
TTIC	31190:
Natural	Language	Processing

Kevin	Gimpel
Winter	2016

Lecture	7:	Sequence	Models

1

Announcements
• Assignment	2	has	been	posted,	due	Feb.	3
• Midterm	scheduled	for	Thursday,	Feb.	18
• Project	proposal	due	Tuesday,	Feb.	23
• Thursday’s	class	will	be	more	like	a	lab	/	
flipped	class
– we	will	use	the	whiteboard	and	implement	things	
in	class,	so	bring	paper,	laptop,	etc.

2

Roadmap
• classification
• words
• lexical	semantics
• language	modeling
• sequence	labeling
• syntax	and	syntactic	parsing
• neural	network	methods	in	NLP
• semantic	compositionality
• semantic	parsing
• unsupervised	learning
• machine	translation	and	other	applications

3

Language	Modeling

• goal:	compute	the	probability	of	a	sequence	of	words:

Markov	Assumption	for	
Language	Modeling

Andrei	Markov

J&M/SLP3

Intuition	of	smoothing	(from	Dan	Klein)

• When	we	have	sparse	statistics:

• Steal	probability	mass	to	generalize	better:

P(w	|	denied	the)
3	allegations
2	reports
1	claims
1	request
7	total

P(w	|	denied	the)
2.5	allegations
1.5	reports
0.5	claims
0.5	request
2	other
7	total

al
le
ga
tio

ns

re
po
rt
s

cl
ai
m
s

at
ta
ck

re
qu
es
t

m
an

ou
tc
om
e …

al
le
ga
tio

ns

at
ta
ck

m
an

ou
tc
om
e

…al
le
ga
tio

ns

re
po
rt
s

cla
im
s

re
qu
es
t

“Add-1”	estimation
• also	called	Laplace	smoothing
• just	add	1	to	all	counts!

J&M/SLP3

Backoff and	Interpolation

• sometimes	it	helps	to	use	less context
– condition	on	less	context	for	contexts	you	haven’t	
learned	much	about	

• backoff:	
– use	trigram	if	you	have	good	evidence,	otherwise	
bigram,	otherwise	unigram

• interpolation:	
– mixture	of	unigram,	bigram,	trigram	(etc.)	models

• interpolation	works	better

J&M/SLP3

Linear	Interpolation

• simple	interpolation:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

J&M/SLP3

• better	estimate	for	probabilities	of	lower-order	unigrams!
– Shannon	game:		I	can’t	see	without	my	reading___________?
– “Francisco”	is	more	common	than	“glasses”
– …	but	“Francisco”	always	follows	“San”

• unigram	is	most	useful	when	we	haven’t	seen	bigram!
• so	instead	of	unigram	P(w)	(“How	likely	is	w?”)
• use	Pcontinuation(w) (“How	likely	is	w to	appear	as	a	novel	
continuation?”)
– for	each	word,	count	#	of	bigram	types	it	completes:

Kneser-Ney	Smoothing

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

J&M/SLP3

Kneser-Ney	Smoothing
• how	many	times	does	w appear	as	a	novel	continuation?

• normalize	by	total	number	of	
word	bigram	types:

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

J&M/SLP3

N-gram	Smoothing	Summary
• add-1	estimation:
– OK	for	text	categorization,	not	for	language	modeling

• for	very	large	N-gram	collections	like	the	Web:
– stupid	backoff

• most	commonly	used	method:
– modified	interpolated	Kneser-Ney

12J&M/SLP3

Roadmap
• classification
• words
• lexical	semantics
• language	modeling
• sequence	labeling
• syntax	and	syntactic	parsing
• neural	network	methods	in	NLP
• semantic	compositionality
• semantic	parsing
• unsupervised	learning
• machine	translation	and	other	applications

13

Linguistic	phenomena:	summary	so	far…
• words	have	structure	(stems and	affixes)	
• words	have	multiple	meanings	(senses)	à word	
sense	ambiguity
– senses	of	a	word	can	be	homonymous	or	polysemous
– senses	have	relationships:

• hyponymy (“is	a”)
• meronymy (“part	of”,	“member	of”)

• variability/flexibility	of	linguistic	expression
– many	ways	to	express	the	same	meaning	(as	you	saw	
in	Assignment	1)

– word	vectors	tell	us	when	two	words	are	similar
• today:	part-of-speech

14

15

Part-of-Speech	Tagging

determiner					verb	(past)						prep.			proper					proper			poss.					adj.													noun
Some						questioned						if							Tim						Cook						’s						first						product	

modal							verb				det.									adjective									noun				prep.						proper					punc.
would						be						a						breakaway						hit						for						Apple								.

determiner					verb	(past)						prep.			proper					proper			poss.					adj.													noun

modal							verb				det.									adjective									noun				prep.						proper					punc.

16

Part-of-Speech	Tagging

determiner					verb	(past)						prep.				noun								noun					poss.					adj.												noun
Some						questioned						if							Tim						Cook						’s						first						product	

modal							verb				det.									adjective									noun				prep.							noun						punc.
would						be						a						breakaway						hit						for						Apple								.

Part-of-Speech	(POS)
• functional	category	of	a	word:
– noun,	verb,	adjective,	etc.
– how	is	the	word	functioning	in	its	context?

• dependent	on	context	like	word	sense,	but	
different	from	sense:
– sense	represents	word	meaning,	POS	represents	
word	function

– sense	uses	a	distinct	category	of	senses	per	word,	
POS	uses	same	set	of	categories	for	all	words

17

Penn	
Treebank	
tag	set

18

Universal	Tag	Set
• many	use	smaller	sets	of	coarser	tags
• e.g.,	“universal	tag	set”	containing	12	tags:
– noun,	verb,	adjective,	adverb,	pronoun,	
determiner/article,	adposition (preposition	or	
postposition),	numeral,	conjunction,	particle,	
punctuation,	other

19

Petrov,	Das,	McDonald	 (2011)

ikr smh he		asked		fir		yo last		name		so		he		can	
add		u		on		fb lololol =D					#lolz

20

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																			article																					noun	 														pronoun	

pronoun	 					proper
noun

verb														prep	 																		intj emoticon				hashtag

Twitter	Part-of-Speech	Tagging

adj =	adjective
prep	=	preposition
intj =	interjection

• we	removed	some	fine-grained	POS	tags,	then	added	
Twitter-specific	tags:
hashtag
@-mention
URL	/	email	address
emoticon
Twitter	discourse	marker
other	(multi-word	abbreviations,	symbols,	garbage)

word	sense	vs.	part-of-speech

21

word	sense part-of-speech

semantic or	syntactic?
semantic:

indicates	meaning	of	word	in	its	
context

syntactic:	
indicates	function	 of	word	in	its	

context

number	of	categories |V|	words,	~5	senses	each	à
5|V|	categories!

typical	POS tag	sets	have	12	to	
45	tags

inter-annotator
agreement low; some	sense	distinctions	

are	highly	 subjective

high;	 relatively	few	POS tags	
and	function	 is	relatively	
shallow	/	surface-level

independent	or	joint	
classification	of	nearby	

words?

independent:	
can	classify	a	single	word	based	
on	context	words;	structured	
prediction	 is	rarely	used

joint:
strong	relationship	between	

tags	of	nearby	words;	
structured	prediction	often	

used

How	might	POS	tags	be	useful?
• text	classification
• machine	translation
• question	answering

22

Classification	Framework

learning:	choose	_

modeling:	define		score	functioninference:	solve														_

23

Applications	of	our	Classification	Framework

24

text	classification:

x y

the	hulk	 is	an	anger	fueled	monster	with	
incredible	strength	and	resistance	to	damage	. objective

in	trying	to	be	daring	and	original	,	it	comes	off	
as	only	occasionally	satirical	and	never	fresh	. subjective

=	{objective,	subjective}

Applications	of	our	Classification	Framework

25

word	sense	classifier	for	bass:

x y

he’s	a	bass	in	the	choir	. bass3

our bass	is	line-caught	from	the	
Atlantic	. bass4

=	{bass1,	bass2,	…,	bass8}

Applications	of	our	Classification	Framework

26

skip-gram	model	as	a	classifier:

x y

agriculture <s>

agriculture is

agriculture the

=	V (the	entire	vocabulary)

corpus	(English	Wikipedia):
agriculture	 is	the	traditional	mainstay	of	the	
cambodian economy	.
but	benares has	been	destroyed	by	an	earthquake	 .
…

Applications	of	our	Classifier	Framework	so	far

27

task input	(x) output	(y) output	space	() size	of

text	
classification a	sentence gold	standard	

label for	x

pre-defined,	 small	
label	set (e.g.,	

{positive,	negative})
2-10

word	sense	
disambiguation

instance	of	a	
particular	word	
(e.g.,	bass)	with

its	context

gold	standard	
word	sense	of	x

pre-defined	sense	
inventory	 from	

WordNet for	bass
2-30

learning skip-
gram	word	
embeddings

instance	of	a	
word	in	a	corpus

a	word	in	the	
context	of	x in	

a	corpus
vocabulary |V|

part-of-speech	
tagging a	sentence

gold	standard	
part-of-speech	

tags	for	x

all	possible	part-of-
speech tag	sequences	
with	same	length	as	x

|P||x|

Applications	of	our	Classifier	Framework	so	far

28

task input	(x) output	(y) output	space	() size	of

text	
classification a	sentence gold	standard	

label for	x

pre-defined,	 small
label	set (e.g.,	

{positive,	negative})
2-10

word	sense	
disambiguation

instance	of	a	
particular	word	
(e.g.,	bass)	with

its	context

gold	standard	
word	sense	of	x

pre-defined	sense	
inventory	 from	

WordNet for	bass
2-30

learning skip-
gram	word	
embeddings

instance	of	a	
word	in	a	corpus

a	word	in	the	
context	of	x in	

a	corpus
vocabulary |V|

part-of-speech	
tagging a	sentence

gold	standard	
part-of-speech	

tags	for	x

all	possible	part-of-
speech tag	sequences	
with	same	length	as	x

|P||x|

exponential	in	size	of	input!
“structured	prediction”

determiner					verb	(past)						prep.			proper					proper			poss.					adj.													noun

modal							verb				det.									adjective									noun				prep.						proper					punc.

29

Part-of-Speech	Tagging

determiner					verb	(past)						prep.				noun								noun					poss.					adj.												noun
Some						questioned						if							Tim						Cook						’s						first						product	

modal							verb				det.									adjective									noun				prep.							noun						punc.
would						be						a						breakaway						hit						for						Apple								.

Some	questioned	if	Tim	Cook’s	first	product	would	be	a	breakaway	hit	for	Apple.

Named	Entity	Recognition

PERSON ORGANIZATION

Simplest	kind	of	structured	prediction:	Sequence	Labeling

Learning

learning:	choose	_

30

Empirical	Risk	Minimization	with	Surrogate	Loss	Functions

31

• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:

many	possible	loss	
functions	to	consider	

optimizing

Loss	Functions

32

name loss where	used

cost	(“0-1”)
intractable,	but	

underlies	“direct	error	
minimization”

perceptron perceptron	algorithm
(Rosenblatt,	1958)

hinge
support	vector	

machines,	other	 large-
margin	algorithms

log

logistic	regression,	
conditional	 random	
fields,	maximum
entropy	models

(Sub)gradients	of	Losses	for	Linear	Models

33

name entry	j of	(sub)gradient	of	loss for	linear	model

cost	(“0-1”) not	subdifferentiable in	general

perceptron

hinge

log

whatever	loss	is	used	during	training,	
classify (NOT costClassify)	is	used	to	
predict	labels	for	dev/test	data!

(Sub)gradients	of	Losses	for	Linear	Models

34

name entry	j of	(sub)gradient	of	loss for	linear	model

cost	(“0-1”) not	subdifferentiable in	general

perceptron

hinge

log

expectation	of	feature	value	with	respect	to	distribution	
over	y (where	distribution	 is	defined	by	theta)

alternative	notation:

Sequence	Models
• models	that	assign	scores	(could	be	
probabilities)	to	sequences

• general	category	that	includes	many	models	
used	widely	in	practice:
– n-gram	language	models
– hidden	Markov	models
– “chain”	conditional	random	fields
– maximum	entropy	Markov	models

35

Hidden	Markov	Models	(HMMs)
• HMMs	define	a	joint	probability	distribution	over	
input	sequences	x and	output	sequences	y:

• conditional	independence	assumptions	(“Markov	
assumption”)	are	used	to	factorize	this	joint	
distribution	into	small	terms

• widely	used	in	NLP,	speech	recognition,	
bioinformatics,	many	other	areas

36

Hidden	Markov	Models	(HMMs)
• HMMs	define	a	joint	probability	distribution	over	
input	sequences	x and	output	sequences	y:

• assumption:	output	sequence	y “generates”	input	
sequence	x:

• these	are	too	difficult	to	estimate,	let’s	use	Markov	
assumptions

37

Markov	Assumption	for	
Language	Modeling

Andrei	Markov

trigram	model:

Independence	and	Conditional	Independence

• Independence:	two	random	variables	X and	Y are	
independent	if:

(or)
for	all	values	x and	y

• Conditional	Independence:	two	random	variables	X
and	Y are	conditionally	independent	given	a	third	
variable	Z if	

for	all	values	of	x,	y,	and	z
(or)

39

Markov	Assumption	for	
Language	Modeling

Andrei	Markov

trigram	model:

Conditional	Independence	Assumptions	of	HMMs

• two	y’s	are	conditionally	independent	given	
the	y’s	between	them:

• an	x at	position	i is	conditionally	independent	
of	other	y’s	given	the	y at	position	i:	

41

Graphical	Model	for	an	HMM
(for	a	sequence	of	length	4)

42

y1 y2 y3 y4

x1 x2 x3 x4

a	graphical	model	is	a	graph	in	which:

each	node	corresponds	to	a	random	variable

each	directed	edge	corresponds	to	a	conditional	probability	distribution	
of	the	target	node	given	the	source	node

conditional	independence	statements	among	random	variables	are	
encoded	by	the	edge	structure

Graphical	Model	for	an	HMM
(for	a	sequence	of	length	4)

43

y1 y2 y3 y4

x1 x2 x3 x4

conditional	independence	statements	among	random	variables	are	
encoded	by	the	edge	structure	à we	only	have	to	worry	about	local	
distributions:

transition	parameters:

emission	parameters:	

Graphical	Model	for	an	HMM
(for	a	sequence	of	length	4)

44

y1 y2 y3 y4

x1 x2 x3 x4

transition	parameters:

emission	parameters:	

45

Class-Based n-gram Models of Natural
Language

Pe te r F. B rown"
Pe te r V. deSouza*
R o b e r t L. Mercer*
IBM T. J. Watson Research Center

V incen t J. Del la Pietra*
Jen i fe r C. Lai*

We address the problem of predicting a word from previous words in a sample of text. In particular,
we discuss n-gram models based on classes of words. We also discuss several statistical algorithms
for assigning words to classes based on the frequency of their co-occurrence with other words. We
find that we are able to extract classes that have the flavor of either syntactically based groupings
or semantically based groupings, depending on the nature of the underlying statistics.

1. Introduct ion

In a number of natural language processing tasks, we face the problem of recovering a
string of English words after it has been garbled by passage through a noisy channel.
To tackle this problem successfully, we must be able to estimate the probability with
which any particular string of English words will be presented as input to the noisy
channel. In this paper, we discuss a method for making such estimates. We also discuss
the related topic of assigning words to classes according to statistical behavior in a
large body of text.

In the next section, we review the concept of a language model and give a defini-
tion of n-gram models. In Section 3, we look at the subset of n-gram models in which
the words are divided into classes. We show that for n = 2 the maximum likelihood
assignment of words to classes is equivalent to the assignment for which the average
mutual information of adjacent classes is greatest. Finding an optimal assignment of
words to classes is computationally hard, but we describe two algorithms for finding a
suboptimal assignment. In Section 4, we apply mutual information to two other forms
of word clustering. First, we use it to find pairs of words that function together as a
single lexical entity. Then, by examining the probability that two words will appear
within a reasonable distance of one another, we use it to find classes that have some
loose semantic coherence.

In describing our work, we draw freely on terminology and notation from the
mathematical theory of communication. The reader who is unfamiliar with this field
or who has allowed his or her facility with some of its concepts to fall into disrepair
may profit from a brief perusal of Feller (1950) and Gallagher (1968). In the first of
these, the reader should focus on conditional probabilities and on Markov chains; in
the second, on entropy and mutual information.

* IBM T. J. Watson Research Center, Yorktown Heights, New York 10598.

(~) 1992 Association for Computational Linguistics

Peter F. Brown and Vincent J. Della Pietra Class-Based n-gram Models of Natural Language

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
people guys folks fellows CEOs chaps doubters commies unfortunates blokes
down backwards ashore sideways southward northward overboard aloft downwards adrift
water gas coal liquid acid sand carbon steam shale iron
great big vast sudden mere sheer gigantic lifelong scant colossal
man woman boy girl lawyer doctor guy farmer teacher citizen
American Indian European Japanese German African Catholic Israeli Italian Arab
pressure temperature permeability density porosity stress velocity viscosity gravity tension
mother wife father son husband brother daughter sister boss uncle
machine device controller processor CPU printer spindle subsystem compiler plotter
John George James Bob Robert Paul William Jim David Mike
anyone someone anybody somebody
feet miles pounds degrees inches barrels tons acres meters bytes
director chief professor commissioner commander treasurer founder superintendent dean cus-
todian
liberal conservative parliamentary royal progressive Tory provisional separatist federalist PQ
had hadn't hath would've could've should've must've might've
asking telling wondering instructing informing kidding reminding bc)thering thanking deposing
that tha theat
head body hands eyes voice arm seat eye hair mouth

Table 2
Classes from a 260,741-word vocabulary.

we include no more than the ten most frequent words of any class (the other two
months would appear with the class of months if we extended this limit to twelve).
The degree to which the classes capture both syntactic and semantic aspects of English
is quite surprising given that they were constructed from nothing more than counts
of bigrams. The class {that tha theat} is interesting because although tha and theat are
not English words, the computer has discovered that in our data each of them is most
often a mistyped that.

Table 4 shows the number of class 1-, 2-, and 3-grams occurring in the text with
various frequencies. We can expect from these data that maximum likelihood estimates
will assign a probability of 0 to about 3.8 percent of the class 3-grams and to about
.02 percent of the class 2-grams in a new sample of English text. This is a substantial
improvement over the corresponding numbers for a 3-gram language model, which
are 14.7 percent for word 3-grams and 2.2 percent for word 2-grams, but we have
achieved this at the expense of precision in the model. With a class model, we distin-
guish between two different words of the same class only according to their relative
frequencies in the text as a whole. Looking at the classes in Tables 2 and 3, we feel that

475

Computational	 Linguistics,	1992

“Brown	Clustering”

hidden	Markov	model	with	one-cluster-per-word	constraint

46

justin bieber for												president

y1 y2 y3 y4

Brown	Clustering		(Brown	et	al.,	1992)

hidden	Markov	model	with	one-cluster-per-word	constraint

47

justin bieber for												president

y1 y2 y3 y4

algorithm:
� initialize	each	word	as	its	own	cluster
� greedily	merge	clusters	to	improve	data	likelihood

Brown	Clustering		(Brown	et	al.,	1992)

hidden	Markov	model	with	one-cluster-per-word	constraint

48

justin bieber for												president

y1 y2 y3 y4

algorithm:
� initialize	each	word	as	its	own	cluster
� greedily	merge	clusters	to	improve	data	likelihood

outputs	hierarchical	clustering

Brown	Clustering		(Brown	et	al.,	1992)

we	induced	1000	Brown	clusters	from	56	million	
English	tweets	(1	billion	words)

only	words	that	appeared	at	least	40	times

(Owoputi,	O’Connor,	Dyer,	Gimpel,	Schneider,	and	Smith,	2013)

49

Example	Cluster
missed	loved	hated	misread	admired	
underestimated	resisted	adored	disliked	
regretted	missd fancied	luved prefered luvd
overdid	mistyped	misd misssed looooved
misjudged	lovedd loooved loathed	lurves lovd

50

Example	Cluster
missed	loved	hated	misread	admired	
underestimated	resisted	adored	disliked	
regretted	missd fancied	luved prefered luvd
overdid	mistyped	misd misssed looooved
misjudged	lovedd loooved loathed	lurves lovd

51

spelling
variation

“really”
really	rly	realy genuinely	rlly reallly realllly
reallyy rele realli relly reallllly reli reali sholl rily
reallyyy reeeeally realllllly reaally reeeally rili
reaaally reaaaally reallyyyy rilly reallllllly
reeeeeally reeally shol realllyyy reely relle
reaaaaally shole really2 reallyyyyy _really_
realllllllly reaaly realllyy reallii reallt genuinly relli
realllyyyy reeeeeeally weally reaaallly reallllyyy
reallllllllly reaallly realyy /really/	reaaaaaally reallu
reaaaallly reeaally rreally reallyreally eally reeeaaally reeeaaally
reaallyy reallyyyyyy –really- reallyreallyreally rilli reallllyyyy relaly
reallllyy really-really	r3ally reeli reallie realllllyyy rli realllllllllly
reaaaly reeeeeeeally

52

“really”
really	rly	realy genuinely	rlly reallly realllly
reallyy rele realli relly reallllly reli reali sholl rily
reallyyy reeeeally realllllly reaally reeeally rili
reaaally reaaaally reallyyyy rilly reallllllly
reeeeeally reeally shol realllyyy reely relle
reaaaaally shole really2 reallyyyyy _really_
realllllllly reaaly realllyy reallii reallt genuinly relli
realllyyyy reeeeeeally weally reaaallly reallllyyy
reallllllllly reaallly realyy /really/	reaaaaaally reallu
reaaaallly reeaally rreally reallyreally eally reeeaaally reeeaaally
reaallyy reallyyyyyy –really- reallyreallyreally rilli reallllyyyy relaly
reallllyy really-really	r3ally reeli reallie realllllyyy rli realllllllllly
reaaaly reeeeeeeally

53

“really”
really	rly	realy genuinely	rlly reallly realllly
reallyy rele realli relly reallllly reli reali sholl rily
reallyyy reeeeally realllllly reaally reeeally rili
reaaally reaaaally reallyyyy rilly reallllllly
reeeeeally reeally shol realllyyy reely relle
reaaaaally shole really2 reallyyyyy _really_
realllllllly reaaly realllyy reallii reallt genuinly relli
realllyyyy reeeeeeally weally reaaallly reallllyyy
reallllllllly reaallly realyy /really/	reaaaaaally reallu
reaaaallly reeaally rreally reallyreally eally reeeaaally reeeaaally
reaallyy reallyyyyyy –really- reallyreallyreally rilli reallllyyyy relaly
reallllyy really-really	r3ally reeli reallie realllllyyy rli realllllllllly
reaaaly reeeeeeeally

54

“going	to”
gonna gunna gona gna guna gnna ganna qonna
gonnna gana qunna gonne goona gonnaa g0nna	
goina gonnah goingto gunnah gonaa gonan
gunnna going2	gonnnnagunnaa gonny gunaa
quna goonna qona gonns goinna gonnae qnna
gonnaaa gnaa

55

“so”
soo sooo soooo sooooo soooooo sooooooo
soooooooo sooooooooo soooooooooo
sooooooooooo soooooooooooo
sooooooooooooo soso soooooooooooooo
sooooooooooooooo soooooooooooooooo
sososo superrr sooooooooooooooooo ssooo
so0o	superrrr so0	soooooooooooooooooo
sosososo sooooooooooooooooooossoo sssooo
soooooooooooooooooooo#too	s0o	ssoooo s00

56

hot	fried	peanut	homemade	grilled	spicy	soy	cheesy	coconut	
veggie	roasted	leftover	blueberry	icy	dunkinmashed	rotten	
mellow	boiling	crispy	peppermint	fruity	toasted	crunchy	
scrambled	creamy	boiled	chunky	funnel	soggy	clam	steamed	
cajun steaming	chewy	steamy	nacho	mince	reese's shredded	
salted	glazed	spiced	venti pickled	powdered	butternut	miso	beet	
sizzling

57

Food-Related	Adjectives

Adjective	Intensifiers/Qualifiers
kinda hella sorta hecka kindof kindaa kinna hellla propa
helluh kindda justa #slick	helllla hela jii sortof hellaa
kida wiggity hellllla hekka hellah kindaaa hellaaa kindah
knda kind-of	slicc wiggidy helllllla jih jye kinnda odhee
kiinda heka sorda ohde kind've kidna baree rle hellaaaa
jussa

58

