
TTIC 31210: Advanced Natural Language Processing
Assignment 2: Attention (70 points)

Instructor: Kevin Gimpel
Assigned: Wednesday, April 17, 2019

Due: 7:00 pm, Wednesday, May 1, 2019
Submission: email to kgimpel@ttic.edu

Submission Instructions
Package your report and code in a single zip file or tarball, name the file with your first and last name
followed by “ hw2”, and email the file to kgimpel@ttic.edu by the due date and time.

Collaboration Policy

You are welcome to discuss assignments with others in the course, but solutions and code should be
written individually. You may modify code you find online, but you must provide attribution and be
sure that you understand it!

Overview

In this assignment, you will experiment with neural architectures for sentiment classification, specifi-
cally focusing on attention in sentence encoders.

You will implement and experiment with ways of adding attention to a simple sentence classifier
based on word averaging. You will use the binary sentiment analysis task developed from the Stanford
sentiment treebank movie review dataset (Socher et al., 2013). The zip file posted on the course webpage
contains the following files:

• senti.train.tsv: training data (TRAIN)

• senti.dev.tsv: development data (DEV)

• senti.test.tsv: test data (TEST)

Each line in each file contains a textual input followed by a tab followed by an integer containing the
gold standard label (0 or 1).

Evaluation

You will train binary sentiment classifiers in this assignment. For your evaluation metric, use classifica-
tion accuracy, i.e., the percentage of inputs that were classified correctly.

Use DEV for early stopping. That is, when you report results, report the TEST accuracy for the model
that achieves the best accuracy on DEV. You should also report the best accuracy achieved on DEV. In
order to do early stopping, you should compute the classification accuracy on DEV periodically during
training. Do this at least once per epoch, and preferably 2 or more times per epoch.

Below we will abbreviate this evaluation procedure as EVAL. To summarize, EVAL consists of train-
ing on TRAIN, using DEV for early stopping (using classification accuracy as the early stopping criterion),
and reporting the best classification accuracy on DEV and the classification accuracy on TEST using the
model that did best on DEV.

1

1. Word Averaging Binary Classifier (20 points)

We will denote a sentence by x = 〈x1, x2, ..., x|x|〉 where xt is the tth word in x. We will use emb to
denote the word embedding function, i.e., emb(x) returns the embedding (a vector in Rd) for word x.
We will define our first encoder using simple word embedding averaging:

havg =
1

|x|
∑
t

emb(xt)

Then, the probability of positive sentiment is given by

σ(w>havg)

where σ is the logistic sigmoid function and w ∈ Rd is a parameter vector. If σ(w>havg) ≥ 0.5, the
classifier should return positive sentiment; otherwise, it should return negative sentiment.

Use binary log loss as the loss function during training. The parameters of the model are those
used in the embedding function emb and the vector w. Note here that the dimensionality d of the
word embeddings must equal the dimensionality of w. Some words appear in DEV or TEST but do not
appear in TRAIN. Randomly initialize embeddings for these words just like those that appear in TRAIN,
but simply keep them fixed during training. Be careful when randomly initializing word embeddings;
if you use too large of an initialization range, the unknown words will have large-norm embeddings
that may negatively affect your results and analysis. For example, I found that initializing embedding
parameters to be between -0.1 and 0.1 worked much better than using values between -1 and 1.

For optimization, use Adam, stochastic gradient descent, or any other optimizer you wish. Toolkits
typically have many optimizers already implemented. Document what optimizer you used and the
learning rate (and other relevant hyperparameters). Use a dimensionality d of at least 100 for your
experiments and train for at least 5 epochs.

1.1. Implementation and Experimentation (15 points)

Implement the model and learning procedure. Submit your code. Run EVAL and report your DEV and
TEST accuracies. You should be able to reach approximately 80% accuracy.

1.2. Analysis (5 points)

Compute the L2 norms of the word embeddings after training, using the model with the highest accu-
racy on DEV. Print the 15 words with largest norms and the 15 words with smallest norms. What do
you notice about the words with the largest/smallest norms?

2. Attention-Weighted Word Averaging (20 points)

We will now define an encoder that uses a simple attention function to produce a weight for each word
in the sentence, followed by a sum of the attention-weighted word embeddings:

αt ∝ exp{cos(u, emb(xt))}

hatt =
∑
t

αtemb(xt)

Then, the probability of positive sentiment is given by

σ(w>hatt)

2

where σ is the logistic sigmoid function and w ∈ Rd is a parameter vector, just like what we used in
Section 1. This model introduces a new parameter vector u ∈ Rd used in the attention function.

In this model, the unnormalized attention weight for a word x is computed using the cosine similar-
ity between u and the word embedding for x followed by exponentiation. To get normalized weights
αt, normalize across all words in the sentence. Then multiply the attention weights by the word em-
beddings and sum the attention-weighted embeddings. Unlike the model in Section 1, we don’t need
to divide the sum by |x| because the attention weights αt are normalized such that they sum to 1 across
all words in the sentence. (Note: using dot product is more common than cosine similarity when com-
puting attentions like these, but I suggest using cosine similarity instead because it makes training more
stable.)

2.1. Implementation and Experimentation (10 points)

Implement the model (submit your code) and run EVAL. Report your results.

2.2. Analysis: Word Embeddings and the Attention Vector (5 points)

Using the model with the highest DEV accuracy, compute the cosine similarity between u and all word
embeddings and print the 15 words with highest cosine similarity to u and the 15 with lowest cosine
similarity to u. Why do you think those words have high/low cosine similarity to u (and therefore
high/low attention weights on average)? Can you form a hypothesis to explain what you see?

2.3. Analysis: Variance of Attentions (5 points)

Using the model that does best on DEV, compute the attention weights for all words in the sentences in
the training data. For each word that appears at least 100 times in the training data, compute the mean
and standard deviation of the attention probabilities for that word. Sort the words according to the
criterion “standard deviation divided by mean” and print the top 30 words under this criterion. These
are words that show a large standard deviation in their attention probabilities relative to their average
attention probabilities. How would you describe these words and/or why do you think they show these
characteristics?

3. Simple Self-Attention (15 points)

We will now define an encoder that uses a simple form of self-attention when producing attention
weights for each word in the sentence:

ats = emb(xt)
>emb(xs)

αt ∝ exp

{∑
s

ats

}

hself =
∑
t

αtemb(xt)

Then, the probability of positive sentiment is given by

σ(w>hself) (1)

The unnormalized attention weight for a word x is computed using the dot product between its embed-
ding and those for all other words in the sentence, followed by a summation and exponentiation. Unlike
the model in Section 2, this model does not introduce any new parameters for computing the attention

3

function, simply using the same word embeddings for the attention. Therefore, this model has the same
number of parameters as the model in Section 1.
For improved stability, we can also add a “residual connection”, which would change Eq. 1 to

σ(w> (hself + havg)) (2)

where havg is computed as in Section 1 (though using the same word embeddings as in hself).

Implement this model (submit your code) and run EVAL both with and without the residual connection,
i.e., using Eq. 2 and Eq. 1, respectively. Report your results.

4. Enriching the Attention Function (15 points)

Hopefully you’ve developed some intuition for using attention for this task. Now, come up with your
own ways of modifying the attention function and experiment with them. Can you find an idea that
outperforms your models from Sections 1-3?

Some potential ideas are below:

• Use transformation matrices to distinguish key, query, and value representations

• Use multiple attention heads

• Use positional encodings (either learned or fixed) in the attention function and/or in the word
representations

• Add additional layers of self-attention before the attention-weighted sum of embeddings

• Compute features in the attention function based on characteristics of where the word is in the
sentence, e.g., features of the sentence length, nearby words, the presence of negation words before
or after the word, information from a part-of-speech tagger or syntactic parse of the sentence, etc.

• Use multiple word embedding spaces for when words are used as keys, queries, and values, or
some subset of the three.

• Change the dot product/cosine similarity used in Sections 2-3 to a parameterized function, such
as a bilinear function or feed-forward network

Describe your best new attention function formally in your report, along with the experimental results.
Submit your code.

Extra credit may be rewarded for particularly creative, effective, and well-written solutions.

References

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. (2013). Recursive deep
models for semantic compositionality over a sentiment treebank. In Proceedings of EMNLP.

4

