TTIC 31190:
Natural Language Processing

Kevin Gimpel
Winter 2016

Lecture 10:
Neural Networks for NLP

Announcements

* Assignment 2 due Friday

* project proposal due Tuesday, Feb. 16

* midterm on Thursday, Feb. 18

Roadmap

classification

words

lexical semantics

language modeling

sequence labeling

neural network methods in NLP
syntax and syntactic parsing
semantic compositionality
semantic parsing

unsupervised learning

machine translation and other applications

What is a neural network?

e just think of a neural network as a function
* it has inputs and outputs

e the term “neural” typically means a particular
type of functional building block (“neural

layers”), but the term has expanded to mean
many things

Classifier Framework

classify(x, 8) = argmax score(x,y, 0)
yeLl

* linear model score function:

score(x,y, 0 ZH fi(x,y)

e we cah also use a neural network for the score
function!

neural layer = affine transform + nonlinearity

(Wm)m n b<o>)
- /

nonlinearity
affine transform

 thisis a single “layer” of a neural network
* Input vectoris x
» vector of “hidden units” is z(1

Nonlinearities

o (1) :(Ww)w n b(@))

* most common: elementwise application of g
function to each entry in vector

* examples...

tanh: y = tanh(x)

X: 2.22044%x10" y: 2.22044%x107

(logistic) sigmoid: Y

rectified linear unit (ReLU): y = max(0, x)

10

2-layer network
gn:gOy@w+b@)

S:gomngn+gn)

/

vector of label scores

* thisis a 2-layer neural network
* Input vectoris &
* outputvectoris s

2-layer neural network for sentiment classification

AD:gOy@w+b@)

Szgﬁmngn+yw)

l

5 — score(x, positive,)

'score(x, negative, 6)

Use softmax function to convert scores into probabilities

exp{si1}

Z'i, exp{s;}

softmax(s) =
exp{sq}

2 expisi}_

score(a, positive, 0)

S = .
score(x, negative, 0)

" exp{score(x,positive,0)} |

P = SOftmaX(S) — | exp{score(x,negative,0)}

Z

Z = exp{score(x, positive, 8)} + exp{score(x, negative, 0)}

Why nonlinearities?
2-layer network: z(l) =g (W(O)m + b(o))
Szgomngn+yn)

written in a single equation:

s=g(Whg (WO +b®) + D)

* if gis linear, then we can rewrite the above as
a single affine transform

e can you prove this? (use distributivity of
matrix multiplication)

14

Universal approximation theorem

From Wikipedia, the free encyclopedia

In the mathematical theory of artificial neural networks, the universal approximation theorem states!!] that
a feed-forward network with a single hidden layer containing a finite number of neurons (i.e., a multilayer
perceptron), can approximate continuous functions on compact subsets of R", under mild assumptions on
the activation function. The theorem thus states that simple neural networks can represent a wide variety of
interesting functions when given appropriate parameters; however, it does not touch upon the algorithmic
learnability of those parameters.

One of the first versions of the theorem was proved by George Cybenko in 1989 for sigmoid activation
functions.?!

Kurt Hornik showed in 1991[3] that it is not the specific choice of the activation function, but rather the
multilayer feedforward architecture itself which gives neural networks the potential of being universal
approximators. The output units are always assumed to be linear. For notational convenience, only the
single output case will be shown. The general case can easily be deduced from the single output case.

15

Understanding the score function

 score(x, positive, 0)
'score(x, negative, 8)

score(x, positive,0) = s1 =g (Wl(l*)

entry 2 of bias vector

1
g (W(O)a} + b(o)) bg))

score(x, negative,) = s = g (Wz(l*)

g (W<O>:c + b(O)) + bé”)

row vector corresponding to row 2 of W(l)

Parameter sharing

 score(x, positive, 0)

'score(x, negative, 8) /

parameters NOT
shared between labels

\

_—

score(x, positive,0) = s; = ¢ ,Wl(,l*).g (W(O)w + b(o))

score(x, negative,) = s = g

_—

Wity (W(O):c + b<0>)

l

1
b\

by

H_/

parameters
shared between
labels

17

Observation

e with linear models:

— when using linear models for, say, sentiment
classification, every feature included a label

— no parameters were shared between labels

e with neural networks

— we now have parameters shared across labels!

— we still have some parameters that are devoted to
particular labels

— to define x, we design features that only look at
the input (not at the labels)

Defining input features

e say we're doing sentiment classification and
we want to use a neural network

e what should x be?

— it has to be independent of the label
— it has to be a fixed-length vector

Empirical Risk Minimization with Surrogate Loss Functions

- given training data: 7 = {(z®, y@)I7!
where each) ¢ £ is a label
* we want to solve the following:

many possible loss
functions to consider
optimizing

20

Loss Functions

name

loss

where used

cost (“0-1")

cost(y, classify(x, 0))

intractable, but
underlies “direct error
minimization”

perceptron algorithm

—score(x, vy, 0) + max score(x,y .0
perceptron (z,y,0) + y' L (z,y,0) (Rosenblatt, 1958)
support vector
hinge —score(x, y, 0) + max (score(x, y', 8) + cost(y,y’))| machines, other large-
y'eL margin algorithms
logistic regression,
log log pe (y ‘ w) conditional random

= score(x, y, 0) + log Z exp{score(z,y’,0)}
y' el

fields, maximum
entropy models

(Sub)gradients of Losses for Linear Models

‘ name entry j of (sub)gradient of loss for linear model
cost (“0-1”) not subdifferentiable in general
perceptron | — fi(x,y) + f;i(=x,y), where § = classify(x, 0)
hinge —fi(z,y) + fj(x,y), where y = costClassify(zx,y, 0)
o8 | 5@) + By U ()

Learning with Neural Networks

classify(ax, @) = argmax score(x,y, 0)
yeLl

score(x, positive,0) = s1 = ¢ (Wl(,l*)g (W(O)w 4 b(O)) 4 bgl))
score(x, negative, 8) = s, = g (WQ(,l*)g (W(O)m + b(O)) 4 bgl))

we can use any of our loss functions from before,
as long as we can compute (sub)gradients

algorithm for doing this efficiently:
backpropagation

it’s basically just the chain rule of derivatives

Computation Graphs

e a useful way to represent the computations
performed by a neural model (or any model!)

* why useful? makes it easy to implement
automatic differentiation (backpropagation)

* many neural net toolkits let you define your
model in terms of computation graphs
(Theano, Torch, TensorFlow, CNTK, CNN,
PENNE, etc.)

Backpropagation

* backpropagation has become associated with
neural networks, but it’s much more general

* | also use backpropagation to compute
gradients in linear models for structured
prediction

A simple computation graph:

* represents expression “a + 3”

A slightly bigger computation graph:

a

* represents expression “(a + 3)% + 4a%”

Operators can have more than 2 operands:
ONGR0
® @ ®

* still represents expression “(a + 3)% + 4a%”

Overfitting & Regularization

when we can fit any function, overfitting
becomes a big concern

overfitting: learning a model that does well on

t
C

t

ne training set but doesn’t generalize to new
ata

nere are many strategies to reduce overfitting

(we’ll use the general term regularization for
any such strategy)

yvou used early stopping in Assighment 1,
which is one kind of regularization

30

Empirical Risk Minimization
- given training data: 7 = {(z®,y)}7!
where each (9 ¢ £ is a label
 we want to solve the following:

Regularized Empirical Risk Minimization
« given training data: 7 = {(z®, y@)}7!
where each) ¢ £ is a label regularization
* we want to solve the following: strength

o

0 = argmin Z loss(x®, (9. 0) + AR(0)

0 i—1 \r/
regularization

term

32

Regularization Terms

T
6 = argmin Z loss(x®, (9, 0) + AR(0)
o =1

most common: penalize large parameter values

intuition: large parameters might be instances of
overfitting

examples:
L, regularization: R;,(0) = |0||5 = 292

(also called Tikhonov regular|zat|on
or ridge regression)

L, regularization: Rp(0) = ||0]|1 = Z 16;]
(also called basis pursuit or LASSO)

33

Regularization Terms

L, regularization: Rp,(6)=0/j3 =" ¢’

differentiable, widely-used

L, regularization: Rr,(0) =6/, = |6/]

1

not differentiable (but is subdifferentiable)
leads to sparse solutions (many parameters become zero!)

Dropout

e popular regularization method for neural
networks

 randomly “drop out” (set to zero) some of the
vector entries in the layers

35

Optimization Algorithms

e you used stochasticgradient descent (SGD) in
Assignment 1

* butthere are many other choices:
— AdaGrad
— AdaDelta
— Adam
— SGD with momentum

 we don’t have time to go through these in class,
but you should try using them! (most toolkits
have implementations of these and others)

