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Announcements
• Assignment	2	due	Friday

• project	proposal	due	Tuesday,	Feb.	16

• midterm	on	Thursday,	Feb.	18
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Roadmap
• classification
• words
• lexical	semantics
• language	modeling
• sequence	labeling
• neural	network	methods	in	NLP
• syntax	and	syntactic	parsing
• semantic	compositionality
• semantic	parsing
• unsupervised	learning
• machine	translation	and	other	applications
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What	is	a	neural	network?
• just	think	of	a	neural	network	as	a	function
• it	has	inputs	and	outputs
• the	term	“neural”	typically	means	a	particular	
type	of	functional	building	block	(“neural	
layers”),	but	the	term	has	expanded	to	mean	
many	things
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Classifier	Framework

• linear	model	score	function:

• we	can	also	use	a	neural	network	for	the	score	
function!
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neural	layer	=	affine	transform	+	nonlinearity

• this	is	a	single	“layer”	of	a	neural	network
• input	vector	is	
• vector	of	“hidden	units”	is	
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affine	transform
nonlinearity



Nonlinearities

• most	common:	elementwise application	of	g
function	to	each	entry	in	vector

• examples…
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tanh:
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(logistic)	sigmoid:
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rectified	linear	unit	(ReLU):



2-layer	network

• this	is	a	2-layer	neural	network
• input	vector	is	
• output	vector	is
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vector	of	label	scores



2-layer	neural	network	for	sentiment	classification
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Use	softmax function	to	convert	scores	into	probabilities
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Why	nonlinearities?
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• if	g	is	linear,	then	we	can	rewrite	the	above	as	
a	single	affine	transform

• can	you	prove	this?	(use	distributivity of	
matrix	multiplication)

2-layer	network:

written	in	a	single	equation:
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Understanding	the	score	function
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row	vector	corresponding	to	row	2	of	

entry	2	of	bias	vector



Parameter	sharing
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parameters	
shared	between	

labels

parameters	NOT	
shared	between	labels



Observation
• with	linear	models:
– when	using	linear	models	for,	say,	sentiment	
classification,	every	feature	included	a	label

– no	parameters	were	shared	between	labels
• with	neural	networks
– we	now	have	parameters	shared	across	labels!
– we	still	have	some	parameters	that	are	devoted	to	
particular	labels

– to	define	x,	we	design	features	that	only	look	at	
the	input	(not	at	the	labels)
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Defining	input	features
• say	we’re	doing	sentiment	classification	and	
we	want	to	use	a	neural	network

• what	should	x be?
– it	has	to	be	independent	of	the	label
– it	has	to	be	a	fixed-length	vector
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Empirical	Risk	Minimization	with	Surrogate	Loss	Functions
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• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:

many	possible	loss	
functions	to	consider	

optimizing



Loss	Functions
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name loss where	used

cost	(“0-1”)
intractable,	but	

underlies	“direct	error	
minimization”

perceptron perceptron	algorithm
(Rosenblatt,	1958)

hinge
support	vector	

machines,	other	 large-
margin	algorithms

log

logistic	regression,	
conditional	 random	
fields,	maximum
entropy	models



(Sub)gradients	of	Losses	for	Linear	Models
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name entry	j of	(sub)gradient	of	loss for	linear	model

cost	(“0-1”) not	subdifferentiable in	general

perceptron

hinge

log



Learning	with	Neural	Networks

• we	can	use	any	of	our	loss	functions	from	before,	
as	long	as	we	can	compute	(sub)gradients

• algorithm	for	doing	this	efficiently:	
backpropagation

• it’s	basically	just	the	chain	rule	of	derivatives
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Computation	Graphs
• a	useful	way	to	represent	the	computations	
performed	by	a	neural	model	(or	any	model!)

• why	useful?	makes	it	easy	to	implement	
automatic	differentiation	(backpropagation)

• many	neural	net	toolkits	let	you	define	your	
model	in	terms	of	computation	graphs	
(Theano,	Torch,	TensorFlow,	CNTK,	CNN,	
PENNE,	etc.)
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Backpropagation
• backpropagation has	become	associated	with	
neural	networks,	but	it’s	much	more	general

• I	also	use	backpropagation to	compute	
gradients	in	linearmodels	for	structured	
prediction
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A	simple	computation	graph:

• represents	expression	“a	+	3”
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A	slightly	bigger	computation	graph:

• represents	expression	“(a	+	3)2 +	4a2”
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Operators	can	have	more	than	2	operands:

• still	represents	expression	“(a	+	3)2 +	4a2”
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• more	concise:
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Overfitting &	Regularization
• when	we	can	fit	any	function,	overfitting
becomes	a	big	concern

• overfitting:	learning	a	model	that	does	well	on	
the	training	set	but	doesn’t	generalize	to	new	
data

• there	are	many	strategies	to	reduce	overfitting
(we’ll	use	the	general	term	regularization for	
any	such	strategy)	

• you	used	early	stopping	in	Assignment	1,	
which	is	one	kind	of	regularization
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Empirical	Risk	Minimization
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• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:



Regularized Empirical	Risk	Minimization
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• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:

regularization	
term

regularization	
strength



Regularization	Terms

• most	common:	penalize	large	parameter	values
• intuition:	large	parameters	might	be	instances	of	
overfitting

• examples:
L2 regularization:
(also	called	Tikhonov regularization	
or	ridge	regression)

L1 regularization:
(also	called	basis	pursuit	or	LASSO)
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Regularization	Terms

L2 regularization:

differentiable,	widely-used

L1 regularization:

not	differentiable	(but	is	subdifferentiable)
leads	to	sparse	solutions	(many	parameters	become	zero!)
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Dropout
• popular	regularization	method	for	neural	
networks

• randomly	“drop	out”	(set	to	zero)	some	of	the	
vector	entries	in	the	layers
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Optimization	Algorithms
• you	used	stochastic	gradient	descent	(SGD)	in	
Assignment	1

• but	there	are	many	other	choices:
– AdaGrad
– AdaDelta
– Adam
– SGD	with	momentum

• we	don’t	have	time	to	go	through	these	in	class,	
but	you	should	try	using	them!	(most		toolkits	
have	implementations	of	these	and	others)
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