as a directed tree with parents pointing to children
one word is the root of the tree

ROOT

—NAI

A hearing is scheduled today

Labeled Dependency Trees

* more common to use labeled dependency trees
where each dependency has an associated label:

ROOT

NSUBJPASS PUNCT

DET AUXPASS TMOD
/_\ /—\ ! /—\

A hearing is scheduled today

DET = determiner

NSUBJPASS = nominal subject in passive construction
AUXPASS = auxiliary verb in passive construction
TMOD = temporal modifier

PUNCT = punctuation

°* d Ionger sentence:

ROOT

A hearing on the issue is scheduled today

* rearranging the words a bit, we now have a
non-projective dependency tree (i.e., tree
with crossing dependencies):

ROOT

—~F AN

hearing is scheduled on the issue today

Dependency Parsing

* dependency parsing is the task of predicting a
dependency tree for a sentence

* one of the most widely-studied structured
prediction problems in NLP

 used for several downstream NLP tasks

Applications of Dependency Parsing

widely used for NLP tasks because:
— faster than constituent parsing
— captures more semantic information

text classification (features on dependencies)
syntax-based machine translation

relation extraction
— e.g., extract relation between Sam Smith and AlTech:
Sam Smith was named new CEO of AlTech.

— use dependency path between Sam Smith and AlTech:
* Smith 2 named, named €< CEO, CEO € of, of € AlTech

* minimal parts for (unlabeled) dependency
parsing:

mp(y) = {y1,...,yr}
where each y; € {0,1,...,T}

* each y, holds the index in the sentence x of the
parent of word x,

e we use 0 for the ROOT attachment

Unstructured Predictors for Dependency Parsing

* how might you design an unstructured predictor
for dependency parsing?

* build a predictor that predicts the index of the
head for a word

e can use full sentential context, just can’t score
multiple dependencies in any single scoring term

* fast, simple, works ok, but doesn’t guarantee a
tree structure (may have cycles, etc.)

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .., YN}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

labeled
segmentation

unlabeled
dependency
parsing

tree over the words in the
input sentence; each word

has exactly one parent

set containing
indices of parent

words for each
word in sentence

mp(y) — {yla R 7yT}
where each y; € {0,1,...,T}

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .., YN}
where each y; € {0,1}

sequence
labeling

label sequence with same
length T as input sequence;
each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

labeled
segmentation

unlabeled
dependency
parsing

tree over the words in the
input sentence; each word

has exactly one parent

set containing
indices of parent

words for each
word in sentence

mp(y) — {yla R 7yT}
where each y; € {0,1,...,T}

conditional
generation

sentence (or a paragraph,
document, etc.)

Conditional Generation

 for machine translation and other “conditional
generation” tasks, input is a sequence and
output is a sequence

* minimal parts for these tasks:

mp(y) — {y17 ‘o 7y|y|}
where each y; € V

* each y,is a word from the output vocabulary

Unstructured Predictors for Machine Translation

* how might you design an unstructured
predictor for machine translation?

e assume a max length of the translation, pad to
that length, build predictors that predict the
word in position t in the translation

 this probably won’t work very well, but if we
have this model we could maximally
parallelize translation across machines

Sequence-to-Sequence Models with Attention

most common approach for conditional generation
previously-predicted output symbol used as input for
making next prediction (“auto-regressive”)

is this a structured predictor?

O

Structured Prediction Tasks

task

output structure

minimal parts

multi-label
classification

set of N labels, each of
which can be true or false

set containing
individual labels in
label set

mp(y) = {y1, .., YN}
where each y; € {0,1}

sequence
labeling

label sequence with same

length T as input sequence;

each label is one of N
possibilities

set containing labels
at positions in
output sequence

mp(y) = {y1,.--,yr}
where each y; € {1,..., N}

labeled
segmentation

unlabeled
dependency
parsing

tree over the words in the
input sentence; each word

has exactly one parent

set containing
indices of parent

words for each
word in sentence

mp(y) — {yla R 7yT}
where each y; € {0,1,...,T}

conditional
generation

sentence (or a paragraph,
document, etc.)

set containing each
word in the output

mp(y) = {y1,. . Y|}

where each y; € V

Other Tasks?

* some tasks do not permit an easy definition of
minimal parts

Constituency Parsing

(S (NP the man) (VP walked (PP to (NP the park))))
S

VP Key:

S = sentence
NP PP NP = noun phrase
VP = verb phrase
PP = prepositional phrase
NP DT = determiner
NN = noun

DT NN VBD IN DT NN P=-iem bastiense)
the man walked to the park

Semantic Role Labeling

yesterday atthe park the man gave crumbs to the birds

gave
MODIFIER MODIFIER ARGUMENT ARGUMENT ARGUMENT
yesterday at the park the man crumbs to the birds

ARGO = usually agent
ARG1 = typically patient or theme
ARG2 = often beneficiary

AllenNLP

Other Tasks?

* some tasks do not permit an easy definition of
minimal parts

— constituency parsing, semantic role labeling, etc.

e sometimes we can cast these as conditional
generation tasks, then inherit the minimal
parts definition from conditional generation

Sequence-to-Sequence Models with Attention

input and output sequences can have different lengths
we can frame many output structures as sequences

Formulating Constituency Parsing as
Conditional Generation

S

|
John has a dog . — NP /Vp\ .
| -~ N
NNP VBZ NP
~ ™~
DT NN
John has a dog . — (S (NP NNP)np (VP VBZ (NP DT NN)np)vp -)s

Figure 2: Example parsing task and its linearization.

{Vinyals, Kaiser} et al. (2015): Grammar as a Foreign Language

Formulating Constituency Parsing as
Conditional Generation

S (VP XX JVP)s END

B e \J?— 1
LSTM?n —_— LSTM(?;ut

T T T T T T T T T
LSTMZ, |—— LSTMZ,,

T T T T) T T) T
LSTMiln —_— LSTM. .

) T) 0 0 1 T T T

. Go END (S (VP XX Wp :)s

Figure 1: A schematic outline of a run of our LSTM+A model on the sentence “Go.”. See text for details.

{Vinyals, Kaiser} et al. (2015): Grammar as a Foreign Language

e others have done this for dependency parsing,
semantic role labeling, abstract meaning
representation parsing, and many other tasks

* sequence-to-sequence models then become a
general purpose modeling framework for
many structured prediction tasks

Modeling, Inference, Learning

‘inference: solve argmax | modeling: define score function

N ¥

classify(ax, @) = argmax score(x,y, 0)

! /

learning: choose 6

50

Inference with Structured Predictors

inference: solve argmax

N

classify(x, 8) = argmax score(x,y, 0)
Yy

* how do we efficiently search over the space of all
structured outputs?

* this space may have size exponential in the size
of the input, or be unbounded

* complexity of inference depends on parts
function

Hidden Markov Models

* simple, useful, well-known model for sequence
labeling: Hidden Markov Model (HMM)

* HMMs are used in NLP, speech processing,
computational biology, and other areas

52

Hidden Markov Models

* n-gram language models define a probability
distribution over word sequences x

e HMMs define a joint probability distribution
over input sequences x and output sequences y

||

p(mvy) — Hp(ajz ’ L1y-eey Li—1,Y1, ,yz)p(yz ’ L1y.eey Li—1,Y1, '°°7yi—1)
1=1

e conditional independence assumptions
(“Markov assumption”) are used to factorize
this joint distribution into small terms

*for now, we are omitting stopping probabilities for clarity

Random Variables for Sequence Labeling

* let’s define random variables for observations:
— observation variable at time step t: Xy
— its possible values: words in vocabulary V

e and we’ll define one “hidden” variable for
each observation:

— hidden variable at time t: Y,
— its possible values: discrete symbols in some set

— for now, think of the set of possible POS tags

Conditional Independence Assumptions of HMMs

* two Y’s are conditionally independent given the Y’s
between them:

Yi1 1LY | Y

* an X at position t is conditionally independent of
other Y’s given the Y at position t:

X; LY, | Y

p(way) — Hp(xz ‘ L1y.eey Li—1,Y1, 7y2)p(yz ‘ L1y.eey Li—1,Y1, ---72%'—1)

Pw (T, Y) = Hp‘r(yi | yi—1)pn(ﬂ7i | i)

*for now, we are omitting stopping probabilities for clarity

HMMs

||

P (T, Y) = pr(yq; | yio1)pn (i | vi)

conditional independence assumptions > we only have to
worry about local distributions:

transition parameters: D (yz ‘ yi—l)

emission parameters: Pn (xz ’ y@)

*for now, we are omitting stopping probabilities for clarity

Important: Stopping Probabilities
||

P (T, Y) = Hmy@- Yo 1)P (T | yi)

i ||

puw (@, y) = pr(</s> | yz)) | [pr(wi | vic1)pn (i | vi)

1=1
We also assume: Yo — <S>
special \
end-of-sequence
label special
start-of-sequence
label

why does this matter?

57

Parts Function for an HMM

* for a bigram HMM:

pal’tSHMM(w, y) — {<$t7 Z/t>}¥:1 U {<@7 yt—l:t>}¥1:1

* each word-label pair forms a part, and each
label bigram forms a part

Inference in HMMs

classify(x, w) = argmax p(x,y)
Y

||

= argmax pr(</s> | Yz|) Hpr(yz' | Yie1)Pn(Ti | Yi)
Yy i=1

* since the output is a sequence, this argmax

requires iterating over an exponentially-large set

* we can use dynamic programming (DP) to solve
these problems exactly

e for HMMs (and other sequence models), the
algorithm for solving this is the Viterbi algorithm

59

Dynamic Programming (DP)

* what is dynamic programming?
— a family of algorithms that break problems into smaller
pieces and reuse solutions for those pieces

— only applicable when the problem has certain properties
(optimal substructure and overlapping sub-problems)

e we can often use DP to iterate over exponentially-
large output spaces in polynomial time

* we focus on a particular type of DP algorithm:
memoization

60

Feature Locality

feature locality: how big are the parts?

for efficient exact inference with DP, we need
to be mindful of this

parts can be arbitrarily big in terms of input,
but not in terms of output!

HMM parts are small in both the input and
output (only two pieces at a time)

Viterbi Algorithm for HMMs

* recursive equations + memoization:

base case:
returns probability of sequence starting with label y for first word

\

V(1Ly) =pyr1|y) prly | <s>)

V(m,y) = max (py(em | y) pr(y | y") V(m - 1,y))

f y' el

recursive case:
computes probability of max-probability label
sequence that ends with label y at position m

final value is in: goal(a}) —= II/lg}ﬁc (pT(</S> ’ y’) V(|CU‘> y/)>
Y

62

Viterbi Algorithm

e space and time complexity?
* can be read off from the recursive equations:

space complexity:
size of memoization table, which is # of unique indices of recursive equations

length of number
sentence of labels

\/

so, space complexity is O(|x]| |L])

max (py (2 | y) pr(y | y) V(m = 1,9))

63

Viterbi Algorithm

* space and time complexity?
* can be read off from the recursive equations:

time complexity:
size of memoization table * complexity of computing each entry

length of number each entry requires
sentence of labels iterating through the labels

\/

= max (pn(@m | y) pr(y | y) V(m = 1.9))

so, time complexity is O(|x| |L]| |L])=O(]|x]| |L]|?)

64

Viterbi Algorithm for Sequence Models

(with tag bigram features)

V(1,y) = score(x, (<s>,y), 1, w)

V(m,y) = max (score(z, (', y), m,w)+V(m—1,y"))
y' €

score function for label bigram <y’, y>
ending at position m in x

could be anything!

linear model, feed-forward network,
LSTM, etc.

