TTIC 31190:
Natural Language Processing

Kevin Gimpel
Winter 2016

Lecture 13:
Dependency Syntax/Parsing
& Review for Midterm

Announcement

project proposal due today

email me to set up a 15-minute meeting next
week to discuss your project proposal

times posted on course webpage
let me know if none of those work for you

Announcement

* midterm is Thursday, room #530

* closed-book, but you can bring an 8.5x11
sheet (though | don’t think you’ll need to)

 we will start at 10:35 am, finish at 11:50 am

Roadmap

classification

words

lexical semantics

language modeling

sequence labeling

neural network methods in NLP
syntax and syntactic parsing
semantic compositionality
semantic parsing

unsupervised learning

machine translation and other applications

What is Syntax?

rules, principles, processes that govern
sentence structure of a language

can differ widely among languages

but every language has systematic structural
principles

Constituent Parse (Bracketing/Tree)

(S (NP the man) (VP walked (PP to (NP the park))))

S

A /

VBD IN DT NN
the man walked to the park

Key:

S =sentence

NP = noun phrase

VP = verb phrase

PP = prepositional phrase
DT = determiner

NN = noun

VBD = verb (past tense)
IN = preposition

Constituent Parse (Bracketing/Tree)

S (NP the man) (VP walked (PP to (NP the park))))

nonterminals

VBD IN DT NN | preterminals

e man walked to the par terminals

Penn Treebank Nonterminals

SBAR

SBARQ

SINV

SQ

ADJP
ADVP
CONJP
FRAG
INTJ
LST

NAC

NP
NX

Sentence or clause.

Clause introduced by a (pos-
sibly empty) subordinating
conjunction.

Direct question introduced
by a wh-word or wh-phrase.
Inverted declarative sen-
tence.

Inverted yes/no question,
or main clause of a wh-
question.

Adjective Phrase.

Adverb Phrase.
Conjunction Phrase.
Fragment.

Interjection.

List marker. Includes sur-
rounding punctuation.
Not A Constituent;
within an NP.

Noun Phrase.

Used within certain complex
NPs to mark the head.

used

PP
PRN
PRT

QP

RRC
UCP

VP
WHADJP

WHADVP
WHNP

WHPP

Prepositional Phrase.

Parenthetical.
Particle.
Quantity = Phrase (i.e.,

complex measure/amount)
within NP.

Reduced Relative Clause.
Unlike Coordinated Phrase.
Verb Phrase.

Wh-adjective Phrase, as in
how hot.

Wh-adverb Phrase.
Wh-noun Phrase, e.g. who,
which book, whose daughter,
none of which, or how many
leopards.

Wh-prepositional Phrase,
e.g., of which or by whose
authority.

Unknown, uncertain, or un-
bracketable.

Probabilistic Context-Free Grammar (PCFG)

e assign probabilities to rewrite rules:

NP > DT NN
NP > NNS
NP > NP PP

NN = man
NN - park
NN - walk
NN =2

0.5
03 given a treebank, estimate

' these probabilitiesusing MLE
0.2 (“count and normalize”)
0.01
0.0004
0.002

How well does a PCFG work?

e PCFG learned from the Penn Treebank with
MLE gets about 73% F1 score

e state-of-the-art parsers are around 92%
* simple modifications can improve PCFGs:

— smoothing
— tree transformations (selective flattening)

— parent annotation

Parent Annotation

VP >V NP PP

v

VPS >V NPVP PPVP

adds more information, but also fragments
counts, making parameter estimates noisier
(since we’re just using MLE)

How well does a PCFG work?

e PCFG learned from the Penn Treebank with
MLE gets about 73% F1 score

e state-of-the-art parsers are around 92%
* simple modifications can improve PCFGs:

— smoothing

— tree transformations (selective flattening)
— parent annotation

— lexicalization

Collins (1997)

Three Generative, Lexicalised Models for Statistical Parsing

Michael Collins*

Dept. of Computer and Information Science
University of Pennsylvania
Philadelphia, PA, 19104, U.S.A.
mcollins@gradient.cis.upenn.edu

Abstract

In this paper we first propose a new sta-
tistical parsing model, which is a genera-
tive model of lexicalised context-free gram-
mar. We then extend the model to in-
clude a probabilistic treatment of both sub-
categorisation and wh-movement. Results
on Wall Street Journal text show that the
parser performs at 88.1/87.5% constituent
precision/recall, an average improvement
of 2.3% over (Collins 96).

1 Introduction

Generative models of syntax have been central in
linguistics since they were introduced in (Chom-

is derived from the analysis given in Generalized
Phrase Structure Grammar (Gazdar et al. 95). The
work makes two advances over previous models:
First, Model 1 performs significantly better than
(Collins 96), and Models 2 and 3 give further im-
provements — our final results are 88.1/87.5% con-
stituent precision/recall, an average improvement
of 2.3% over (Collins 96). Second, the parsers
in (Collins 96) and (Magerman 95; Jelinek et al.
94) produce trees without information about wh-
movement or subcategorisation. Most NLP applica-
tions will need this information to extract predicate-
argument structure from parse trees.

In the remainder of this paper we describe the 3
models in section 2, discuss practical issues in sec-
tion 3, give results in section 4, and give conclusions
in section 5.

NP(week)

JJ NN

La‘.st we|ek
TOP ->
S (bought) ->
NP (week) ->
NP (Marks) ->
VP(bought) ->

NP (Brooks)

Lexicalized PCFGs

TOP
I
S(bought)

NP(Marks)
|
NNP

I
Marks

S (bought)
NP (week)
JJ(Last)
NNP (Marks)
VB (bought)
NNP (Brooks)

nonterminals are decorated with
the head word of the subtree

VP(bought)
VB NP(Brooks)
l |
bought NNP
f
Brooks

NP (Marks) VP(bought)
NN (week)

NP (Brooks)

Lexicalization

this adds a lot more rules!
many more parameters to estimate 2>
smoothing becomes much more important

— e.g., right-hand side of rule might be factored into
several steps

but it’s worth it because head words are really
useful for constituent parsing

Results (Collins, 1997)

MODEL < 40 Words (2245 sentences)
LR LP [CBs[0CBs]| <2CBs
(Magerman 95) || 84.6% | 84.9% | 1.26 | 56.6% | 81.4%
(Collins 96) 85.8% | 86.3% | 1.14 | 59.9% | 83.6%
Model 1 87.4% | 88.1% | 0.96 | 65.7% 86.3%
Model 2 88.1% | 88.6% | 0.91 | 66.5% | 86.9%
Model 3 88.1% | 88.6% | 0.91 | 66.4% | 86.9%

16

Head Rules

how are heads decided?

most researchers use deterministic head rules
(Magerman/Collins)

for a PCFG rule A = B, ... By, these head rules
say which of B, ... By is the head of the rule

examples:

S—=> NP VP
VP - VBD NP PP
NP = DT JJ NN

Head Annotation

&
h Vit @“’

Lexical Head Annotation

Lexical Head Annotation > Dependencies

remove
nonlexical
parts: @

0 hit Jthe Ina ithl the A bat

from Noah Smith

Dependencies
merge
redundant
nodes:

from Noah Smith

constituent parse: labeled dependency parse:
0¢§ 0@@

OYer <D
b hit Jthe Jma

ithlthe I bat

nsubj = “nominal subject”
dobj = “direct object”

prep = “preposition modifier’
pobj = “object of preposition”
det = “determiner”

)

23

captures some semantic
relationships

constituent parse:

nsubj = “nominal subject”
dobj = “direct object”

prep = “preposition modifier’
pobj = “object of preposition”
det = “determiner”

)

24

* how (unlabeled) dependency trees are
typically drawn:
— root of tree is represented by S (“wall symbol”)
— arrows drawn entirely above (or below) sentence

— arrows are directed from child to parent (or from
parent to child); you will see both in practice—
don’t get confused!

/\m

$ konnten sie es ubersetzen ?
“wall” symbol |<
$ could you translate it ?

VW

Crossing Dependencies

if dependencies cross

(“nonprojective”), no

longer corresponds to
a PCFG

from Noah Smith

Projective vs. Nonprojective Dependency Parsing

English dependency treebanks are mostly
projective

— but when focusing more on semantic
relationships, often becomes more nonprojective

some (relatively) free word order languages,
like Czech, are fairly nonprojective

nonprojective parsing can be formulated as a
minimum spanning tree problem

projective parsing cannot

Dependency Parsing

several widely-used algorithms

different guarantees but similar performance
In practice

graph-based:

— dynamic programming (Eisner, 1997)

— minimum spanning tree (McDonald et al., 2005)
transition-based:

— shift-reduce (Nivre, inter alia)

Dependency Parsers

Stanford parser

TurboParser
Joakim Nivre’s MALT parser

Ryan McDonald’s MST parser

and many others for many non-English
languages

Complexity Comparison

* constituent parsing: O(Gn?3)
— parsing complexity depends on grammar structure
(“erammar constant” G)
— since it has lots of nonterminal-only rules at the top of
the tree, there are many rule probabilities to estimate
* dependency parsing: O(n?)
— operates directly on words, so parsing complexity has
no grammar constant

— features designed on possible dependencies (pairs of
words) and larger structures

— transition-based parsing algorithms are O(n), though
not optimal; also, non-projective parsing is faster

Applications of Dependency Parsing

widely used for NLP tasks because:

— faster than constituent parsing

— captures more semantic information

text classification (features on dependencies)
syntax-based machine translation

relation extraction
— e.g., extract relation between Sam Smith and AlTech:
Sam Smith was named new CEO of AlTech.

— use dependency path between Sam Smith and AlTech:
e Smith =2 named, nhamed €& CEO, CEO € of, of € AlTech

Summary: two types of grammars

phrase structure / constituent grammars

— inspired mostly by Chomsky and others

— only appropriate for certain languages (e.g., English)
dependency grammars

— closer to a semantic representation; some have made
this more explicit

— problematic for certain syntactic structures (e.g.,
conjunctions, nesting of noun phrases, etc.)

both are widely used in NLP

you can find constituent parsers and dependency
parsers for several languages online

Review

Modeling, Inference, Learning

modeling: define score function

v

classify(x, @) = argmax score(x,y, 0)
y

* Modeling: How do we assigh a score to an
(x,y) pair using parameters ?

34

Modeling, Inference, Learning

inference: solve argmax | |modeling: define score function

N ¥

classify(x, 0) = argmax score(z,y, 0)
y

* Inference: How do we efficiently search over
the space of all labels?

35

Modeling, Inference, Learning

inference: solve argmax \modeling: define score function

N ¥

classify(x, 0) = argmax score(z,y, 0)
Y

learning: choose @

* Learning: How do we choose 97?

36

Applications

Applications of our Classification Framework

text classification:

classify 2% (x, @) = argmax Z 0: fi(x,y)
yeL -

L = {objective, subjective}

X y
the hulk is an anger fueled monster with N
. . . objective
incredible strength and resistance to damage .

in trying to be daring and original , it comes off L
. . subjective
as only occasionally satirical and never fresh .

38

Applications of our Classification Framework

word sense classifier for bass:

classify; 2% o (x, 0) = argﬁmaX ZQ fi(z,y)
YELvass ;

Lbass = {bass,, bass,, ..., bassg}

: (n) bass (the lowest part of the musical r:
: (n) bass, bass part (the lowest part in pol

X y

he’s a bass in the choir. bass;

¢ S: (n) bass, basso (an adult male singer w
e S: (n) sea bass, bass (the lean flesh of a salt

erranidae)

our bass is line-caught from the ¢
Atlantic.

R YT I%

. (n) freshwater bass, bass (any of various
W|th lean flesh (especially of the genus Micr

e S: (n) bass, bass voice, basso (the lowest ac
S: (n) bass (the member with the lowest ran
instruments)

¢ S: (n) bass (nontechnical name for any of nt
freshwater spiny-finned fishes)

bass,

Applications of our Classification Framework

skip-gram model as a classifier:

ClaSSifYSkipgram(xa 0) = argmax H(in,aﬁ) . H(Out,y)
yel

L =V (the entire vocabulary)

X y
agriculture <s> corpus (English Wikipedia):
agriculture is the traditional mainstay of the
agriculture is

cambodian economy .

agriculture the but benares has been destroyed by an earthquake .

40

Simplest kind of structured prediction:Sequence Labeling

Part-of-Speech Tagging

proper proper

determiner verb(past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’s first product
proper

modal verb det. adjective noun prep. nhoun punc.

would be a breakaway hit for Apple

41

Formulating segmentation tasks as sequence labeling
via B-1-O labeling:

Named Entity Recognition

O O O B-PERSON I-PERSON O O O
Some questioned if Tim Cook ’s first product
O @) @) @) @) O B-ORGANIZATION O

would be a breakaway hit for Apple
B = “begin”
| = “inside”

O = “outside”

42

Applications of our Classifier Framework so far

task input (x) output (y) outputspace(/) size of [
text gold standard pre-defined, small
. a sentence label set (e.g., 2-10
classification label for x L :
{positive, negative})
instance of a re-defined sense
word sense particular word | gold standard P i ventorv from 530
disambiguation | (e.g., bass) with | word sense of x Y
< context WordNet for bass
learning skip- : a word in the
instance of a)
gram word word in a corpus context of x in vocabulary | V|
embeddings P a corpus
part-of-speech gold standard all possible part-of-
a sentence part-of-speech | speech tag sequences |P| Xl

tagging

tags for x

with same length as x

Applications of Classifier Framework (continued)

task input (x) output (y) outputspace(£} size of L
named gold standard named | all possible BIO label
entity a sentence entity labels for x sequences with same | P| !Xl
recognition (BIO tags) length as x
gold standard exponential
constituent 5 sentence constituent parse all possible labeled in length of x
parsing (labeled bracketing) bracketings of x (Catalan
of x number)
gold standard all possible labeled .
dependency 5 sentence dependency parse directed spannine trees exponential
parsing (labeled directed P & in length of x

spanning tree) of x

of x

* each application draws from particular
linguistic concepts and must address different
kinds of linguistic ambiguity/variability:

— word sense: sense granularity, relationships
among senses, word sense ambiguity

— word vectors: distributional properties, sense
ambiguity, differentkinds of similarity

— part-of-speech: tag granularity, tag ambiguity

— parsing: constituent/dependency relationships,
attachment & coordination ambiguities

Modeling

model families

* |inear models

— lots of freedom in defining features, though feature
engineering required for best performance

— |learning uses optimization of a loss function
— one can (try to) interpret learned feature weights

* stochastic/generative models
— linear models with simple “features” (counts of events)
— learning is easy: count & normalize (but smoothing needed)
— easy to generate samples

* neural networks
— can usually get away with less feature engineering

— learning uses optimization of a loss function
— hard to interpret (though we try!), but often works best

special case of linear models:
stochastic/generative models

model tasks context expansion

language modeling (for

MT, ASR, etc.) increasen

n-gram language models

part-of-speech tagging,
hidden Markov models named entity recognition,
word clustering

increase order of HMM (e.g., bigram
HMM - trigram HMM)

probabilistic context-free : . increase size of rules, e.g., flattening,
constituent parsing .
grammars parent annotation, etc.

* alluse MLE + smoothing(though probably differentkinds of smoothing)

» allassign probability to sentences (some assign probability jointly to pairs
of <sentence, somethingelse>)

* allhave thesame trade-off of increasing “context” (feature size) and
needing more data / better smoothing

Feature Engineering for Text Classification

score(x, 1y, 6 ZH fi(x,y)
* Two features:

fi(x,y) = [y = positive] A [[x contains great]
fa(z,y) = Ily = negative| A [[x contains great|

where 1[S] = 1if S is true, 0 otherwise

Higher-Order Binary Feature Templates

unigram binary template:
foP(x,y) = Iy = label] A Iz contains word]
bigram binary template:
PP (x,y) = I[y = label] A Iz contains “word1 word2”]

trigram binary features

Unigram Count Features

e a count’” feature returns the count of a
particular word in the text

* unigram count feature template:

S Iz = word], ifI[y = label]
0, otherwise

[P y) = {

Feature Count Cutoffs

* problem: some features are extremely rare

* solution: only keep features that appear at
least k times in the training data

2-transformation (1-layer) network
2D = g (W<o>x b<0>)
s=g (Wu)z(l) n b<1>)

/

vector of label scores

we’ll call this a “2-transformation” neural
network, or a “1-layer” neural network

input vectoris x
scorevectoris S
one hidden vector z(1) (“hidden layer”)

1-layer neural network for sentiment classification

AD:gOy@w+b@)

Szgﬁmngn+yw)

l

5 — score(x, positive,)

'score(x, negative, 6)

Neural Networks for Twitter Part-of-Speech Tagging

det
preq |

3sked fir| yo

al

ast nanr

e |et’s use the center word + two words to the right:
r=1[04..0902..0703..06]"

& AN
Y

AN J
Y

vector for yo vector for last vector for name

* if name is to the right of yo, then yo is probably a form of your

* butourxabove uses separate dimensions for each position!

— i.e., name is two words to the right

— whatif name is one word to the right?

55

Convolution

C = “feature map”, has an entry for each word position in context window / sentence

r=1[04..0902..0703..06]"
N VAN AN W,
Y Y Y

vector for yo vector for last vector for name

Cl =W - L4
Co =W * Ld41:2d
C3 =W * L2d+1:3d

56

Pooling

C = “feature map”, has an entry for each word position in context window / sentence

how do we convertthis into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in ¢

vector for yo vector for last vector for name

Cl1 =W : xi1.d
C2 = W - Ld41:2d
C3 = W * L24+1:3d

57

Pooling

C = “feature map”, has an entry for each word position in context window / sentence

how do we convertthis into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in ¢

vector for yo vector for last vector for name

Cl1 =W : xi1.d

then, this single filter qp produces a single feature
value (the output of some kind of pooling).

in practice, we use many filters of many different
lengths (e.g., n-grams rather than words).

58

Convolutional Neural Networks

convolutional neural networks (convnets or CNNs) use
filters that are “convolved with” (matched against all
positions of) the input

think of convolution as “perform the same operation
everywhere on the input in some systematic order”

“convolutional layer” = set of filters that are convolved
with the input vector (whether x or hidden vector)

could be followed by more convolutional layers, or by a
type of pooling

often used in NLP to convert a sentence into a feature
vector

Recurrent Neural Networks

ht = tanh W(wh)xt + W p, 4 b(h))

“hidden vector” @ a @

Long Short-Term Memory (LSTM) Recurrent Neural Networks

ct = fici—1 + i tanh (W("”@xt 4 V[/(hc)ht_1 4+ b(C))

hs = o; tanh(c;) I #@

61

Backward & Bidirectional LSTMs

bidirectional:
if shallow, just use forward and backward LSTMs in parallel, concatenate
final two hidden vectors, feed to softmax

Deep LSTM
(2-layer)

layer 2 <

CACAEACAE

Recursive Neural Networks for NLP

* first, run a constituent parser on the sentence

e convertthe constituenttree to a binary tree
(each rewrite has exactly two children)

e construct vector for sentence recursively at each
rewrite (“split point”):

ool
/ N

(a) (b) (C)
Android beats 10S

64

Learning

Cost Functions

cost function: scores output against a gold standard

cost : L X L = R>g

should reflect the evaluation metric for your task

usual conventions: cost(y,y) = 0 cost(y,y") = cost(y’, y)

for classification, what cost should we use?

cost(y,y") = Iy # /']

Empirical Risk Minimization
(Vapnik et al.)

* replace expectation with sum over examples:

A

0 = argmin Ep(, ., [cost(y, classify(x, 6))]
| l
) T

6 = argmin Z cost(y'V, classify (zV, 0))
o =1

67

Empirical Risk Minimization
(Vapnik et al.)

* replace expectation with sum over examples:

A

0 = argmin Ep(, ., [cost(y, classify(x, 6))]
| l
) T

6 = argmin Z cost(y'?, classify (¥, 9))
o =1

problem: NP-hard even for binary

classification with linear models

68

Empirical Risk Minimization with Surrogate Loss Functions

- given training data: 7 = {(z®, y@)I7]
where each 4 ¢ £ is a label
* we want to solve the following:

many possible loss
functions to consider
optimizing

69

Loss Functions

name

loss

where used

cost (“0-1")

cost(y, classify(x, 0))

intractable, but
underlies “direct error
minimization”

—score(x, y, 0) + max score(x,y’, 0 perceptron algorithm
PEFCEpLon (,y,0) + v eL (z,y,0) (Rosenblatt, 1958)
support vector
hinge —score(x, y, 0) + max (score(x, y', 8) + cost(y,y’))| machines, other large-
yreL margin algorithms
logistic regression,
log log pe(y |) conditional random
= sgOre(x,y,0) + log Z exp{score(z,y’,0)} fields, maximum
veL entropy models
expq{score(x,y, 0)}
po(y |) =

D _yer €xpiscore(z,y’, 0)}

70

(Sub)gradients of Losses for Linear Models

‘ name entry j of (sub)gradient of loss for linear model
cost (“0-1") not subdifferentiable in general
perceptron —fi(z,y) + fj(x,7), where y = classify(x, 0)
hinge —fi(z,y) + fj(x,y), where y = costClassify(zx,y, 0)
log

classify(x, @) = argmax score(x,y’, 0)
y'el

costClassify(x, y,) = argmax score(x,y’, 0) + cost(y, y’)
y' el

(Sub)gradients of Losses for Linear Models

‘ name entry j of (sub)gradient of loss for linear model

cost (“0-1") not subdifferentiable in general

perceptron + fi(x,y), where § = classify(x, 0)
hinge fi(x,y), where y = costClassify(zx, y,)
log Epe (1) Lf5(,)]

expectation of feature value with respect to distribution
over y (where distribution is defined by theta)

alternative notation:

_fj (23, y) =+ Ey’NpQ(Y\a:) [fj (Q?, y/)]

72

score

Visualization

1 Y2 Y3 ?/4 y5
Y

five possible outputs

73

cost

Visualization

Ys Y4 Y5
_/

yr Y2
_
Y

five possible outputs

74

cost

Visualization

Y3

yi Y2 Yy Ya Ys

gold standard

75

cost

St y57 yl
St y57

Y3

Visualization

COSt y5 9 y5
Ys

©

gold standard

Yq

76

score + cost

Y1

Y2

Y3

Visualization

Ya UYs

gold standard

77

perceptron loss:

lossperc (¢, y,8) = —score(, y, 8) +max score(z, y', 6)
,y/

score

perceptron loss:
lossperc(, Y, 0)

il

Yy 3

al

= —SCOI'€

Ya UYs

@

gold standard

7y7

/
) + max score(x,y’, 0)
y' eL

H_J

79

score

perceptron loss:
lossperc(X,y,0) =

’Elﬁ

Y3

—score(x,y, 0) + max score(x,y’,)
y' eL

Ys

gold standard

80

score

perceptron loss:

lossperc (@, y,) = —score(, y,) + max score(z, y', 6)
y'e

effect of learning?

1

Ys Y4 Y5

gold standard 81

T

score

perceptron loss:

lossperc (@, y,) = —score(, y,) + max score(z, y', 6)
y'e

effect of learning:

gold standard will
have highest score

T

Yyr Yz Yz Yya ?/5

gold standard

82

hinge loss:

105S1inge (@, 4, 8) = —score(, y, 0) + max (score(z, ', 0) + cost(y, ')
,y/

hinge loss:
10SShinge (%, Y, 8) = —score(x,y, 0) + max (score(z, ', 0) + cost(y,y))

)

Yy Y2 Ys Ya Y5

gold standard 84

score + cost

hinge loss:

l08Shinge (@, 3, 8) = —score(@, y, 8) + masx (score(x, ', 8) + cost(y.y)
y'e

score + cost

yi Y2 Yz Y4 Y5

gold standard 85

hinge loss:

l08Shinge (@, 4, 0) = —score(w, y, 0) + max (score(w, y', 0) + cost(y, /)
y'e

effect of learning?

score + cost

Yy Y2 Ys Ya Y5

gold standard 86

hinge loss:

l08Shinge (Y, 0) = —score(a, y, 8) + max (score(x, y', 8) + cost(y,y')
y' e

8 effect of learning:
o score of gold standard
@ will be higher than
score+cost of all
others
Y2 Yz Y4 Ys

gold standard 87

Regularized Empirical Risk Minimization
« given training data: 7 = {(z®, y@)}7!
where each) ¢ £ is a label regularization
* we want to solve the following: strength

o

0 = argmin Z loss(x®, (9. 0) + AR(0)

0 i—1 \r/
regularization

term

88

Regularization Terms

T
6 = argmin Z loss(x®, (9, 0) + AR(0)
o =1

most common: penalize large parameter values

intuition: large parameters might be instances of
overfitting

examples:
L, regularization: R;,(0) = |0||5 = 292

(also called Tikhonov regular|zat|on
or ridge regression)

L, regularization: Rp(0) = ||0]|1 = Z 16;]
(also called basis pursuit or LASSO)

89

Dropout

e popular regularization method for neural
networks

 randomly “drop out” (set to zero) some of the
vector entries in the layers

90

Inference

Exponentially-Large Search Problems

|inference: solve argmax |

classify(x, @) = argmax score(x,y, 0)
y

 when outputis a sequence or tree, this
argmax requires iterating over an
exponentially-large set

Learning requires solving exponentially-hard
problems too!

loss entry j of (sub)gradient of loss for linear model
perceptron —fj (CB, y) + fj (:I:, g), where @ — ClaSSify(w, 9)
hinge —fi(x,y) + fij(x,y), where g # costClassify(x,y, 0)
log _fj(way) +Ep9(-|a3) [fj(wv)]

™\

computing each of these terms
requires iterating through every
possible output

93

Dynamic Programming (DP)

what is dynamic programming?
— a family of algorithms that break problemsinto smaller
pieces and reuse solutionsfor those pieces

— only applicable when the problem has certain properties
(optimal substructure and overlapping sub-problems)

in this class, we use DP to iterate over exponentially-
large output spaces in polynomial time

we focus on a particular type of DP algorithm:
memoization

94

Implementing DP algorithms

* even if your goal is to computea sum or a
max, focus first on counting mode (count the
number of unique outputs for an input)

* memoization = recursion + saving/reusing
solutions

— start by defining recursive equations

— “memoize” by creating a table to store all

intermediate results from recursive equations, use
them when requested

Inference in HMMs

|
classify (, 8) = argmax pg(w,y) = argmax | | p-(yi | yi—1)pn(z: | vs)
v Yooi=1
* since the outputis a sequence, this argmax
requires iterating over an exponentially-large set

* |ast week we talked about using dynamic
programming (DP) to solve these problems

 for HMMs (and other sequence models), the for
solving this is called the Viterbi algorithm

Viterbi Algorithm

* recursive equations + memoization:

base case:
returns probability of sequence starting with label y for first word

v

V(1,y) =pn(z1 | y) pr(y | <s>)

V(m,y) =max (pn(xm | y) pr(y | y) V(im —1,9"))

f y' el

recursive case:
computes probability of max-probability label
sequence thatends with label y at positionm

finalvalueisin: V(|x|+ 1, </s>)

97

Viterbi Algorithm

e space and time complexity?
e can be read off from the recursive equations:

space complexity:
size of memoizationtable, which is # of uniqueindices of recursive equations

length of number
sentence of labels

\/

= max (py(zm | y) pr(y |) V(m = 1,9))

so, space complexityis O(|x]| |L])

98

Viterbi Algorithm

* space and time complexity?
e can be read off from the recursive equations:

time complexity:
size of memoizationtable * complexity of computing each entry

length of number " each entry requires
sentence of labels iterating through the labels

\/

= max (py(zm | y) pr(y |) V(m = 1,9))

so, time complexity is O(|x| |L| |L]) =O(|x]| |L]|?)

99

Feature Locality

feature locality: how “big” are your features?

when desighing efficient inference algorithms
(whether w/ DP or other methods), we need
to be mindful of this

features can be arbitrarily big in terms of the
input, but not in terms of the output!

the features in HMMs are small in both the

input and output sequences (only two pieces
at a time)

