TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2019

Lecture 5:

Contextualized Word
Embeddings, Encoders, and
Attention

Roadmap

deep learning for NLP (5 lectures)

structured prediction: sequence labeling, syntactic and
semantic parsing, dynamic programming (4 lectures)

generative models, latent variables, unsupervised learning,
variational autoencoders (2 lectures)

Bayesian methods in NLP (2 lectures)
Bayesian nonparametrics in NLP (2 lectures)
review & other topics (1 lecture)

Today

* contextualized word embeddings
* sentence encoders & attention

Today

* contextualized word embeddings
* sentence encoders & attention

Recap

* |ast Wednesday we discussed methods for
subword modeling for both word embeddings

(RNNs, CNNs, character n-grams) and for
generation (BPE)

* we also talked about multisense word
embeddings

Other Work on Word Embeddings

e using subword information (e.g., characters) in
word embeddings

 multiple embeddings for a single word type
corresponding to different word senses

* tailoring embeddings using particular
resources or for particular NLP tasks

Multisense Word Embeddings

Qofler
magazine
aning translatio '
'%fovels fantasy stars j9u, are
manga microsoft
m! X
talk t{;ele\'.igion inals
video celebration
tﬂc:amera venue calenaar constellation
e
cast P flash afternoon oracle sun
|] schedule giart asteroid S
_sting keyboal;ygss pRSBsal Xy moon
jaguar,
- $RlRical pianet t
advance

Cra%hiVSWitCh reverse

ap rqach ; retreat

gy

Huang et al. (2012): Improving Word Representations Via Global Context And
Multiple Word Prototypes

Multisense Word Embeddings

e |imitations:

— need a way to label senses or cluster word tokens
in training data (and for downstream tasks)

— fragments training data, so more may be needed
for estimating word embeddings

— unlikely to get good clusters for rare word types

— unclear if sense-specific embeddings are useful for
downstream tasks

Contextualized Word Embeddings

key idea:

define word embedding function based on
context, e.g.:

i am so thrilled about this

fighting off a headache so i can work

does not need sense inventory or clustering

Contextualized Word Embeddings

architectures vary, but typically RNNs used to encode
a sentence, then hidden vector for word used as
“contextualized” embedding

learned from parallel text (sentences & translations):
— Kawakami & Dyer (2015), McCann et al. (2017)

learned from monolingual text:
— Melamud et al. (2016), Peters et al. (2017), Tu et al. (2017)

context2vec

objective function

sentential |
context |
embeddings target word
embeddings
: Melamud et al. (2016):
context2vec: Learning
John [submitted] a paper submitted Generic Context
left-to-right context word embeddings Embedding with
Bidirectional LSTM

- right-to-left context word embeddings
11

CoVe (context vectors)

* train English>German neural translation model

* use hidden vectors of English encoder as
contextualized word embeddings

a) b)

Translation

Encoder —> Decoder Qder Encode>

Word Word Word
Vectors ! Vectors Vectors

Task-specific Model

Figure 1: We a) train a two-layer, bidirectional LSTM as the encoder of an attentional sequence-to-
sequence model for machine translation and b) use it to provide context for other NLP models.

McCann et al. (2017): Learned in Translation: Contextualized Word Vectors

Contextualized Word Embeddings
with Autoencoders

* encode a window of text to a vector (using a
feed-forward or recurrent net), decode words

my first one was like 2 minutes long and has
my fav place- was there 2 years ago and am
thought it was more like 2 either way , i
to backup everything from 2 years before i
i slept for like 2 sec lol . freakin chessy

the lines : i am so thrilled about this . may
and work . i am so glad you asked . let

i was so excited to sleep in tomorrow
@mention that is so funny ! i know which
little girl ! i was so touched when she called

jus listenin 2 mr hudson and drake crazyness
@mention deaddddd u go 2 mlk high up n
only a cups tho tryin 2 feed the whole family
bored on mars i kum down 2 earth ... yupp !!

1 miss you i trying 2 looking oud my mind girl
fighting off a headache so i can work on my

im on my phone so i cant see who @mention
did some things that hurt so i guess i was doing
my phone keeps beeping so i know ralph must
randomly obsessed with this song so i bought it

A wo =0l v —=0O
W =IOl W =0

Table 1: Query tokens of two polysemous words and their four nearest neighboring tokens. The target
token is underlined and the encoder context (3 words to either side) is shown in bold. See text for details.

Tu et al. (2017): Learning to Embed Words in Context for Syntactic Tasks

13

NER SQuUAD Coref SRL SST-5

ELMo

(Embeddings from
Language Models)

70.4
+9.9%

2

SRR

XS

L Previous SOTA Bl Baseline
I Performance boost with ELMo

Peters et al. (2018): Deep contextualized word representations

ELMo

Intermediate (=) [= [—) [—
word vectors o

Forward

>

Layer 2

Backward LSTM

Intermediate
word vectors

Layer 1

raw word
vectors

It is ee ever

Figure credit: Analytics Vidhya .
www.analyticsvidhya.com/blog/2019/03/learn-to-use-elmo-to-extract-features-from-text/

ELMo Details

e character CNN to encode each word (no word
embeddings used)

e forward and backward LSTMs trained as
language models

* some tied parameters:
— character CNN parameters tied across directions

— softmax output parameters tied across directions
— LSTM parameters separate for each direction

Peters et al. (2018): Deep contextualized word representations

More Details

2 LSTM layers, 4096 units in hidden vectors
residual connection
512-dimensional projection layers

word representation module:
— 2048 character n-gram convolutional filters
— 2 highway layers

— linear projection down to a 512-dim
representation for a word

Peters et al. (2018): Deep contextualized word representations

Using ELMo for Tasks

For inclusion in a downstream model, ELLMo
collapses all layers in R into a single vector,
ELMo, = E(R.;©.). In the simplest case,
ELMo just selects the top layer, E(Ry) = hk T
as in TagLLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLLM layers:

ELMOta.sk (@ta.slc) . ta.sk z sta.skhLlW.

(D)
In (1), s**** are softmax-normalized weights and
the scalar parameter v/2** allows the task model to
scale the entire ELMo vector. -y is of practical im-
portance to aid the optimization process (see sup-
plemental material for details).

18

How do the layers differ?

* first layer better at POS tagging
* second layer better for word sense prediction

Model F Model Acc.
WordNet 1st Sense Baseline | 65.9 Collobert et al. (2011) | 97.3
Raganato et al. (2017a) 69.9 Ma and Hovy (2016) | 97.6
Iacobacci et al. (2016) 70.1 Ling et al. (2015) 97.8
CoVe, First Layer 594 CoVe, First Layer 93.3
CoVe, Second Layer 64.7 CoVe, Second Layer 92.8
biLLM, First layer 674 bilLM, First Layer 97.3
biLM, Second layer 69.0 bilLM, Second Layer 96.8

Table 5: All-words fine grained WSD F;. For CoVe Table 6: Test set POS tagging accuracies for PTB. For
and the biLM, we report scores for both the first and CoVe and the biLM, we report scores for both the first
second layer biLSTMs. and second layer biLSTMs.

Peters et al. (2018): Deep contextualized word representations 19

Today

* contextualized word embeddings
* sentence encoders & attention

20

Encoders

* many NLP tasks require us to form fixed-
length representations of sentences (or
paragraphs, documents, etc.)

* encoder = neural network compositional
functional architecture that represents a
sequence as a vector

A Simple Encoder: Word Averaging

* represent word sequence x by averaging its word
embeddings:

22

Adding Hidden Layers

* deep averaging network (DAN; lyyer et al., 2015)

23

 Word embedding average:

Other ways are needed

e Character trigram embedding average:

_wa way ays ..

wW

the her er r

Oth

e Recurrent Neural Networks:

— run RNN over sequence

— use average of hidden states or final hidden state as sequence
representation

Other ways are needed

e Convolutional Neural Networks:

— convolutional layers with n-gram filters followed by pooling

Recursive Neural Networks
x = it fell apart
* run a syntactic parser on the sentence
* construct vector recursively at each split point:

Recursive Neural Networks
x = it fell apart
* run a syntactic parser on the sentence
* construct vector recursively at each split point:

h, = emb(it)

Recursive Neural Networks
x = it fell apart
* run a syntactic parser on the sentence
* construct vector recursively at each split point:

Recursive Neural Networks

x = it fell apart
* run a syntactic parser on the sentence
* construct vector recursively at each split point:

Recursive Neural Networks

* same parameters used at every split point

* order of children matters (different weights
used for left and right child)

32

Improvements to Recursive NNs

e gating in composition function (“tree LSTMs”)

* methods that automatically produce

composition trees instead of requiring a
parser

Transformer (T |

Feled
effective encoder for text [Forward |
sequences (and other data) . 1

: NXx Add & N
no recurrent/convolutional r—~{.Add & Norm
Multi-Head
modules [Attention]
. . G
only attention (various forms) L\)
we’ll discuss elements of Cositional QRS
Encoding
:)
attention-based neural l — ‘
architectures to build up to the Embeading
transformer T
INnputs

Vaswani et al. (2017): Attention Is All You Need 34

Transformer

* initially developed for a
setting with both
encoding and decoding;
we will discuss decoding
on Wednesday

Qutput

Probabilities

)
| Softmax)
| Linear
(! N
| Add & Norm ==~
Feed
Forward
O —
r ~ L Add & Norm Je—
—>(Add & Norm Multi-Head
Feed Attention
Forward } W N x
“ (J~
Add & Norm
N x r
—(Add & Norm) Masked
Multi-Head Multi-Head
Attention Attention
At A+ &
_ J \ _J)
Positional Positional
oo D @ |
ncoding Encoding
Input Output
Embedding Embedding
Inputs OQutputs

Vaswani et al. (2017): Attention Is All You Need

(shifted right)

Attention

e attention is a useful generic tool

e often used to replace a sum or average with
an attention-weighted sum

Attention

e e.g., for a word averaging encoder:

n

fove(x) = % Z emb(x;)

',

fare(x) = Z att(xz;, i, x)emb(x;)

1=1

Attention

e e.g., for a word averaging encoder:

n

fove(x) = % Z emb(x;)

',

fare(x) = Zett(:ci, 7, a:j)emb(:vz-)
=1 Y

“attention” function,
returns a scalar

Attention

e e.g., for a word averaging encoder:

1 n
fove(x) = - Z emb(x;)
i=1

',

fare(x) = Z att(xz;, i, x)emb(x;)

1=1

many attention functions are possible!

often assume:
mn

Z att(x;,i,x) =1

1=1

Example Attention Function

n

fort(x) = Z att(x;,1,x)emb(x;)

1=1

att(:z:i, i, x) X e:x:p{wT emb(ﬂfi)}

* introduces a new parameter vector w which is
learned along with the word embeddings

e attention is normalized over the sentence
length

Queries, Keys, and Values

we can often think of attention functions in
terms of these abstractions

guery = what you use to search
key = the field that you’re comparing to
value = the field that you return

Vaswani et al. (2017): Attention Is All You Need

Analogy to Dictionaries

e query: key you are searching for
* dictionary contains <key, value> pairs

* look-up in a dictionary/hashmap can be
interpreted as comparing the query to each
key in the dictionary and returning the value
for the key with the strongest match

n

foe(x) = Z att(x;,1,x)emb(x;)

1=1

CLtt(sz’, 7;7 CB) X eXp{WT 677?,[)(58@)}

* for this attention-weighted encoder,
— query =7
— key =7
—value ="

n

foe(x) = Z att(x;,1,x)emb(x;)

1=1

CLtt(sz’, 7;7 CB) X eXp{WT 677?,[)(58@)}

* for this attention-weighted encoder,
—query=w
— key = emb(x;)
— value = emb(z;)

» considering attention as query/key/value suggests
using different spaces for different roles

* e.g., we could use separate transformations of the
embedding space for keys and values

» considering attention as query/key/value suggests
using different spaces for different roles

* e.g., we could use separate transformations of the
embedding space for keys and values:

n

foe(x) = Z att(xz;, i, x) (W(”) emb(xi))

1=1

att(xz;, i,) X exp {WT (W(k) emb(xi))}

» considering attention as query/key/value suggests
using different spaces for different roles

* e.g., we could use separate transformations of the
embedding space for keys and values:

n

foe(x) = Z att(xz;, i, x) (W(”) emb(xi))

1=1 value trans-
formation
matrix
att(xz;, i,) X exp {WT (W(k) emb(azi))}
key trans-
formation

matrix

n

fore(x) = Z att(xz;, i, x) (W(”) emb(mi))

1=1

att(x;, i, x) X exp {WT (W(k) emb(m))}

* for this attention-weighted encoder,
—query=w
—key = WS emb(z;)
—value = W emb(z;)

Multi-Head Attention

* we may want to learn multiple attention
functions in parallel

* why? so that they can learn complementary
functionality for the task

Vaswani et al. (2017): Attention Is All You Need

Multi-Head Attention

* we may want to learn multiple attention
functions in parallel

* why? so that they can learn complementary
functionality for the task

n J
fare(x) = S: S: att;(x;, i, x) (Wg-v)emb(xi))

i=1 j=1

atti(xi, i,) X exp {W;— (Wﬁk) emb(:ci)) }

Vaswani et al. (2017): Attention Is All You Need

Multi-Head Attention

* we may want to learn multiple attention
functions in parallel

* why? so that they can learn complementary
functionality for the task

n J
fare(x) = S: attj (@i, i,) emb(xz))
1=1 5=1 *
J attention
, - heads
atti(xi, i,) X exp {Wj - b(a:z)) }

Vaswani et al. (2017): Attention Is All You Need 51

Multi-Head Attention

* in the transformer, each attention head uses
projections to lower dimension, followed by
concatenation of the outputs from each head

Vaswani et al. (2017): Attention Is All You Need

Transformer

Scaled Dot-Product Attention Multi-Head Attention
)
¢ Linear
MatMul 1
1 Concat
SoftMax A
4 A :
Mask (opt.) Scaled Dot-Product :
) Attention
Scale Y) R 1
-2 c r-=
MatMul Linear Linear Linear
t 1
Q K V
V K Q

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

Vaswani et al. (2017): Attention Is All You Need 53

Self-Attention

* rather than learning attention weight vectors
w to serve as query vectors, use the words
themselves as the queries!

n

foe(x) = Z att(x;, 1, x)emb(x;)

1=1

att(x;,1,x) X exp Z emb(z;) " emb(x;)
j=1

Vaswani et al. (2017): Attention Is All You Need

Self-Attention

many possibilities for self-attention functions

intuitively, the following weights a word based on
how similar it is to all other words in the sequence:

att(x;, i, x) X exp Z emb(xi)Temb(xj)
=1

can be combined with query/key/value-specific
transformations and multiple heads

Vaswani et al. (2017): Attention Is All You Need

Word Position Information

. . . dl
e attention functions discussed so Add & Norm
o, o F
far do not use word position S
. A
* transformer uses embedding of :
.y . N x
word position that’s added to Ajdlf‘-:o’:
uiti-nea
word embedding in input Attention
1 7
e compared predetermined & fixed &

. . <y . Positional
sinusoidal p05|.t|.onal embeddl.ngs eoding ®_@?
to learned positional embeddings oot

.« . Embeddi
(similar performance) - eT —
INnputs

Vaswani et al. (2017): Attention Is All You Need 56

Sinusoidal Word Position Encodings

In this work, we use sine and cosine functions of different frequencies:

PE(pOS,Q’i) - Sin(p08/100002i/dmodel)
PE(pos,2z'+1) = COoSs (pOS/lOOOOQi/dmodel)

where pos is the position and 2 is the dimension. That is, each dimension of the positional encoding
corresponds to a sinusoid. The wavelengths form a geometric progression from 27 to 10000 - 2. We
chose this function because we hypothesized it would allow the model to easily learn to attend by

relative positions, since for any fixed offset k£, PE,,,), can be represented as a linear function of
P Epos.

We also experimented with using learned positional embeddings [8] instead, and found that the two
versions produced nearly identical results (see Table 3 row (E)). We chose the sinusoidal version
because it may allow the model to extrapolate to sequence lengths longer than the ones encountered
during training.

Vaswani et al. (2017): Attention Is All You Need 57

Sinusoidal Positional Encodings

a8
as
~
ao
4
8

coe 88e o

BRRABARANARRAR SR AR E82525932370839858989882

9
g

0

1"

©

1

&

“

15

Ll

17

&

®

9

A real example of positional encoding for 20 words (rows) with an embedding size of 512 (columns). You can see that it appears split in
half down the center. That's because the values of the left half are generated by one function (which uses sine), and the right half is
generated by another function (which uses cosine). They're then concatenated to form each of the positional encoding vectors.

figure credit: Jay Alammar -

* Jack Hessel (] Follow))

@jmhessel - J/
Transformer models, like BERT released
by @GoogleAl today, contain an
embedding for each sequence position
to encode ordering information. But
what the heck is a "position 3"
embedding? | have no idea myself, but |
TSNEed the learned embeddings (blue -
> red is position 0 -> 512).

& '”"3

0-1':&' .

30

20

1

o

o

=l

%,
k
'-";

CQAJ
N

-40 -20 0 20 40

4:08 PM - 31 Oct 2018

59

Jack Hessel @jmhessel - 31 Oct 2018 v
* Compare this to a TSNE for the hand-crafted sinusoid pattern from the original

transformer paper (again -- (blue -> red is position 0 -> 512)).

30
20

10

-10
-20

-30

» Jack Hessel @mhessel - 31 Oct 2018
* A better way of viewing these embeddings is via cosine similarity. We would

expect that nearby positions are more similar to their neighbors. For the hand-
crafted embeddings, neighbor sim is constant at .97. For learned, the story is
way different (!)

2 10

o — — —_—
Q0

5, 0.9

K,

C os

N

L —

= 0.7

>

4t

‘= 0.6

©

£ os

v

D o4 . ——

c = hand-designed sinusoid

n == |earned (BERT)

Q03

U -

0 100 200 300 400 500
Seauence index

O 1 0 Q10 S

Jack Hessel @mhessel - 31 Oct 2018 v
* Last tweet on this topic! Another way of exploring the similarity between

position embeddings is to simply plot a heatmap of all pairwise cosine
similarities. Here's what comes of that for the sinusoid embeddings and the
learned embeddings. So many weird things in the learned emb

100 100

200

200

300

400

500 500

D 100 200 300 200 500

O 2 1 2 QO 2 ™

62

Attention Visualizations

12
5 5
c ke,
@ £ w
Z L E 3 2 B L8 = HAAAARAA
= (o) 0008 Qo 'z %) &= @® T U T U U T
C = > > n 2 2 08 =% = = 2 o O g @ @ ©@ @ ®©
@ =T g Eommmgcogq’g’h“egg U aagaaaaaa
= 0 € £ FE o ‘5 DL acl8FA < 5 S 88 E S V VV VYV V V
= 0w c 0 : ® cC O © O W OO DO EC s DY = A A A AAAA
'--égﬁ Eszagggooccoocwea W T T T T T T
a £ S) c @ EOS T = '~=‘”ng O O @
) o2, = ®» = ‘5 N © o © = Qg.g.o.g.g.
£ % S L
@ [} 8. = = > 0O = V V. V V VvV V
E EE L] « BV
2 o
o
5]

Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.

