
TTIC	31190:
Natural	Language	Processing

Kevin	Gimpel
Winter	2016

Lecture	11:	
Recurrent	and	Convolutional	
Neural	Networks	in	NLP

1



Announcements
• Assignment	3	assigned	yesterday,	due	Feb.	29

• project	proposal	due	Tuesday,	Feb.	16

• midterm	on	Thursday,	Feb.	18

2



Roadmap
• classification
• words
• lexical	semantics
• language	modeling
• sequence	labeling
• neural	network	methods	in	NLP
• syntax	and	syntactic	parsing
• semantic	compositionality
• semantic	parsing
• unsupervised	learning
• machine	translation	and	other	applications

3



2-transformation	(1-layer)	network

• we’ll	call	this	a	“2-transformation”	neural	
network,	or	a	“1-layer”	neural	network

• input	vector	is	
• score	vector	is
• one	hidden	vector											(“hidden	layer”)

4

vector	of	label	scores



1-layer	neural	network	for	sentiment	classification

5



Use	softmax function	to	convert	scores	into	probabilities

6



ikr smh he		asked		fir		yo last		name		so		he		can	
add		u		on		fb lololol

7

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																			 det noun	 														pronoun	

pronoun	 					proper
noun

verb														prep	 																		intj

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

adj =	adjective
prep	=	preposition
intj =	interjection

• in	Assignment	3,	you’ll	build	a	neural	network	classifier	
to	predict	a	word’s	POS	tag	based	on	its	context



ikr smh he		asked		fir		yo last		name		so		he		can

8

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																					det noun	 														pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

• e.g.,	predict	tag	of	yo given	context
• what	should	the	input	x	be?
– it	has	to	be	independent	of	the	label
– it	has	to	be	a	fixed-length	vector



ikr smh he		asked		fir		yo last		name		so		he		can

9

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																					det noun	 														pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

• e.g.,	predict	tag	of	yo given	context
• what	should	the	input	x	be?

word	vector	for	yo



ikr smh he		asked		fir		yo last		name		so		he		can

10

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																					det noun	 														pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

• e.g.,	predict	tag	of	yo given	context
• what	should	the	input	x	be?

word	vector	for	yoword	vector	for	fir



ikr smh he		asked		fir		yo last		name		so		he		can

11

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																					det noun	 														pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

word	vector	for	yoword	vector	for	fir

• when	using	word	vectors	as	part	of	input,	we	can	also	
treat	them	as	more	parameters	to	be	learned!

• this	is	called	“updating”	or	“fine-tuning”	the	vectors	
(since	they	are	initialized	using	something	like	word2vec)



ikr smh he		asked		fir		yo last		name		so		he		can

12

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																					det noun	 														pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

vector	for	lastvector	for	yo

• let’s	use	the	center	word	+	two	words	to	the	right:

vector	for	name

• if	name is	to	the	right	of	yo,	then	yo is	probably	a	form	of	your
• but	our	x above	uses	separate	dimensions	for	each	position!

– i.e.,	name	is	two	words	to	the	right
– what	if	name	is	one	word	to	the	right?		



Features	and	Filters
• we	could	use	a	feature	that	returns	1	if	name
is	to	the	right	of	the	center	word,	but	that	
does	not	use	the	word’s	embedding

• how	do	we	include	a	feature	like	“a	word	
similar	to	name appears	somewhere	to	the	
right	of	the	center	word”?

• rather	than	always	specify	relative	position	
and	embedding,	we	want	to	add	filters that	
look	for	words	like	name	anywhere	in	the	
window	(or	sentence!)

13



Filters
• for	now,	think	of	a	filter	as	a	vector	in	the	word	
vector	space

• the	filter	matches	a	particular	region	of	the	space
• “match”	=	“has	high	dot	product	with”

14



Convolution
• convolutional	neural	networks	use	a	bunch	of	
such	filters

• each	filter	is	matched	against	(dot	product	
computed	with)	each	word	in	the	entire	context	
window	or	sentence

• e.g.,	a	single	filter							is	a	vector	of	same	length	as	
word	vectors

15



Convolution

16

vector	for	lastvector	for	yo vector	for	name



Convolution

17

vector	for	lastvector	for	yo vector	for	name



Convolution

18

vector	for	lastvector	for	yo vector	for	name



Convolution

19

vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence



Pooling

20

vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	



Pooling

21

vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	

then,	this	single	filter							produces	a	single	feature	
value	(the	output	of	some	kind	of	pooling).
in	practice,	we	use	many	filters	of	many	different	
lengths	(e.g.,	n-grams	rather	than	words).	



Convolutional	Neural	Networks
• convolutional	neural	networks	(convnets or	CNNs)	use	
filters	that	are	“convolved	with”	(matched	against	all	
positions	of)	the	input

• informally,	think	of	convolution	as	“perform	the	same	
operation	everywhere	on	the	input	in	some	systematic	
order”

• “convolutional	layer”	=	set	of	filters	that	are	convolved	
with	the	input	vector	(whether	x or	hidden	vector)

• could	be	followed	by	more	convolutional	layers,	or	by	a	
type	of	pooling

• often	used	in	NLP	to	convert	a	sentence	into	a	feature	
vector

22



Recurrent	Neural	Networks
Input	is	a	sequence:

23

not																									too																									bad



Recurrent	Neural	Networks
Input	is	a	sequence:

24

“hidden	vector”



Recurrent	Neural	Networks

25

“hidden	vector”



Disclaimer
• these	diagrams	are	often	useful	for	helping	us	
understand	and	communicate	neural	network	
architectures

• but	they	rarely	have	any	sort	of	formal	
semantics	(unlike	graphical	models)

• they	are	more	like	cartoons

26



Long	Short-Term	Memory	RNNs	
(gateless)

27

“memory	cell”



Long	Short-Term	Memory	RNNs	(gateless)

28



Long	Short-Term	Memory	RNNs	(gateless)

29



Long	Short-Term	Memory	RNNs	(gateless)

30

Experiment:	text	classification
• Stanford	Sentiment	Treebank
• binary	classification	(positive/negative)

• 25-dim	word	vectors
• 50-dim	cell/hidden	vectors
• classification	layer	on	final hidden	vector
• AdaGrad,	10	epochs,	mini-batch	size	10
• early	stopping	on	dev set

accuracy

80.6



Output	Gates

31



Output	Gates

32



Output	Gates

33



Output	Gates

34

this	is	pointwise
multiplication!				
is	a	vector



Output	Gates

35

this	is	pointwise
multiplication!				
is	a	vector



Output	Gates

36

diagonal	
matrix

logistic	sigmoid,	so	
output	ranges	from	

0	to	1



Output	Gates

37

acc.

gateless 80.6

output	gates 81.9



Output	Gates

38

acc.

gateless 80.6

output	gates 81.9

What’s	being	learned?
(demo)



Input	Gates

39



Input	Gates

40

again,	this	is	
pointwise

multiplication



Input	Gates

41



Input	Gates

42

diagonal	
matrix



Output	Gates

43

Input	Gates

difference



Input	Gates

44

acc.

gateless 80.6

output	gates 81.9

input	gates 84.4



Input	and	Output	Gates

45

acc.

gateless 80.6

output	gates 81.9

input	gates 84.4

input	&	output	gates 84.6



Forget	Gates

46



Forget	Gates

47



Forget	Gates

48



Forget	Gates

49

acc.

gateless 80.6

output	gates 81.9

input	gates 84.4

forget	gates 82.1



All	Gates

50



All	Gates

51

acc.

gateless 80.6

output	gates 81.9

input	gates 84.4

input	&	output	gates 84.6

forget	gates 82.1

input	&	forget gates 84.1

forget	& output	gates 82.6

input,	forget,	output	gates 85.3



Backward	&	Bidirectional	LSTMs

52

bidirectional:	
if	shallow,	just	use	forward	and	backward	LSTMs	in	parallel,	concatenate	
final	two	hidden	vectors,	feed	to	softmax



Backward	&	Bidirectional	LSTMs

53

bidirectional:	
if	shallow,	just	use	forward	and	backward	LSTMs	in	parallel,	concatenate	
final	two	hidden	vectors,	feed	to	softmax

forward backward

gateless 80.6 80.3

output	gates 81.9 83.7

input	gates 84.4 82.9

forget	gates 82.1 83.4

input,	forget,	output	gates 85.3 85.9



Backward	&	Bidirectional	LSTMs

54

bidirectional:	
if	shallow,	just	use	forward	and	backward	LSTMs	in	parallel,	concatenate	
final	two	hidden	vectors,	feed	to	softmax

forward backward bidirectional

gateless 80.6 80.3 81.5

output	gates 81.9 83.7 82.6

input	gates 84.4 82.9 83.9

forget	gates 82.1 83.4 83.1

input,	forget,	output	gates 85.3 85.9 85.1



LSTM

55



Deep	LSTM
(2-layer)

56

layer	1

layer	2



Deep	LSTM
(2-layer)

57

layer	1

layer	2

acc.

gateless
shallow	(50) 80.6

deep	(30,	30) 80.8

input,	forget,	output
shallow	(50) 85.3

deep	(30,	30) ~85



Deep	Bidirectional	LSTMs

58

concatenate	hidden	vectors	of	forward	&	backward	LSTMs,	connect	each	entry	
to	forward	and	backward	hidden	vectors	in	next	layer



59

(logistic)	sigmoid:


