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Announcements
• Assignment	1	due	tonight
• Assignment	2	will	be	posted	today,	due	Feb.	2
• Midterm	scheduled	for	Thursday,	Feb.	18
• Project	proposal	due	Tuesday,	Feb.	23
– short	(<1	page)
– briefly	describe	project	idea	and	plan	(with	
timeline)

– one	proposal	per	group	(groups	can	be	size	1	or	2)
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Distributional	Word	Vectors
• simplest	way	to	create	word	vectors:	
count	occurrences	of	context	words
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Counting	Context	Words

aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1 …
pineapple 0 0 0 1 0 1 …
digital 0 2 1 0 1 0 …
information 0 1 6 0 4 0 …
…

19.1 • WORDS AND VECTORS 3

tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
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Word-Context	Matrix
• assume	a	vocabulary V and	a	context	
vocabulary VC (VC is	a	subset	of	V)

• build	the	word-context	matrix	C
– C is	a	|V|-by-|VC|	matrix	of	nonnegative	counts
– entry	(i,	j)	contains	the	number	of	times	context	
word	j appeared	within	wwords	of	word	i in	a	
corpus

• then	build	the	PMI	matrix	P
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Pointwise Mutual	Information	(PMI)
• do	two	events	x and	y co-occur	more	often	than	if	
they	were	independent?

• here,	x is	the	center	word	and	y is	the	word	in	the	
context	window

• each	probability	can	be	estimated	from	counts	
collected	from	a	corpus
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Computing	PMI

7

=	number	of	 times	context	word	j appears	in	window	of	word	i

center	word:	index
into	vocabulary	V

context	word:	index
into	context	vocabulary	VC

we	start	with	the	word-context	count	matrix	C:



Computing	PMI
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=	number	of	 times	context	word	j appears	in	window	of	word	i

estimate	of	joint	probability:

estimates	of	center	
word	and	context	word	
marginal	probabilities:

same	
denominator	
for	all	terms
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pmi(hong,	kong)		____		pmi(hong,	then)

<			>			=		?
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pmi(hong,	kong)					> pmi(hong,	then)

7.9 0.1



PMIs	(1%	of	English	Wikipedia,	window	size	=	3)
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word context	word PMI
hong kong 7.9
neither nor 6.9

footballer plays 6.0
1980s 1970s 5.3

musician session 5.0
benefit doubt 4.5
gain failed 4.0
five stars 3.5
miles distance 3.0
prior unlike 2.0

position affairs 1.0
local processes 0.5
fire less 0.01



PMIs	(1%	of	English	Wikipedia,	window	size	=	10)
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word context	word PMI
san francisco 5.7
san diego 5.7
san juan 4.7
san california 3.7
san san 3.6
san santa 3.3

word context	word PMI
down laid 3.8
down shot 3.0
down turned 2.9
down broken 2.6
down step 2.6
down shooting 2.5



Evaluating	word	vectors

• extrinsic:
– question	answering,	spell	checking,	essay	grading

• intrinsic:
– correlation	between	vector	similarity	and	human	
word	similarity	judgments
• WordSim353:	353	noun	pairs	rated	0-10
sim(plane,car)=5.77

– TOEFL	multiple-choice	vocabulary	tests
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Roadmap
• classification
• words
• lexical	semantics
• language	modeling
• sequence	labeling
• syntax	and	syntactic	parsing
• neural	network	methods	in	NLP
• semantic	compositionality
• semantic	parsing
• unsupervised	learning
• machine	translation	and	other	applications
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Probabilistic	Language	Models

• Today’s	goal:	assign	a	probability	to	a	sentence
• Why?
–machine	translation:
• P(high	winds	tonite)	>	P(largewinds	tonite)

– spelling	correction:
• The	office	is	about	fifteen	minuets from	my	house

– P(about	 fifteen	minutes from)	>	P(about	 fifteen	minuets from)

– speech	recognition:
• P(I	saw	a	van)	>>	P(eyes	awe	of	an)

– summarization,	question	answering,	etc.!
J&M/SLP3



Automatic	Completion
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Automatic	Completion
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Probabilistic	Language	Modeling

• goal:	compute	the	probability	of	a	sequence	of	words:
P(W)	=	P(w1,w2,w3,w4,w5…wn)

• related	task:	probability	of	next	word:
P(w5|w1,w2,w3,w4)

• a model	that	computes	either	of	these:
P(W)					or					P(wn|w1,w2…wn-1)
is	called	a	language	model	(LM)
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How	to	compute	P(W)
• How	to	compute	this	joint	probability:

– P(its,	water,	is,	so,	transparent,	that)

• Intuition:	let’s	rely	on	the	Chain	Rule	of	
Probability
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Reminder:	Chain	Rule

• recall	definition	of	conditional	probability:

P(B|A)	=	P(A,B)/P(A) rewriting:			P(A,B)	=	P(A)P(B|A)

• more	variables:
P(A,B,C,D)	=	P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• in	general:
P(x1,x2,x3,…,xn)	=	P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

J&M/SLP3



Chain	Rule	applied	to	computing	joint	
probability	of	words	in	sentence

P(“its	water	is	so	transparent”)	=
P(its)	× P(water	|	its)	× P(is	|	its	water)	
× P(so	|	its	water	is)	× P(transparent	|	its	water	is	so)

  

€ 

P(w1w2…wn ) = P(wi |w1w2…wi−1)
i
∏
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How	to	estimate	these	probabilities
• could	we	just	count	and	divide?

• no!	 too	many	possible	sentences!
• we’ll	never	see	enough	data	for	estimating	these

€ 

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

J&M/SLP3



Markov	Assumption

• simplifying	assumption:

• or	maybe:

€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei	Markov
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Markov	Assumption

• i.e.,	we	approximate	each	component	in	the	
product:

  

€ 

P(w1w2…wn ) ≈ P(wi |wi−k…wi−1)
i
∏

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

J&M/SLP3



Simplest	case:	Unigram	model

fifth an of futures the an incorporated a a the 
inflation most dollars quarter in is mass

thrift did eighty said hard ’m july bullish

that or limited the

automatically	generated	sentences	from	a	unigram	model:
  

€ 

P(w1w2…wn ) ≈ P(wi)
i
∏
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condition	on	the	previous	word:

Bigram	model

texaco rose one in this issue is pursuing growth in a boiler 
house said mr. gurria mexico ’s motion control proposal 
without permission from five hundred fifty five yen

outside new car parking lot of the agreement reached

this would be a record november

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

J&M/SLP3

automatically	generated	sentences	from	a	bigram	model:



n-gram	models

• we	can	extend	to	trigrams,	4-grams,	5-grams
• in	general	this	is	an	insufficient	model	of	language
– because	language	has	long-distance	dependencies:

“The	computer	which	I	had	just	put	into	the	machine	room	on	
the	fifth	floor	crashed.”

• but	we	can	often	get	away	with	n-gram	models

J&M/SLP3



Estimating	bigram	probabilities
• The	Maximum	Likelihood	Estimate

€ 

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

J&M/SLP3



An	example

<s>	I	am	Sam	</s>
<s>	Sam	I	am	</s>
<s>	I	do	not	like	green	eggs	and	ham	</s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

J&M/SLP3



More	examples:	
Berkeley	Restaurant	Project	sentences

• can	you	tell	me	about	any	good	cantonese restaurants	close	by
• mid	priced	thai food	is	what	i’m looking	for
• tell	me	about	chez	panisse
• can	you	give	me	a	listing	of	the	kinds	of	food	that	are	available
• i’m looking	for	a	good	place	to	eat	breakfast
• when	is	caffe venezia open	during	the	day

J&M/SLP3



Raw	bigram	counts
• counts	from	9,222	sentences
• e.g.,	“i want”	occurs	827	times

J&M/SLP3



Raw	bigram	probabilities
• normalize	by	unigram	counts:

• bigram	probabilities:

J&M/SLP3



Bigram	estimates	of	sentence	probabilities

P(<s>	I	want	english food	</s>)	=
P(I	|	<s>)			
× P(want	|	I)		
× P(english |	want)			
× P(food |	english)	 		
× P(</s>	|	food)
=		.000031

J&M/SLP3



Practical	Issues
• we	do	everything	in	log	space
– avoid	underflow
– (also	adding	is	faster	than	multiplying)

log(p1 × p2 × p3 × p4 ) = log p1 + log p2 + log p3 + log p4

J&M/SLP3



Language	Modeling	Toolkits
• SRILM
– http://www.speech.sri.com/projects/srilm/

• KenLM
– https://kheafield.com/code/kenlm/

J&M/SLP3



Google	N-Gram	Release,	August	2006

…
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Google	N-Gram	Release
• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
J&M/SLP3
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Evaluation:	How	good	is	our	model?
• does	our	language	model	prefer	good	
sentences	to	bad	ones?
– assign	higher	probability	to	“real”	or	“frequently	
observed”	sentences	
• than	“ungrammatical”	or	“rarely	observed”	sentences?
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Extrinsic	evaluation	of	N-gram	models
• best	evaluation	for	comparing	models	A	and	B
– put	each	model	in	a	task
• spelling	corrector,	speech	recognizer,	MT	system

– run	the	task,	get	an	accuracy	for	A	and	for	B
• how	many	misspelled	words	corrected	properly
• how	many	words	translated	correctly

– compare	accuracy	for	A	and	B

J&M/SLP3



Difficulty	of	extrinsic	evaluation	of		N-gram	models

• extrinsic	evaluation	is	time-consuming
– days	or	weeks	depending	on	system

• so,	sometimes	use	intrinsic	evaluation:	perplexity
– bad	approximation	
• unless	the	test	data	looks	just like	the	training	data
• so	generally	only	useful	in	pilot	experiments

– but	is	helpful	to	think	about

J&M/SLP3



Intuition	of	Perplexity
• the	Shannon	Game:
– how	well	can	we	predict	the	next	word?

– unigrams	are	terrible	at	this	game		(why?)
• a	better	model	of	a	text	is	one	which	assigns	a	higher	

probability	to	the	word	that	actually	occurs

I	always	order	pizza	with	cheese	and	____

The	33rd President	of	the	US	was	____

I	saw	a	____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

…

fried	rice	0.0001

…

and 1e-100
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Perplexity	(PP)

perplexity	=	inverse	probability	of	test	
set,	normalized	by	number	of	words:

chain	rule:

for	bigrams:

minimizing	perplexity	is	the	same	as	maximizing	probability

best	language	model	is	one	that	best	predicts	unseen	test	set
• gives	the	highest	P(sentence)

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N

J&M/SLP3



Perplexity	as	branching	factor
• given	a	sentence	consisting	of	random	digits
• what	is	the	perplexity	of	this	sentence	
according	to	a	model	that	assigns	probability	
1/10	to	each	digit?

J&M/SLP3



Lower	perplexity	=	better	model
• train:	38	million	words
• test:	1.5	million	words

n-gram	order: unigram bigram trigram

perplexity: 962 170 109

J&M/SLP3



Approximating	Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-
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Shakespeare	as	corpus

• 884,647	tokens,	29,066	types
• Shakespeare	produced	300,000	bigram	types	
out	of	844	million	possible	bigrams
– 99.96%	of	possible	bigrams	were	never	seen	(have	
zero	entries	in	the	table)

• 4-grams	worse:	what's	coming	out	looks	like	
Shakespeare	because	it	is Shakespeare

J&M/SLP3



Wall	Street	Journal
4.3 • GENERALIZATION AND ZEROS 11

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have a many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things things that don’t ever occur in the training set but do occurzeros

in the test set—are a problem for two reasons. First, they means we are underes-
timating the probability of all sorts of words that might occur, which will hurt the
performance of any application we want to run on this data.

Second, if the probability of any word in the testset is 0, the entire probability of
the test set is 0. But the definition of perplexity is based on the inverse probability
of the test set. If some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!
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The	perils	of	overfitting
• N-grams	only	work	well	for	word	prediction	if	the	
test	corpus	looks	like	the	training	corpus
– in	real	life,	it	often	doesn’t
– we	need	to	train	robust	models that	generalize!
– one	kind	of	generalization:	Zeros!
• things	that	don’t	ever	occur	in	the	training	set
–but	occur	in	the	test	set

J&M/SLP3



Zeros

training	set:
…	denied	the	allegations
…	denied	the	reports
…	denied	the	claims
…	denied	the	request

P(offer |	denied	the)	=	0

test	set:
…	denied	the	offer
…	denied	the	loan

J&M/SLP3



Zero	probability	bigrams
• test	set	bigrams	with	zero	probability	à assign	
0	probability	to	entire	test	set!

• cannot	compute	perplexity	(can’t	divide	by	0)!
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Intuition	of	smoothing	(from	Dan	Klein)

• When	we	have	sparse	statistics:

• Steal	probability	mass	to	generalize	better:

P(w	|	denied	the)
3	allegations
2	reports
1	claims
1	request
7	total

P(w	|	denied	the)
2.5	allegations
1.5	reports
0.5	claims
0.5	request
2	other
7	total
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“Add-1”	estimation
• also	called	Laplace	smoothing
• pretend	we	saw	each	word	one	more	time	than	we	
did

• just	add	1	to	all	counts!

• MLE	estimate:

• Add-1	estimate:

PMLE (wi |wi−1) =
c(wi−1,wi )
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi )+1
c(wi−1)+V

J&M/SLP3



Maximum	Likelihood	Estimates

• The	maximum	likelihood	estimate
– of	some	parameter	of	a	model	M	from	a	training	set	T
– maximizes	the	likelihood	 of	the	training	set	T	given	the	model	M

• Suppose	the	word	“bagel”	occurs	400	times	in	a	corpus	of	a	million	words
• What	is	the	probability	that	a	random	word	from	some	other	text	will	be	

“bagel”?
• MLE	estimate	is	400/1,000,000	=	.0004
• This	may	be	a	bad	estimate	for	some	other	corpus

– But	it	is	the	estimate that	makes	it	most	likely that	“bagel”	will	occur	400	times	in	
a	million	word	corpus.
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Berkeley	Restaurant	Corpus:
Laplace	smoothed	bigram	counts
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Laplace-smoothed	bigrams
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Reconstituted	counts
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Compare	with	raw	bigram	counts



Add-1	estimation	is	a	blunt	instrument
• so	add-1	isn’t	used	for	N-grams:	

– we’ll	see	better	methods

• but	add-1	is	used	to	smooth	other	NLP	models
– text	classification	
– domains	where	the	number	of	zeros	isn’t	so	huge
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Backoff and	Interpolation

• sometimes	it	helps	to	use	less context
– condition	on	less	context	for	contexts	you	haven’t	
learned	much	about	

• backoff:	
– use	trigram	if	you	have	good	evidence,	otherwise	
bigram,	otherwise	unigram

• interpolation:	
– mixture	of	unigram,	bigram,	trigram	(etc.)	models

• interpolation	works	better
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Linear	Interpolation

• simple	interpolation:

• lambdas	are	functions	of	context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in
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How	to	set	the	lambdas?

• use	a	held-out corpus:

• choose	lambdas	to	maximize	probability	of	held-out	data:
– fix	N-gram	probabilities	(on	the	training	data)
– then	search	for	λs that	give	largest	probability	to	held-out	set:

– subtlety:	what	happens	if	we	use	training	data	to	learn	λs?

Training	Data Held-Out	
Data

Test	
Data

logP(w1...wn |M (λ1...λk )) = logPM (λ1...λk ) (wi |wi−1)
i
∑
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Unknown	words:	open	vs.	closed	vocabulary	tasks

• if	we	know	all	the	words	in	advance:	
– vocabulary	V is	fixed
– “closed	vocabulary”	task

• often	we	don’t	know	this
– out-of-vocabulary	(OOV)words
– “open	vocabulary”	task

• so,	create	an	unknown	word	token	<UNK>
– at	training	time:

• randomly	change	some	instances	of	rare	words	to	<UNK>
• then	estimate	its	probabilities	 like	a	normal	word

– at	test	time:
• replace	OOV	words	with	<UNK>
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Huge	web-scale	n-grams

• how	to	deal	with,	e.g.,	Google	N-gram	corpus?
• pruning:
– only	store	N-grams	with	count	>	threshold.

• remove	singletons	of	higher-order	n-grams
– entropy-based	pruning

• efficiency
– efficient	data	structures	like	tries
– bloom	filters:	approximate	language	models
– store	words	as	indexes,	not	strings

• use	Huffman	coding	to	fit	large	numbers	of	words	into	2	bytes
– quantize	probabilities	(4-8	bits	instead	of	8-byte	float)
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Smoothing	for	Web-scale	N-grams
• “Stupid	backoff”	(Brants et	al.,	2007)
• no	discounting,	just	use	relative	frequencies	
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S(wi |wi−k+1
i−1 ) =

count(wi−k+1
i )

count(wi−k+1
i−1 )

  if  count(wi−k+1
i )> 0

0.4S(wi |wi−k+2
i−1 )      otherwise
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#
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%
$
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S(wi ) =
count(wi )
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N-gram	Smoothing	Summary
• Add-1	estimation:
– OK	for	text	categorization,	not	for	language	modeling

• most	commonly	used	method:
– modified	interpolated	Kneser-Ney

• for	very	large	N-gram	collections	like	the	Web:
– stupid	backoff
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Advanced	Language	Modeling

• discriminative	models:
– choose	n-gram	weights	to	improve	a	task,	not	
to	fit	the		training	set

• syntactic	language	models
• caching	models
– recently	used	words	are	more	likely	to	appear

– these	perform	very	poorly	for	speech	
recognition	(why?)

PCACHE (w | history) = λP(wi |wi−2wi−1)+ (1−λ)
c(w ∈ history)
| history |
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