
TTIC 31210: Advanced Natural Language Processing
Assignment 5: Nonparametric Bayesian Segmentation (60 points)

Instructor: Kevin Gimpel
Assigned: Friday, May 31, 2019

Due: 7:00pm, Friday, June 14, 2019
Submission: email to kgimpel@ttic.edu

Submission Instructions
Package your report and code in a single zip file or tarball, name the file with your name followed by
“ hw5”, and email the file to kgimpel@ttic.edu by 7:00 pm on the due date. For the report, use pdf
format or a Jupyter Notebook. Please do not use plain text files.

Collaboration Policy
You are welcome to discuss assignments with others in the course, but solutions and code should be
written individually. You may use software libraries for helper code, but you must write the code for
the inference algorithms yourself.

Overview

In this assignment, you will build an unsupervised segmenter for English text from which spaces have
been removed. You will evaluate your model by seeing how accurately it can recover the spaces in the
original text. You will use nonparametric Bayesian priors and collapsed Gibbs sampling for inference.

Data

You will use sentences from the Children’s Book Test dataset (Hill et al., 2016), which contains text from
books from Project Gutenberg. We have prepared the following files, including one with the sentences
with spaces removed and one containing the ground truth segmentation boundaries (space locations):

• cbt-characters.txt: 10,000 sentences of text, lowercased, with one sentence per line.

• cbt-boundaries.txt: the corresponding ground truth segmentation boundaries. This file has
the same number of characters as the above file, but characters are replaced with binary values
indicating whether or not there exists a boundary after the corresponding character.

• cbt-original.txt: the original text from which spaces were removed (can be used for one of
the optional components).

For example, a pair of lines from cbt-characters.txt and cbt-boundaries.txt is below:
saidtheking.
000100100011

The binary values indicate that in the original data, there are word boundaries after the d, e, g,
and period (.). Note: there is always a boundary after the final character; i.e., every line in
cbt-boundaries.txt ends in 1. Since this is unsupervised learning, you should only use the
cbt-boundaries.txt file for evaluation.

1

A Probabilistic Model for Segmentation

We now define a latent-variable probabilistic model for segmenting a character stream. We use X to
denote a character sequence comprising a line in the cbt-characters.txt file and we use Z to
denote the latent segmentation of X into segments. The type of Z is a partition of a length-|X| sequence
into adjacent ranges.

We will use lowercase letters to denote values of random variables, so x is a value ofX . Empty character
sequences x are not permitted. We use xr to denote the subsequence of x corresponding to the range
r = (r1, r2), where r1 is the start of the range and r2 is the end of the range.

Our model will generate the character sequence x one segment at a time using a binomial model for the
number of segments. The joint probability of X and Z is parameterized using parameter values θ and γ
and written as follows:

p(X = x, Z = z | θ, γ) = (1− γ)|z|−1γ
|z|∏
k=1

p(xzk | θ) (1)

where γ is the probability of terminating the sequence of segments and therefore 1− γ is the probability
of generating another segment. The terms before the product account for |z| − 1 decisions to continue
generating segments and the final decision to stop generating segments. Then, the product over
segment indices k accounts for the probability of generating each segment xzk from a categorical distri-
bution parameterized by θ. Rather than learn or infer γ, we will treat it as a tunable hyperparameter
and simply fix it to a value in the interval (0, 1).

Since γ is fixed, the only parameters to be learned are those of the categorical distribution over segments,
p(xzk | θ). We could learn θ by maximizing log marginal likelihood. However, this would lead to a
degenerate solution unless we heavily constrain the “support” of p(xzk | θ), i.e., the segments that can
have nonzero probability. If left unconstrained, the maximum likelihood solution will lead to trivial
segmentations that only have a single segment for each sentence in the data.

Nonparametric Priors

Instead of learning θ directly, we will let θ be drawn from a Dirichlet process prior and integrate out θ.
This choice permits us to have unbounded support for the posterior distribution over segments while
also displaying a “rich-get-richer” property that favors a relatively small subset of possible segments.

More formally, let θ ∼ DP(G0, s) where G0 is the base distribution and s is the strength parameter
of the Dirichlet process prior. Where y is a character sequence of length |y|, we define the probability
function for the base distribution G0 as follows:

G0(y) = (1− β)|y|−1β
|y|∏
i=1

pchar(yi)

where yi is the ith character in y, β is the stopping probability, and pchar is a distribution over characters.
The terms before the product account for |y| − 1 decisions to continue generating characters and the
final decision to stop generating characters. The product accounts for the probability of generating each
character from pchar. The simple base distribution above defines a distribution over an infinite set of
character sequences.

2

In your initial implementation, simply use a uniform distribution over characters for pchar. You will
also experiment with using a unigram character distribution estimated from the training set. While
the base distribution parameters could be learned or inferred, for this assignment you should just keep
them fixed. That is, you should fix or estimate pchar before inference and keep it fixed during inference.
Also, you should treat β like a hyperparameter to tune (like γ) and experiment with various fixed values.

Note that we could replace the simple decomposition above with a character n-gram model that gener-
ates each character conditioned on the previous n− 1 characters, or a character LSTM that decomposes
into a product over all positions, or other similar sorts of models. One of the optional components of
this assignment involves implementing a bigram character model for this base distribution.

Inference via Collapsed Gibbs Sampling

We assume our dataset has N sentences, each of which is a value for the random variable X , so we
denote this set of random variable values by {x(j)}Nj=1. We use {Z(j)}Nj=1 to denote the set of latent
segmentation random variables corresponding to these N sentences. We will use collapsed Gibbs
sampling to obtain samples from the collapsed posterior distribution p({Z(j)}Nj=1 | {x(j)}Nj=1, γ,G0, β)
where θ has been integrated out. Our sampler will follow the procedure of Goldwater et al. (2009). See
Appendix A.1 in their paper for more background and derivations, though since they also integrate out
γ, their sampling formulas are more complex than ours.

We will shift to different notation for purposes of defining the collapsed Gibbs sampler. Rather than
sample new values for the latent segmentation variable Z explicitly, we will instead work with a
different view of the latent segmentation. In particular, we introduce a boundary vector b that is derived
from the latent segmentation variable value z for a sentence x. The boundary vector b has length |x|
and each bi ∈ {0, 1} indicates whether a segment boundary appears immediately after position i in the
segmentation z. The final value, b|x|, is always fixed to 1, since the end of a sentence is always the end
of a segment. The start of a sentence is always the start of a segment, though this fact is not explicitly
encoded in the boundary vector. These binary boundary vectors have the same type as the lines in the
cbt-boundaries.txt file.

The state of the sampler consists of values b for all sentences x in the dataset. The sampler will iterate
through every possible boundary position bi in the data (except for the final one in each sentence, which
is always fixed to 1) and sample a new value for bi from the set {0, 1}. If bi = 0, then a single segment
crosses the potential boundary bi and we denote this “full” segment by yfull. If bi = 1, then a boundary
divides yfull into two segments, which we denote yprev and ynext. The starting positions of yfull and yprev,
and the ending positions of yfull and ynext, are determined based on the other boundary values in the
current state of the sampler.

Before specifying the probabilities of the two values for a boundary bi for our sampler, we first define
notation to handle the two cases for including the stopping probability for a segment y:

t(y) =

{
γ if y ends at the end of its sentence
1− γ else

That is, t(y) returns the stopping probability if y is the last segment in the sentence, and one minus the
stopping probability otherwise.

3

Now, the probability of choosing the value 0 is given as follows:

p(bi = 0 | b−i, ...) ∝
n
(−i)
yfull + sG0(yfull)

n(−i) + s
× t(yfull)

where b−i denotes values for all boundaries other than bi, “...” stands for all other variables being
conditioned on in the collapsed posterior, n(−i)yfull refers to the number of times the segment yfull appears
in the state of the sampler aside from the segments influenced by boundary bi, and n(−i) is the total
number of segments in that same set (namely, the segments in the state of the sampler aside from the
segments influenced by bi). The segments influenced by bi are only yfull, yprev, and ynext, so the counts
are computed over all other segments in the state.

The probability of choosing the value 1 is:

p(bi = 1 | b−i, ...) ∝
n
(−i)
yprev + sG0(yprev)

n(−i) + s
× (1− γ)× n

(−i)
ynext + I[yprev = ynext] + sG0(ynext)

n(−i) + 1 + s
× t(ynext)

where the indicator I[yprev = ynext] is included because the conditional probability of ynext has yprev in
its conditioning context. This is also the reason why the denominator has an extra “+1”. Note that
instead of t(yprev) we explicitly write out (1 − γ) because we know that yprev is not the final segment
because there is another segment after it, namely ynext.

Note that the above formulas can be simplified slightly because t(yfull) = t(ynext). That is, yfull ends
at the end of its sentence if and only if ynext ends at the end of its sentence. Therefore, the same term
appears in both right-hand sides and will not affect the distribution after normalization. (So, you can
actually leave out the t() terms in your implementation because they will not affect the sampler, but be
sure to keep the (1− γ) term!)

To implement this sampler, you will need to define data structures to represent the counts of all
segments in the current state. It is common to handle the count tracking in conjunction with the
sampling formulas as follows. Before you compute the above probabilities for sampling a new value
for bi, subtract 1 from the counts for the segments influenced by bi that are consistent with the current
value for bi. After sampling the new value, add 1 to the counts of the new segments that were created.
If, when sampling a new value for bi, your sampler chooses the same value it had before, then you
will be subtracting and adding 1 to the same counts, so the counts will not change. Also, keep track
of the total count n(−i) and whenever you add or subtract 1 to the count for any segment above, add
or subtract 1 to the total count n(−i) as well. A good way to check for bugs in your sampler and count
tracking is to print an error message when any count becomes negative.

We will define an iteration of the Gibbs sampler as proceeding through all boundary positions in the
dataset (aside from sentence-final positions) and sampling a value for each. Note that unlike Gibbs
sampling for inference in HMMs, where you created a completely new Gibbs sampler for each sentence,
here you will use a single sampler for the entire dataset and an iteration of the sampler involves
iterating over the whole dataset.

Initialization

We have to initialize the state of the Gibbs sampler. You can experiment with different ways of doing
this if you want, but as a default method, place a boundary after a character with probability γ. Ensure
that there is always a boundary after the final character in each sentence.

4

Evaluation

The state of the sampler consists of boundary values b for all sentences in the dataset. This state
corresponds to a segmentation of the dataset and can be evaluated automatically by computing the
boundary prediction accuracy (BPA) using the cbt-boundaries.txt file as the gold standard. BPA
is computed simply by checking how many of the predicted and gold boundaries match, excluding
the final boundary in each sentence (because it is always fixed to 1 and therefore always correct). You
should print the BPA for the initial state of your Gibbs sampler and after every iteration. The BPA for
an iteration is computed using only the state at the end of that iteration.

It is often helpful to print additional diagnostics during each iteration of Gibbs sampling. In addition
to reporting BPA, record and print the number of boundary changes (NBC) that occurred. That is, the
NBC for an iteration is the number of bi variables that changed values during that iteration. The NBC
should reduce over time and stabilize at a value that is consistent across iterations. It should not go
to zero (unless you are using aggressive temperatures or annealing strategies). Also, print the number
of unique segments, i.e., the number of segment types, in your segmented corpus. Note that this is
different from n(−i), which represents a count of segment tokens, not types.

1. Gibbs Sampling Implementation (20 points)

Implement the model and collapsed Gibbs sampling procedure described above. To get started with
the implementation, compute and report the BPA of the unsegmented corpus. This entails reading in
the data and computing BPA. (Hint: I found this to be 73.5602% 680060/928089 = 73.2753%.) Using my
implementation, running the Gibbs sampler takes 2-3 seconds per iteration. For pchar, use a uniform
distribution over the set of characters observed in the data. Submit your code.

2. Experimentation (20 points)

• (a) (7 points) Run experiments with your Gibbs sampler for various values of the hyperparameters
γ, s, and β. Run at least 100 iterations of Gibbs sampling for each and report the BPA of the final
iteration. Figure out which hyperparameters matter and which have very little effect. Note: we are
not using a train/dev/test split for this assignment (because this is not a standard task or dataset),
so simply do your tuning based on BPA on the single dataset provided.

• (b) (7 points) Implement the ability to use a unigram character distribution for pchar. Estimate the
unigram distribution from the dataset. Experiment with this model using the best hyperparameter
values from part (a) (or you can retune the hyperparameters if you like). Does this model improve
over using a uniform character distribution?

• (c) (3 points) Since we are only evaluating the final sample, we only actually care about producing
a sample with high probability under the collapsed posterior. So, try annealing to alter the prob-
abilities over the sampling iterations so as to yield a final sample with high posterior probability.
That is, as you did in Assignment 4, raise each probability to the power τ and then renormalize
to get a distribution. For τ < 1, this will flatten the distribution, and for τ > 1, this will sharpen
the distribution. Experiment with annealing schedules that begin with τ < 1 and eventually reach
τ = 1 by the end of sampling (you may need more than 100 iterations of Gibbs sampling for this
to work). Note that such schedules will make the posteriors flatter than they otherwise would be,
which may help the sampler to “mix” faster early on during sampling. Can you find a schedule
that improves over using a fixed τ = 1?

• (d) (3 points) Experiment with annealing schedules that start with τ < 1 and end with τ > 1.
These schedules will flatten the distributions early on to help the sampler mix faster, then sharpen
the distributions later on. Can you find a schedule that works well in this setting?

5

3. Analysis (10 points)

Using your best setting from part 2, print the 200 segments with the largest counts from the final sam-
pling iteration. Also, print the first 20 sentences of the segmented data from the final sample. Inspect
both the segmented sentences and the top 200 segments and look for segments that indicate signs of (a)
under-segmentation and (b) over-segmentation. List 10 examples of each in your report. Are they rea-
sonable errors? You may also want to look at other sentences in the final sample to see these segments
in context to gain more intuition about why they are occurring. Are there cases where you think your
model is doing a better job at placing spaces than the original text (i.e., better than the cultural process of
language formation and evolution)? Do you see signs of overfitting to the domain of the given dataset?

4. Your Choice (10 points)

Do one (1) of the following:

1. You previously compared uniform and unigram character distributions in the base distribution.
Implement the ability to use a bigram character distribution and estimate the bigram probabilities
from the training sentences just like you estimated the character unigram distribution. Experiment
with using this character bigram model in the base distribution and report your findings.

2. You can readily apply your framework to text data with spaces preserved. Run your Gibbs sampler
on such a dataset, namely the cbt-original.txt file. You will no longer be able to compute
BPA, but you can look at the segmented output and the list of the most frequent segments from the
final iteration. Do this, and compare these two types of outputs qualitatively to the analogous ones
when using text without spaces (that you analyzed in part 3). How does the presence of spaces
affect things? What appears to be essentially the same between the two settings and what differs?
Try applying your framework to another text domain (with spaces preserved), analyze the output,
and discuss your findings.

3. Our tuning procedure in part 2(a) used the gold standard boundaries for tuning hyperparameters
based on BPA. Consider a less-supervised method for tuning and model selection based on the
type/token ratio. That is, we want the type/token ratio of our segmented output to match the
type/token ratio of real text (with spaces preserved). Compute and print the segment type/token
ratio after every iteration of Gibbs sampling. Compute the type/token ratio of a large text corpus
and use it as your “ideal” type/token ratio, then use closeness to that ideal as the tuning crite-
rion. When using type/token ratio for tuning hyperparameters, how close are your results to the
supervised tuning that you did in part 2(a)?

References

Goldwater, S., Griffiths, T. L., and Johnson, M. (2009). A Bayesian framework for word segmentation:
Exploring the effects of context. Cognition, 112(1):21–54. [3]

Hill, F., Bordes, A., Chopra, S., and Weston, J. (2016). The Goldilocks principle: Reading children’s books
with explicit memory representations. In Proceedings of International Conference on Learning Representa-
tions (ICLR). [1]

6

