TTIC 31190:
 Natural Language Processing
 Kevin Gimpel
 Winter 2016

Lecture 11:
Recurrent and Convolutional Neural Networks in NLP

Announcements

- Assignment 3 assigned yesterday, due Feb. 29
- project proposal due Tuesday, Feb. 16
- midterm on Thursday, Feb. 18

Roadmap

- classification
- words
- lexical semantics
- language modeling
- sequence labeling
- neural network methods in NLP
- syntax and syntactic parsing
- semantic compositionality
- semantic parsing
- unsupervised learning
- machine translation and other applications

2-transformation (1-layer) network

$$
\begin{aligned}
& \boldsymbol{z}^{(1)}=g\left(W^{(0)} \boldsymbol{x}+\boldsymbol{b}^{(0)}\right) \\
& \qquad \boldsymbol{s}=g\left(W^{(1)} \boldsymbol{z}^{(1)}+\boldsymbol{b}^{(1)}\right) \\
& \text { vector of label scores }
\end{aligned}
$$

- we'll call this a "2-transformation" neural network, or a "1-layer" neural network
- input vector is \boldsymbol{x}
- score vector is \boldsymbol{S}
- one hidden vector $\boldsymbol{z}^{(1)}$ ("hidden layer")

1-layer neural network for sentiment classification

$$
\begin{aligned}
\boldsymbol{z}^{(1)} & =g\left(W^{(0)} \boldsymbol{x}+\boldsymbol{b}^{(0)}\right) \\
\boldsymbol{s} & =g\left(W^{(1)} \boldsymbol{z}^{(1)}+\boldsymbol{b}^{(1)}\right) \\
\boldsymbol{s} & =\left[\begin{array}{c}
\operatorname{score}(\boldsymbol{x}, \text { positive, } \boldsymbol{\theta}) \\
\operatorname{score}(\boldsymbol{x}, \text { negative }, \boldsymbol{\theta})
\end{array}\right]
\end{aligned}
$$

Use softmax function to convert scores into probabilities
$\operatorname{softmax}(\boldsymbol{s})=\left[\begin{array}{c}\frac{\exp \left\{s_{1}\right\}}{\sum_{i} \exp \left\{s_{i}\right\}} \\ \cdots \\ \frac{\exp \left\{s_{d}\right\}}{\sum_{i} \exp \left\{s_{i}\right\}}\end{array}\right]$
$\boldsymbol{s}=\left[\begin{array}{c}\operatorname{score}(\boldsymbol{x}, \text { positive, } \boldsymbol{\theta}) \\ \operatorname{score}(\boldsymbol{x}, \text { negative, } \boldsymbol{\theta})\end{array}\right]$
$\boldsymbol{p}=\operatorname{softmax}(\boldsymbol{s})=\left[\begin{array}{l}\frac{\exp \{\operatorname{score}(\boldsymbol{x}, \text { positive }, \boldsymbol{\theta})\}}{Z} \\ \frac{\exp \{\operatorname{score}(\boldsymbol{x}, \text { negative }, \boldsymbol{\theta})\}}{Z}\end{array}\right]$
$Z=\exp \{\operatorname{score}(\boldsymbol{x}$, positive, $\boldsymbol{\theta})\}+\exp \{\operatorname{score}(\boldsymbol{x}$, negative, $\boldsymbol{\theta})\}$

Neural Networks for Twitter Part-of-Speech Tagging

- in Assignment 3, you'll build a neural network classifier to predict a word's POS tag based on its context

Neural Networks for Twitter Part-of-Speech Tagging

- e.g., predict tag of yo given context
- what should the input \boldsymbol{x} be?
- it has to be independent of the label
- it has to be a fixed-length vector

Neural Networks for Twitter Part-of-Speech Tagging

- e.g., predict tag of yo given context
- what should the input \boldsymbol{x} be?

word vector for yo

Neural Networks for Twitter Part-of-Speech Tagging

- e.g., predict tag of yo given context
- what should the input \boldsymbol{x} be?

Neural Networks for Twitter Part-of-Speech Tagging

- when using word vectors as part of input, we can also treat them as more parameters to be learned!
- this is called "updating" or "fine-tuning" the vectors (since they are initialized using something like word2vec)

word vector for yo

Neural Networks for Twitter Part-of-Speech Tagging

- let's use the center word + two words to the right:

- if name is to the right of yo, then yo is probably a form of your
- but our \boldsymbol{x} above uses separate dimensions for each position!
- i.e., name is two words to the right
- what if name is one word to the right?

Features and Filters

- we could use a feature that returns 1 if name is to the right of the center word, but that does not use the word's embedding
- how do we include a feature like "a word similar to name appears somewhere to the right of the center word"?
- rather than always specify relative position and embedding, we want to add filters that look for words like name anywhere in the window (or sentence!)

Filters

- for now, think of a filter as a vector in the word vector space
- the filter matches a particular region of the space
- "match" = "has high dot product with"

Convolution

- convolutional neural networks use a bunch of such filters
- each filter is matched against (dot product computed with) each word in the entire context window or sentence
- e.g., a single filter \boldsymbol{w} is a vector of same length as word vectors

Convolution

\boldsymbol{w}

$$
c_{1}=\boldsymbol{w} \cdot \boldsymbol{x}_{1: d}
$$

Convolution

w

$$
c_{2}=\boldsymbol{w} \cdot \boldsymbol{x}_{d+1: 2 d}
$$

Convolution

w

$$
c_{3}=\boldsymbol{w} \cdot \boldsymbol{x}_{2 d+1: 3 d}
$$

Convolution

$\boldsymbol{C}=$ "feature map", has an entry for each word position in context window / sentence

$$
\boldsymbol{x}=[\begin{array}{llllll}
0.4 & \ldots & 0.9 & \underbrace{0.2}_{\text {vector for yo }} \ldots & 0.7 & 0.3
\end{array} \underbrace{0.3}_{\text {vector for last }} \ldots]_{\text {vector for name }} 0
$$

Pooling

$\boldsymbol{C}=$ "feature map", has an entry for each word position in context window / sentence
how do we convert this into a fixed-length vector? use pooling:
max-pooling: returns maximum value in c average pooling: returns average of values in \boldsymbol{c}
vector for yo vector for last vector for name

$$
\begin{aligned}
& c_{1}=\boldsymbol{w} \cdot \boldsymbol{x}_{1: d} \\
& \qquad c_{2}=\boldsymbol{w} \cdot \boldsymbol{x}_{d+1: 2 d} \\
& \quad c_{3}=\boldsymbol{w} \cdot \boldsymbol{x}_{2 d+1: 3 d}
\end{aligned}
$$

Pooling

$\boldsymbol{C}=$ "feature map", has an entry for each word position in context window / sentence
how do we convert this into a fixed-length vector? use pooling:
max-pooling: returns maximum value in \boldsymbol{c} average pooling: returns average of values in \boldsymbol{c}
vector for yo vector for last vector for name

$$
c_{1}=\boldsymbol{w} \cdot \boldsymbol{x}_{1: d}
$$

then, this single filter \boldsymbol{w} produces a single feature value (the output of some kind of pooling). in practice, we use many filters of many different lengths (e.g., n-grams rather than words).

Convolutional Neural Networks

- convolutional neural networks (convnets or CNNs) use filters that are "convolved with" (matched against all positions of) the input
- informally, think of convolution as "perform the same operation everywhere on the input in some systematic order"
- "convolutional layer" = set of filters that are convolved with the input vector (whether \boldsymbol{x} or hidden vector)
- could be followed by more convolutional layers, or by a type of pooling
- often used in NLP to convert a sentence into a feature vector

Recurrent Neural Networks

Input is a sequence:

not

too

bad

Recurrent Neural Networks

Input is a sequence:

Recurrent Neural Networks

$$
h_{t}=\tanh \left(W^{(x h)} x_{t}+W^{(h h)} h_{t-1}+b^{(h)}\right)
$$

Disclaimer

- these diagrams are often useful for helping us understand and communicate neural network architectures
- but they rarely have any sort of formal semantics (unlike graphical models)
- they are more like cartoons

Long Short-Term Memory RNNs
 (gateless)

Long Short-Term Memory RNNs (gateless)

Long Short-Term Memory RNNs (gateless) $c_{t}=c_{t-1}+\tanh \left(W^{(x c)} x_{t}+W^{(h c)} h_{t-1}+b^{(c)}\right)$
$h_{t}=\tanh \left(c_{t}\right)$

Long Short-Term Memory RNNs (gateless)

$$
c_{t}=c_{t-1}+\tanh \left(W^{(x c)} x_{t}+W^{(h c)} h_{t-1}+b^{(c)}\right)
$$

Experiment: text classification

- Stanford Sentiment Treebank
- binary classification (positive/negative)
- 25-dim word vectors
- 50-dim cell/hidden vectors
- classification layer on final hidden vector
- AdaGrad, 10 epochs, mini-batch size 10
- early stopping on dev set

Output Gates

Output Gates

Output Gates

Output Gates

Output Gates

$$
o_{t}=\sigma\left(W^{(x o)} x_{t}+W^{(h o)} h_{t-1}+W^{(c o)} c_{t}+b^{(o)}\right)
$$

Output Gates

Output Gates

Output Gates

$$
o_{t}=\sigma\left(W^{(x o)} x_{t}+W^{(h o)} h_{t-1}+W^{(c o)} c_{t}+b^{(o)}\right)
$$

$$
h_{t}=o_{t} \tanh (
$$

What's being learned? (demo)

Input Gates

Input Gates

Input Gates

$$
c_{t}=c_{t-1}+i_{t} \tanh \left(W^{(x c)} x_{t}+W^{(h c)} h_{t-1}+b^{(c)}\right)
$$

Input Gates

$$
i_{t}=\sigma\left(W^{(x i)} x_{t}+W^{(h i)} h_{t-1}+W^{(c i)} c_{t-1}+b^{(i)}\right)
$$

Input Gates

$$
i_{t}=\sigma\left(W^{(x i)} x_{t}+W^{(h i)} h_{t-1}+W^{(c i)} c_{t-1}+b^{(i)}\right)
$$

Output Gates

$$
o_{t}=\sigma\left(W^{(x o)} x_{t}+W^{(h o)} h_{t-1}+W^{(c o)} c_{t}+b^{(o)}\right)
$$

Input Gates

Input and Output Gates

Forget Gates

Forget Gates

$$
c_{t}=f_{t} c_{t-1}+\tanh \left(W^{(x c)} x_{t}+W^{(h c)} h_{t-1}+b^{(c)}\right)
$$

Forget Gates

$$
f_{t}=\sigma\left(W^{(x f)} x_{t}+W^{(h f)} h_{t-1}+W^{(c f)} c_{t-1}+b^{(f)}\right)
$$

Forget Gates

All Gates

$$
c_{t}=f_{t} c_{t-1}+i_{t} \tanh \left(W^{(x c)} x_{t}+W^{(h c)} h_{t-1}+b^{(c)}\right)
$$

$h_{t}=o_{t} \tanh \left(c_{t}\right)$

All Gates

	acc.
	gateless
output gates	80.6
input gates	84.9
	input \& output gates
forget gates	84.6
	82.1
input \& forget gates	84.1
input, forget, output gates	$\mathbf{8 5 . 3}$

Backward \& Bidirectional LSTMs

bidirectional:
if shallow, just use forward and backward LSTMs in parallel, concatenate final two hidden vectors, feed to softmax

Backward \& Bidirectional LSTMs

bidirectional:

if shallow, just use forward and backward LSTMs in parallel, concatenate final two hidden vectors, feed to softmax

	forward	backward
gateless	80.6	80.3
output gates	81.9	83.7
input gates	84.4	82.9
forget gates	82.1	83.4
input, forget, output gates	85.3	85.9

Backward \& Bidirectional LSTMs

bidirectional:

if shallow, just use forward and backward LSTMs in parallel, concatenate final two hidden vectors, feed to softmax

forward	backward	bidirectional	
gateless	80.6	80.3	81.5
output gates	81.9	83.7	82.6
input gates	84.4	82.9	83.9
forget gates	82.1	83.4	83.1
input, forget, output gates	85.3	85.9	85.1

LSTM

Deep Bidirectional LSTMs

concatenate hidden vectors of forward \& backward LSTMs, connect each entry to forward and backward hidden vectors in next layer

