# TTIC 31190: Natural Language Processing Kevin Gimpel

Winter 2016

Lecture 2: Text Classification

- Please email me (kgimpel@ttic.edu) with the following:
  - your name
  - your email address
  - whether you taking the class for credit
- I will use your address to create a mailing list for course announcements

## Roadmap

- classification
- words
- lexical semantics
- language modeling
- sequence labeling
- syntax and syntactic parsing
- neural network methods in NLP
- semantic compositionality
- semantic parsing
- unsupervised learning
- machine translation and other applications

#### **Text Classification**

| COMPOSE                                              |                                  | cial <u>3 new</u><br>gle+, YouTube, Emi Promotions <u>2 new</u><br>Google Offers, Zagat <b>Updates</b> <u>2 new</u><br>Shoehop, Blitz Air |  |
|------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| Inbox (7)<br>Starred                                 | 🗌 ☆ Google+ init discorption nev | You were tagged in 3 photos on Google+ - Google+ You were tagged in three pl                                                              |  |
| Drafts                                               | 🗌 🕁 YouTube nev                  | LauraBlack just uploaded a video Jess, have you seen the video LauraBlack u                                                               |  |
| Sent Mail                                            | 🔄 📩 Emily Million (Google+) 🔤    | [Knitting Club] Are we knitting tonight? - [Knitting Club] Are we knitting tonight?                                                       |  |
| 8 C 🕫                                                | Sean Smith (Google+)             | Photos of the new pup - Sean Smith shared an album with you. View album be tho                                                            |  |
| Search people                                        | Google+                          | Kate Baynham shared a post with you - Follow and share with Kate by adding her                                                            |  |
| Jenny Kang                                           | Google+                          | Danielle Hoodhood added you on Google+ - Follow and share with Danielle by                                                                |  |
| <ul> <li>Peter H</li> <li>Jonathan Pelleg</li> </ul> | YouTube                          | Just for You From YouTube: Daily Update - Jun 19, 2013 - Check out the latest                                                             |  |
| Brett C                                              | Google+                          | You were tagged in 3 photos on Google+ - Google+ You were tagged in three phot                                                            |  |
| ■ Max Stein<br>■ Jen Hart                            | 🔄 📩 Hilary Jacobs (Google+)      | Check out photos of my new apt - Hilary Jacobs shared an album with you. View                                                             |  |
| Fric Lowery                                          | Google+                          | Kate Baynham added you on Google+ - Follow and share with Kate by adding her                                                              |  |

- spam / not spam
- priority level
- category (primary / social / promotions / updates)

#### Sentiment Analysis

| (          |                                                                                                                                       | twitrra                                 | atr                                                                                            |                                    |                                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|
| TRAC       | KING OPINIONS ON TWITTER                                                                                                              |                                         |                                                                                                |                                    | SEARCH                                                                                        |
| To Page 10 |                                                                                                                                       | POSITIVE TWEETS                         |                                                                                                | EGATIVE TWEETS                     | TOTAL TWEETS                                                                                  |
| 13.        | 02% POSITIVE                                                                                                                          | 82.67% NE                               | UTRAL                                                                                          | 4.30% NE                           | GATIVE                                                                                        |
| R          | k i feel dumb apparently i was<br>meant to 'dm' for the starbucks<br>competition! i guess its late ;) i<br>would have won too! (view) | tonight let<br>mins w/ ar<br>me, before | that girl @ starbucks<br>me stand in line for 10<br>nother dude in front of<br>saying "oh. I'm | roast che<br>you tried<br>cheeseca | sore throat from the dark<br>esecake? @rom have<br>the dark roast<br>ike at starbucks? its my |
|            | sleep so i can do a ton of<br>darkroom tomorrow i have to                                                                             | closed" (                               | 2008-10-23: Sitting in                                                                         |                                    | for the week (view)<br>ly really thinking about<br>ng up for work                             |

## Classification

- datasets
- features
- learning

## **NLP** Datasets

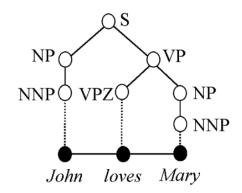
• NLP datasets include inputs (usually text) and outputs (usually some sort of annotation)

## Annotation

- supervised machine learning needs labeled datasets, where labels are called ground truth
- in NLP, labels are annotations provided by humans
- there is always some disagreement among annotators, even for simple tasks
- these annotations are called a gold standard, not ground truth

## How are NLP datasets developed?

- 1. paid, trained human annotation
  - this is the traditional approach
  - researchers write annotation guidelines, recruit & pay annotators (often linguists)
  - more consistent annotations, but costly to scale
  - e.g., Penn Treebank (1993)
    - 1 million words, mostly Wall Street Journal, annotated with part-of-speech tags and syntactic parse trees



### Example: Twitter part-of-speech annotation

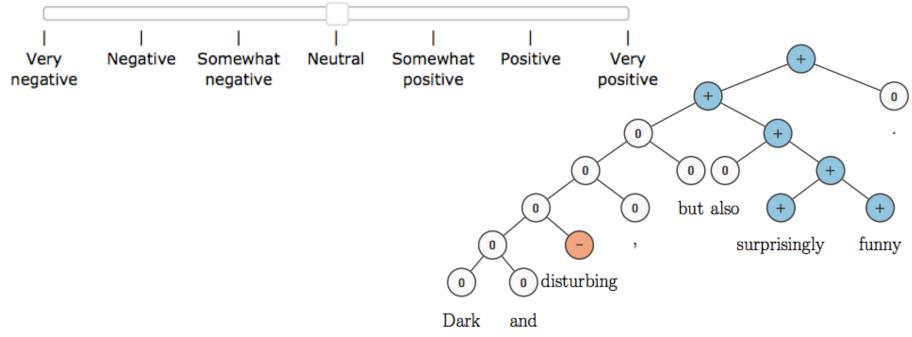
#### 17 CMU researchers annotated ~2000 tweets



Gimpel, Schneider, O'Connor, Das, Mills, Eisenstein, Heilman, Yogatama, Flanigan, Smith. "Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments," ACL 2011.

- 2. crowdsourcing
  - more recent trend
  - Amazon Mechanical Turk
  - can't really train annotators, but easier to get multiple annotations for each input (which can then be averaged)
  - e.g., Stanford Sentiment Treebank:

with better characters, some genuine quirkiness and at least a measure of style



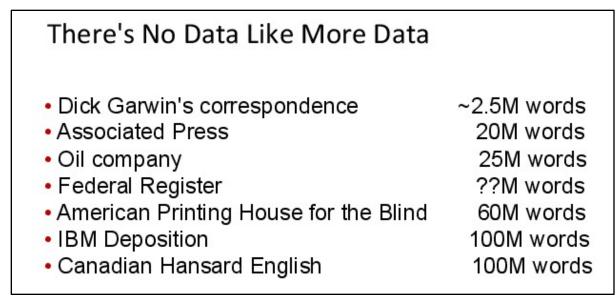
#### 3. naturally-occurring annotation

 long history: used by IBM for speech recognition and statistical machine translation

| There's No Data Like More Data                                                                                                                                                                                                     |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <ul> <li>Dick Garwin's correspondence</li> <li>Associated Press</li> <li>Oil company</li> <li>Federal Register</li> <li>American Printing House for the Blind</li> <li>IBM Deposition</li> <li>Canadian Hansard English</li> </ul> | ~2.5M words<br>20M words<br>25M words<br>??M words<br>60M words<br>100M words<br>100M words |

credit: Brown & Mercer, 20 Years of Bitext Workshop, 2013

- 3. naturally-occurring annotation
  - long history: used by IBM for speech recognition and statistical machine translation



credit: Brown & Mercer, 20 Years of Bitext Workshop, 2013

– how might you find naturally-occurring data for:

- conversational agents
- summarization
- coreference resolution

## **Annotator Agreement**

 given annotations from two annotators, how should we measure inter-annotator agreement?

## **Annotator Agreement**

- given annotations from two annotators, how should we measure inter-annotator agreement?
  - percent agreement?

## **Annotator Agreement**

- given annotations from two annotators, how should we measure inter-annotator agreement?
  - percent agreement?
  - Cohen's Kappa (Cohen, 1960) accounts for agreement by chance
  - generalizations exist for more than two annotators (Fleiss, 1971)

## **Text Classification Data**

- There are many annotated datasets
  - Stanford Sentiment Treebank: fine-grained sentiment analysis of movie reviews
  - subjectivity/objectivity sentence classification
  - binary sentiment analysis of customer reviews
  - TREC question classification

the hulk is an anger fueled monster with incredible strength and resistance to damage .

in trying to be daring and original , it comes off as only occasionally satirical and never fresh .

solondz may well be the only one laughing at his own joke

obstacles pop up left and right, as the adventure gets wilder and wilder.

| the hulk is an anger fueled monster with incredible strength and resistance to damage .             | objective  |
|-----------------------------------------------------------------------------------------------------|------------|
| in trying to be daring and original , it comes off as only occasionally satirical and never fresh . | subjective |
| solondz may well be the only one laughing at his own joke                                           |            |
| obstacles pop up left and right, as the adventure gets wilder and wilder.                           |            |

| the hulk is an anger fueled monster with incredible strength and resistance to damage .             | objective  |
|-----------------------------------------------------------------------------------------------------|------------|
| in trying to be daring and original , it comes off as only occasionally satirical and never fresh . | subjective |
| solondz may well be the only one laughing at his own joke                                           | subjective |
| obstacles pop up left and right , as the adventure gets wilder and wilder .                         | objective  |

| the hulk is an anger fueled monster with incredible strength and resistance to damage .             | objective  |
|-----------------------------------------------------------------------------------------------------|------------|
| in trying to be daring and original , it comes off as only occasionally satirical and never fresh . | subjective |
| solondz may well be the only one laughing at his own joke                                           | subjective |
| obstacles pop up left and right , as the adventure gets wilder and wilder .                         | objective  |

• How was this dataset generated?

| the hulk is an anger fueled monster with incredible strength and resistance to damage .             | objective  |
|-----------------------------------------------------------------------------------------------------|------------|
| in trying to be daring and original , it comes off as only occasionally satirical and never fresh . | subjective |
| solondz may well be the only one laughing at his own joke                                           | subjective |
| obstacles pop up left and right , as the adventure gets wilder and wilder .                         | objective  |

- How was this dataset generated?
  - IMDB plot summaries: objective
  - Rotten Tomatoes snippets: subjective

| the hulk is an anger fueled monster with incredible strength and resistance to damage .             | objective  |
|-----------------------------------------------------------------------------------------------------|------------|
| in trying to be daring and original , it comes off as only occasionally satirical and never fresh . | subjective |
| solondz may well be the only one laughing at his own joke                                           | subjective |
| obstacles pop up left and right, as the adventure gets wilder and wilder.                           | objective  |

• How might you generate a dataset like this?

• customer review sentiment classification:

it works with a minimum of fuss .

size - bigger than the ipod

i 've had this thing just over a month and the headphone jack has already come loose .

you can manage your profile , change the contrast of backlight , make different type of display , either list or tabbed .

i replaced it with a router raizer and it works much better.

• customer review sentiment classification:

| it works with a minimum of fuss .                                                                                         | positive |
|---------------------------------------------------------------------------------------------------------------------------|----------|
| size - bigger than the ipod                                                                                               | negative |
| i 've had this thing just over a month and the headphone jack has already come loose .                                    | negative |
| you can manage your profile , change the contrast of backlight , make different type of display , either list or tabbed . | positive |
| i replaced it with a router raizer and it works much better .                                                             | negative |

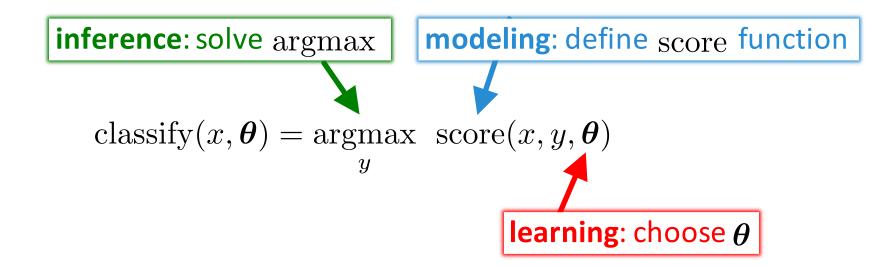
• question classification:

| Who invented baseball ?                                        | human        |
|----------------------------------------------------------------|--------------|
| CNN is an acronym for what ?                                   | abbreviation |
| Which Latin American country is the largest ?                  | location     |
| How many small businesses are there in the U.S .               | number       |
| What would you add to the clay mixture to produce bone china ? | entity       |
| What is the root of all evil ?                                 | description  |

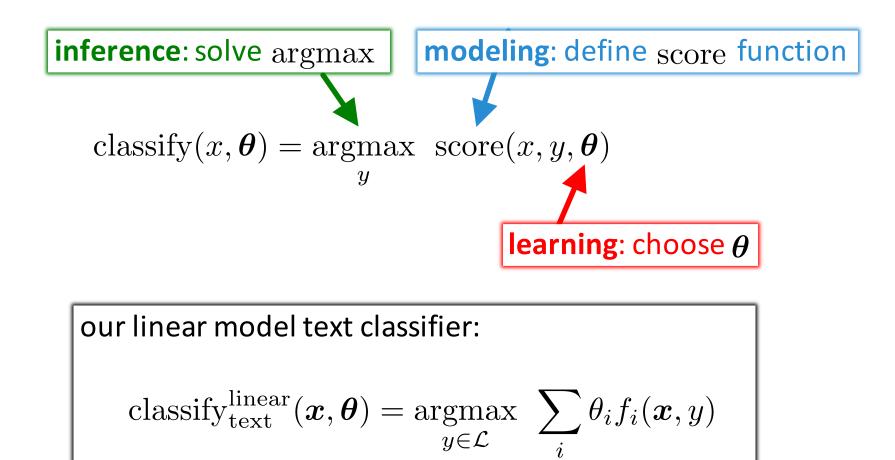
## Classification

- datasets
- features
- learning

### **Classification Framework**



### **Classification Framework**



## Features for NLP

- NLP datasets include inputs and outputs
- features are usually not included
- you have to define your own features

## Features for NLP

- NLP datasets include inputs and outputs
- features are usually not included
- you have to define your own features
- contrast this with UCI datasets, which include a fixedlength dense feature vector for every instance



## Features for NLP

- NLP datasets include inputs and outputs
- features are usually not included
- you have to define your own features
- contrast this with UCI datasets, which include a fixedlength dense feature vector for every instance
- in NLP, features are usually sparse

### **Unigram Binary Features**

• two example features:

 $f_1(x, y) = \mathbb{I}[y = \text{positive}] \wedge \mathbb{I}[x \text{ contains } great]$  $f_2(x, y) = \mathbb{I}[y = \text{negative}] \wedge \mathbb{I}[x \text{ contains } great]$ where  $\mathbb{I}[S] = 1$  if S is true, 0 otherwise

## **Unigram Binary Features**

• two example features:

 $f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ positive}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } great]$  $f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ negative}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } great]$ 

where I[S] = 1 if S is true, 0 otherwise

• we usually think in terms of feature templates

## **Unigram Binary Features**

• two example features:

 $f_1(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ positive}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$  $f_2(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ negative}] \wedge \mathbb{I}[\boldsymbol{x} \text{ contains } great]$ 

where I[S] = 1 if S is true, 0 otherwise

- we usually think in terms of feature templates
- unigram binary feature template:

 $f^{u,b}(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ label}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } word]$ 

• to create features, this feature template is instantiated for particular labels and words

### **Higher-Order Binary Feature Templates**

unigram binary template:

 $f^{u,b}(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ label}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } word]$ 

bigram binary template:

 $f^{b,b}(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ label}] \land \mathbb{I}[\boldsymbol{x} \text{ contains "word1 word2"}]$ 

trigram binary features

. . .

## Unigram Count Features

- a ``count" feature returns the count of a particular word in the text
- unigram count feature template:

$$f^{u,c}(\boldsymbol{x}, y) = \begin{cases} \sum_{i=1}^{|\boldsymbol{x}|} \mathbb{I}[x_i = word], & \text{if } \mathbb{I}[y = \text{label}] \\ 0, & \text{otherwise} \end{cases}$$

## Feature Count Cutoffs

- problem: some features are extremely rare
- solution: only keep features that appear at least k times in the training data

- consider the following training dataset:
   *a great movie* ! positive
   *not such a great movie* negative
- with the following single feature template:

 $f^{u,b}(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ label}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } word]$ 

 which features would remain in the model with a feature count cutoff of 2?

- consider the following training dataset:
   *a great movie* ! positive
   *not such a great movie* negative
- with the following single feature template:

 $f^{u,b}(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ label}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } word]$ 

 which features would remain in the model with a feature count cutoff of 2?

– none

- consider the following training dataset:
   *a great movie* ! positive
   *not such a great movie* negative
- with the following single feature template:

 $f^{u,b}(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ label}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } word]$ 

 which features would remain in the model with a feature count cutoff of 1?

- consider the following training dataset:
   *a great movie* ! positive
   *not such a great movie* negative
- with the following single feature template:

 $f^{u,b}(\boldsymbol{x}, y) = \mathbb{I}[y = \text{ label}] \land \mathbb{I}[\boldsymbol{x} \text{ contains } word]$ 

 which features would remain in the model with a feature count cutoff of 0?

# Classification

- datasets
- features
- learning
  - empirical risk minimization
  - surrogate loss functions
  - gradient-based optimization

# Learning: Empirical Risk Minimization

• In a machine learning course, you learn about many different learning frameworks

# Learning: Empirical Risk Minimization

- In a machine learning course, you learn about many different learning frameworks
- Since we have limited time, we will be greedy and focus on a single framework that maximizes

 $\alpha \text{ ease_of_use} + \beta \text{ effectiveness} + \gamma \text{ applicability}$ 

(for some positive constants  $\alpha, \beta, \gamma$ ) We will start it today but continue to add to it later

## **Cost Functions**

• cost function: scores outputs against a gold standard

 $\mathrm{cost}:\mathcal{L}\times\mathcal{L}\to\mathbb{R}_{\geq 0}$ 

- should be as close as possible to the actual evaluation metric for your task
- usual conventions: cost(y, y) = 0cost(y, y') = cost(y', y)

## **Cost Functions**

• cost function: scores outputs against a gold standard

 $\mathrm{cost}:\mathcal{L}\times\mathcal{L}\to\mathbb{R}_{\geq 0}$ 

- should be as close as possible to the actual evaluation metric for your task
- for classification, what cost should we use?

## **Cost Functions**

cost function: scores outputs against a gold standard

 $\operatorname{cost}:\mathcal{L}\times\mathcal{L}\to\mathbb{R}_{\geq 0}$ 

- should be as close as possible to the actual evaluation metric for your task
- for classification, what cost should we use?

$$\operatorname{cost}(y,y') = \mathbb{I}[y \neq y']$$

• how about for other NLP tasks?

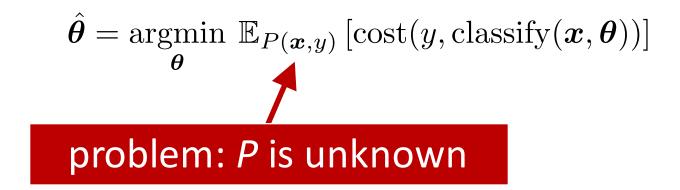
## **Risk Minimization**

- given training data:  $\mathcal{T} = \{\langle x^{(i)}, y^{(i)} \rangle\}_{i=1}^{|\mathcal{T}|}$ where each  $y^{(i)} \in \mathcal{L}$  is a label
- assume data is drawn iid (independently and identically distributed) from (unknown) joint distribution P(x, y)
- we want to solve the following:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{P(\boldsymbol{x}, y)} \left[ \operatorname{cost}(y, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta})) \right]$$

## **Risk Minimization**

- given training data:  $\mathcal{T} = \{\langle x^{(i)}, y^{(i)} \rangle\}_{i=1}^{|\mathcal{T}|}$ where each  $y^{(i)} \in \mathcal{L}$  is a label
- assume data is drawn iid (independently and identically distributed) from (unknown) joint distribution P(x, y)
- we want to solve the following:



#### Empirical Risk Minimization (Vapnik et al.)

• replace expectation with sum over examples:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{P(\boldsymbol{x}, y)} \left[ \operatorname{cost}(y, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta})) \right]$$
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{cost}(y^{(i)}, \operatorname{classify}(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}))$$

#### Empirical Risk Minimization (Vapnik et al.)

• replace expectation with sum over examples:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{P(\boldsymbol{x}, y)} \left[ \operatorname{cost}(y, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta})) \right]$$
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{cost}(y^{(i)}, \operatorname{classify}(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}))$$

problem: NP-hard even for binary classification with linear models

solution: replace "cost loss" (also called "0-1" loss) with a **surrogate** function that is easier to optimize

solution: replace "cost loss" (also called "0-1" loss) with a **surrogate** function that is easier to optimize

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

# Classification

- datasets
- features
- learning
  - empirical risk minimization
  - surrogate loss functions
  - gradient-based optimization

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

#### why is this so difficult to optimize?

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

why is this so difficult to optimize? not necessarily continuous, can't use gradient-based optimization

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

max-score loss:

$$loss_{maxscore}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta})$$

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

max-score loss:

$$loss_{maxscore}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta})$$

#### this is continuous, but what are its drawbacks?

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

max-score loss:

$$loss_{maxscore}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta})$$

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

max-score loss:

$$loss_{maxscore}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta})$$

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$

# loss function underlying perceptron algorithm (Rosenblatt, 1957-58)

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$

hinge loss:

 $loss_{hinge}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} (score(\boldsymbol{x}, y', \boldsymbol{\theta}) + cost(y, y'))$ 

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$

hinge loss:

 $loss_{hinge}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} (score(\boldsymbol{x}, y', \boldsymbol{\theta}) + cost(y, y'))$ 

#### loss function underlying support vector machines

cost loss / 0-1 loss:  $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$ 

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$

hinge loss:

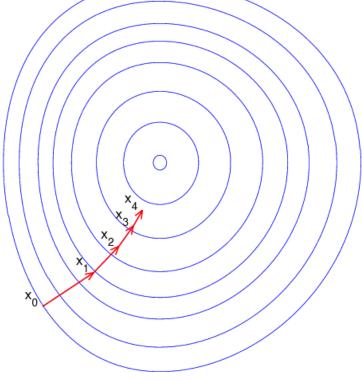
$$\begin{split} & \operatorname{loss_{hinge}}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} \left(\operatorname{score}(\boldsymbol{x}, y', \boldsymbol{\theta}) + \operatorname{cost}(y, y')\right) \\ & \text{hinge loss for our classification setting:} \\ & \operatorname{loss_{hinge}}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} \left(\operatorname{score}(\boldsymbol{x}, y', \boldsymbol{\theta}) + \delta \, \mathbb{I}[y \neq y']\right) \\ & \text{tunable hyperparameter} \end{split}$$

# Classification

- datasets
- features
- learning
  - empirical risk minimization
  - surrogate loss functions
  - gradient-based optimization

 minimizes a function F by taking steps in proportion to the negative of the gradient:

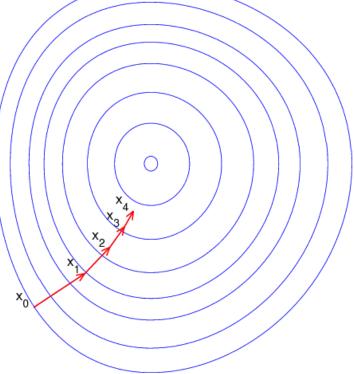
 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \boldsymbol{\nabla} F(\boldsymbol{\theta}^{(t)})$ 



 minimizes a function F by taking steps in proportion to the negative of the gradient:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \boldsymbol{\nabla} F(\boldsymbol{\theta}^{(t)})$$

 $\eta^{(t)}$  : stepsize at iteration t $\nabla F(\theta^{(t)})$  : gradient of objective function



 with conditions on stepsize and objective function, will converge to local minimum

 minimizes a function F by taking steps in proportion to the negative of the gradient:

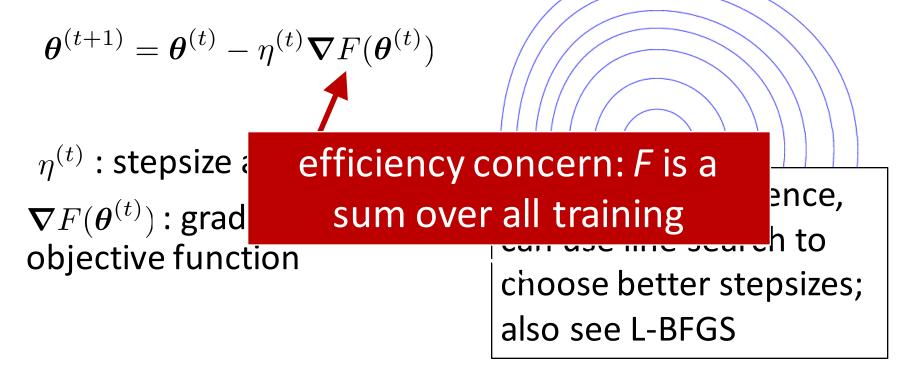
$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \boldsymbol{\nabla} F(\boldsymbol{\theta}^{(t)})$$

 $\eta^{(t)}$  : stepsize at iteration t $\nabla F(\theta^{(t)})$  : gradient of objective function

to speed convergence, can use line search to choose better stepsizes; also see L-BFGS

 with conditions on stepsize and objective function, will converge to local minimum

 minimizes a function F by taking steps in proportion to the negative of the gradient:



 with conditions on stepsize and objective function, will converge to local minimum

 minimizes a function F by taking steps in proportion to the negative of the gradient:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \boldsymbol{\nabla} F(\boldsymbol{\theta}^{(t)})$$

 $\eta^{(t)}$  : stepsize a  $\nabla F(\theta^{(t)})$  : grad objective funct

efficiency concern: F is a sum over all training examples!

ence, h to osizes;

DN,

every parameter update

 with condition requires iterating through will converge to local minimum

 minimizes a function F by taking steps in proportion to the negative of the gradient:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta^{(t)} \boldsymbol{\nabla} F(\boldsymbol{\theta}^{(t)})$$

 $\eta^{(t)}$  : stepsize a  $\nabla F(\boldsymbol{\theta}^{(t)})$  : grad objective funct

 with condition will converge efficiency concern: F is a sum over all training examples!

every parameter update requires iterating through entire training set ence, h to osizes;

DN,

## **Stochastic** Gradient Descent

- applicable when objective function is a sum
- like gradient descent, except calculates gradient on a single example at a time ("online") or on a small set of examples ("mini-batch")

## **Stochastic** Gradient Descent

- applicable when objective function is a sum
- like gradient descent, except calculates gradient on a single example at a time ("online") or on a small set of examples ("mini-batch")
- converges much faster than (batch) gradient descent
- with conditions on stepsize and objective function, will converge to local minimum
- there are many popular variants:

SGD+momentum, AdaGrad, AdaDelta, Adam, RMSprop, etc.

## What if *F* is not differentiable?

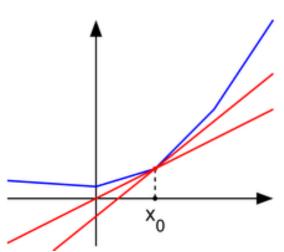
• some loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{\substack{y' \in \mathcal{L}}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$
$$loss_{hinge}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{\substack{y' \in \mathcal{L}}} (score(\boldsymbol{x}, y', \boldsymbol{\theta}) + \delta \mathbb{I}[y \neq y'])$$

 but they are subdifferentiable, so we can compute subgradients and use (stochastic) subgradient descent

# Subderivatives

- subderivative: generalization of derivative for nondifferentiable, convex functions
- there may be multiple subderivatives at a point (red lines)



- this set is called the subdifferential
- a convex function g is differentiable at point x<sub>0</sub> if and only if the subdifferential of g at x<sub>0</sub> contains only the derivative of g at x<sub>0</sub>

## Stochastic Subgradient Descent

- just like stochastic gradient descent, except replace gradients with subgradients
- similarly strong theoretical guarantees

# **Calculating Subgradients**

- at points of differentiability, just use your rules for calculating gradients
- at points of nondifferentiability, just find a single subgradient; any subgradient will do
- e.g., max of convex functions (on board)

- Please email me (kgimpel@ttic.edu) with the following:
  - your name
  - your email address
  - whether you taking the class for credit
- I will use your address to create a mailing list for course announcements