TTIC 31190:
Natural Language Processing

Kevin Gimpel
Spring 2018

Lecture 8:
Neural Language Models
and Word Embeddings

Other Naturally-Occurring Data

e quality of scientific journalism:

What Makes Writing Great? First Experiments on Article Quality
Prediction in the Science Journalism Domain

Annie Louis Ani Nenkova
University of Pennsylvania University of Pennsylvania
Philadelphia, PA 19104 Philadelphia, PA 19104
lannie@seas.upenn.edu nenkova@seas.upenn.edu
Abstract done before. The fawn, known as Dewey, was developing

normally and seemed to be healthy. He had no mother,
just a surrogate who had carried his fetus to term. He
had no father, just a “donor” of all his chromosomes. He
was the genetic duplicate of a certain trophy buck out

Great writing is rare and highly admired.
Readers seek out articles that are beautifully
written, informative and entertaining. Yet
information-access technologies lack capabil-

ities for predicting article quality at this level. of south Texas whose skin cells had been cultured in a
In this paper we present first experiments on laboratory. One of those cells furnished a nucleus that,
article quality prediction in the science jour- transplanted and rejiggered, became the DNA core of an
nalism domain. We introduce a corpus of egg cell, which became an embryo, which in time be-

great pieces of science journalism, along with

‘ " ? came Dewey. So he was wildlife, in a sense, and in an-
typical articles from the genre. We imple-

athoar canca alaharataly cunthatinr Thic ic the onrt Af nawre

Other Naturally-Occurring Data

* memorability of quotations:

You had me at hello: How phrasing affects memorability

Cristian Danescu-Niculescu-Mizil Justin Cheng Jon Kleinberg Lillian Lee
Department of Computer Science
Cornell University
cristian@cs.cornell.edu, jc882@cornell.edu, kleinber @cs.cornell.edu, llee @cs.cornell.edu

Abstract Building on a foundation in the sociology of diffu-
. _ o . sion [27, 31], researchers have explored the ways in
Understanding the ways in which information which network structure affects the way information

achieves widespread public awareness is a re-
search question of significant interest. We
consider whether, and how, the way in which

spreads, with domains of interest including blogs
[1, 11], email [37], on-line commerce [22], and so-

the information is phrased — the choice of cial media [2, 28, 33, 38]. There has also been recent
words and sentence structure — can affect this research addressing temporal aspects of how differ-
process. To this end, we develop an analy- ent media sources convey information [23, 30, 39]
sis framework and build a corpus of movie and ways in which people react differently to infor-
quotes, annotated with memorability infor- mation on different topics [28, 36].

mation, in which we are able to control for
both the speaker and the setting of the quotes.

Beyond all these factors, however, one’s everyday

LR B | h | 1 PR |

Other Naturally-Occurring Data

e satire detection (legitimate news outlets vs. The
Onion or other satirical sites):

Automatic Satire Detection: Are You Having a Laugh?

Clint Burfoot Timothy Baldwin
CSSE CSSE
University of Melbourne University of Melbourne
VIC 3010 Australia VIC 3010 Australia

cburfoot@csse.unimelb.edu.au tim@csse.unimelb.edu.au

Abstract Satire classification is a novel task to compu-

tational linguistics. It is somewhat similar to the

We introduce the novel task of determin- more widely-researched text classification tasks of
ing whether a newswire article is “true” spam filtering (Androutsopoulos et al., 2000) and
or satirical. We experiment with SVMs, sentiment classification (Pang and Lee, 2008), in
feature scaling, and a number of lexical that: (a) it is a binary classification task, and (b)
and semantic feature types, and achieve it is an intrinsically semantic task, i.e. satire news
promising results over the task. articles are recognisable as such through interpre-

tation and cross-comparison to world knowledge

o v 4 h |

Other Naturally-Occurring Data

e predicting novel success from text of novels:

Success with Style: Using Writing Style to Predict the Success of Novels

Vikas Ganjigunte Ashok Song Feng Yejin Choi
Department of Computer Science
Stony Brook University
Stony Brook, NY 11794-4400

vganjiguntea, songfeng, ychoilcs.stonybrook.edu

Abstract fore they are picked up by a publisher.!
Perhaps due to its obvious complexity of the prob-
Predicting the success of literary works is a lem, there has been little previous work that attempts
curious question among publishers and aspir- to build statistical models that predict the success of
ing writers alike. We examine the quantitative literary works based on their intrinsic content and

connection, if any, between writing style and

uality. Some previous studies do touch on the no-
successful literature. Based on novels over q Y P

: . tion of stylistic aspects in successful literature, e.g.,
several different genres, we probe the predic- i T :)
tive power of statistical stylometry in discrim- extensive studies in Literature discuss literary styles
inating successful literary works, and identify of significant authors (e.g., Ellegard (1962), Mc-
characteristic stylistic elements that are more Gann (1998)), while others consider content char-
prominent in successful writings. Our study acteristics such as plots, characteristics of charac-

* | posted some hints for assignment 2

Roadmap

words, morphology, lexical semantics

text classification

language modeling

word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing
machine translation and other NLP tasks

Probabilistic Language Modeling

e goal: compute the probability of a sequence of words:
P(w) = P(wy,wa, ..., wy,)
* related task: probability of next word:
P(wy | w1, wa, w3)
* a model that computes either of these:
P(w) or P(wg|wy,ws,...,wk_1)

is called a language model (LM)

J&M/SLP3

Probability -> Perplexity

* average log-probability of held-out words:
1 i
(= i ZlogQ P(w')

e perplexity:

PP =2¢

Perplexity as branching factor

* given a sentence consisting of random digits

» perplexity of this sentence under a model that
gives probability 1/10 to each digit?

1
= V7 logy P(w1,ws, ..., wnr)

1 Mo
=] il
MOgQEm

J&M/SLP3

Perplexity as branching factor

* given a sentence consisting of random digits

» perplexity of this sentence under a model that
gives probability 1/10 to each digit?

1
t = i logy P(w1, w2, ..., whr)

1 Mo
—] —
MOgQEm

PP = 2% = 10

J&M/SLP3

Lower perplexity = better model

e train: 38 million words
e test: 1.5 million words

mm

perplexity:

J&M/SLP3

“Add-1" estimation

* just add 1 to all counts

* MLE estimate:
count(w;_1,w;)

Puee(wi | wi-1) = count(w;_1)
i

 Add-1 estimate:
count(w;_1,w;) + 1
count(w;_1) + |V|

Paga—1(w; | wi—1) =

J&M/SLP3

Absolute Discounting

Bigram count in Bigram count in
training set heldout set

0.0000270

0.448

1.25

2.24

3.23

4.21

5.23

6.21

7.21

8.26

3T R For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

O o~ S W —O

J&M/SLP3

Absolute Discounting

Bigram count in Bigram count in
ini heldout set
0.0000270
0.448

1.25

2.24

3.23

4.21

5.23

6.21

7.21

i
E

oW B W - O

observed bigrams have counts that are overestimated

unobserved bigrams have counts that are underestimated

J&M/SLP3

Absolute Discounting

e subtract d from each numerator count
* use the original counts for the denominator

max (0, count(w’, w) — d)

ZU COunt(w’, U) L)‘(w/)P(w)

PAbsDisc(w ’ UJ/) —

* so there’s some “missing probability mass”

* lambda function is defined to make things
normalize correctly

J&M/SLP3

Kneser-Ney Smoothing

Shannon game: | can’t see without my
reading ?

— “Francisco” is more common than “glasses”
— ... but “Francisco” always follows “San”

unigram is most useful when we haven’t seen
bigram!

so instead of unigram P(w) (“How likely is w?”)

use P vinuation (W) (“How likely is w to appear as a
novel continuation?”)

J&M/SLP3

Kneser-Ney Smoothing

* how many times is w a novel continuation?

P.ontinuation (w) o< |[{w’ : count(w’, w) > 0}

number of unique words that appeared before w

Kneser-Ney Smoothing

* how many times is w a novel continuation?

P.ontinuation (w) o< |[{w’ : count(w’, w) > 0}

 normalize by total number of word bigram types:

{w’ : count(w’, w) > 0}

PcontinuatiOn(w) — |{<w/7 w//> : count(w’, w”) > O}‘

Kneser-Ney Smoothing
* Interpolated Kneser-Ney:

max (0, count(w’, w) — d)

A / Pcon inuation
> . count(w’, v) Aw’) Feontinuation ()

PKN(UJ ’ w’) —

e again, lambda function is defined to make things
normalize correctly

A Neural Probabilistic Language Model

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

* idea: use a neural network for n-gram
language modeling:

PH(wt | Wt—n+1y -y Wt—2, wt—l)

21

Classifier Framework

classify(x, w) = argmax score(x, y, w)
Y

e |inear model score function:
score(x, y, w) =w ' f(x,y) = Zwifi(may)

e we canh also use a neural network for the score
function!

neural layer = affine transform + nonlinearity

2 = ¢ (U<0>X n b<o>)

nonlinearity
affine transform

 thisis asingle “layer” of a neural network
* Input vectoris X
e U® and b are parameters

Neural Networks

2 = g (UOx + b)) Heile 00 0 0

22 — g (U<1>Z<1> n b<1>)

* use output of one layer as input to next
» “feed-forward” and/or “fully-connected” layers

24

Neural Network for Sentiment Classification
Zmzﬂ(umx+b@)

s — UMz 4 pM

vector of label scores

Neural Network for Sentiment Classification
Zmzﬂ(umx+b@)

s — UMz 4 pM

 score(x, positive, w)
'score(x, negative, w)

Use softmax function to convert scores into probabilities

'score(x, positive, w)
'score(x, negative, w)

[exp{score(&,positive,W)} |

_ _ A4
P = SOftmaX(S) — | exp{score(X,negative, W)}

Z

7 = exp{score(x, positive, w)} 4+ exp{score(x, negative, w)}

Learning with Neural Networks
ﬂU:g(U®X+b®)
s — ULz L p®

. score(x, positive, w)
~ |score(x, negative, w)

classify(ax, w) = argmax score(x, y, w)
y

e we can use any of our loss functions from before, as
long as we can compute (sub)gradients

 algorithm for doing this efficiently: backpropagation
* basically just the chain rule of derivatives

Computation Graphs

e a useful way to represent the computations
performed by a neural model (or any model!)

* why useful? makes it easy to implement
automatic differentiation (backpropagation)

* many neural net toolkits let you define your
model in terms of computation graphs
(PyTorch, TensorFlow, DyNet, Theano, etc.)

Backpropagation

* backpropagation has become associated with
neural networks, but it’s much more general

* | also use backpropagation to compute
gradients in linear models for structured
prediction

A simple computation graph:

* represents expression “a + 3”

A slightly bigger computation graph:
(+

* represents expression “(a + 3)? + 4a%”

Operators can have more than 2 operands:

* still represents expression “(a + 3)? + 4a%”

Model (Bengio et a

., 2003)

i-th output = P(w, = i| context)

softmax

most| computation here

tanh

.. @)

Table ~.. ~.. Matrix C
look—up
inC

. across words

index for w;_,1 index for w;_»

------------------------ Sssssssssssem e ®

shared parameters

Cwi-a) C(wir)\ _ -7

(.. .)

nd

*

index for w,_;

35

A Simple Neural Trigram Language Model

* given previous words w, and w,, predict next word

A Simple Neural Trigram Language Model
* given previous words w, and w,, predict next word

* input is concatenation of vectors (embeddings)
of previous words:

x 000 OO0O08

. '\ J
Y Y

emb(wy) emb(ws)

x = cat(emb(wy), emb(ws))

37

A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

-3 010 0.0/ 0000000006
X
)\
v Y
emb(wy) emb(ws)

score(x, w;, U) = x' Uj 1.4

38

A Simple Neural Trigram Language Model

e output vector contains scores of possible next words:

emb (w1) emb(ws)

 dimensionalities? X & RZd
s € RIVI

d

39

A Simple Neural Trigram Language Model

* how many parameters are in this model? |V| x 3d

40

A Simple Neural Trigram Language Model

S 9000000000000 0
s = Ux
X
Y Y
emb(w1) emb(ws)

* how should we train this model?
* we have lots of training examples (just collect trigrams)
e we can use any of our classification losses!

41

A Simple Neural Trigram Language Model
0000000000000

* most common way: log loss

lossiog ((w1, we), w3, 8) = —log pe(ws | (w1, w2))

po(ws | (wy,ws)) ox exp{score(cat(emb(wy), emb(ws)),ws, U)}

42

Adding a Hidden Layer
s (000000000000 00

43

Adding Connections
500000000000000

SZU(l)h—I—U(2)X
C‘QQQ“Q

tanh (U(O)X + b(0>)

X QQQC CCQC

emb(wy) emb(ws)

44

Bengio et al. (2003)

* Experiments:
— feed-forward neural network

— they minimized log loss of next word conditioned
on a fixed number of previous words

— ~800k training tokens, vocab size of 17k

— they trained for 5 epochs, which took 3 weeks on
40 CPUs!

Experiments (Bengio et al., 2003)

n C h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0| 60| yes no 201 327 | 310
MLP4 5 0|60 | yes | yes 286 | 272
MLP5 5 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS8 3 50 | 30 | yes | yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 | no yes 265 | 252

classes). n : order of the model. ¢ : number of word classes in class-based n-grams. 4 :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity

on the training, validation and test sets.

46

Experiments (Bengio et al., 2003)

n C h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0|60 | yes no 201 327 | 310
MLP4 5 0|60 | yes | yes 286 | 272
MLP5 5 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS8 3 50 | 30 | yes | yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 no yes 265 | 2352

* Observations:
— hidden layer (h > 0) helps
— interpolating with n-gram model (“mix”) helps

— using higher word embedding dimensionality helps

— 5-gram model better than trigram

47

Experiments

n C h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | vyes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0] 60 | yes no 201 327 | 310
MLP4 5 0] 60| yes | yes 286 | 272
MLP5 5 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS 3 50 | 30 | yes | yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 200 354 | 340
class-based back-off | 3 500 326 | 312
class-based back-off | 3 | 1000 335 | 319

48

Bengio et al. (2003)

* they discuss how the word embedding space
might be interesting to examine but they
don’t do this

* they suggest that a good way to visualize/

interpret word embeddings would be to use 2
dimensions

* they discussed handling polysemous words,
unknown words, inference speed-ups, etc.

Word Embeddings

larcamall
right good big
clear strong
long
: possible
| higher bogh
ower likely recent
first
1997 seCopdrqg
final
Sunday (ks’
Saturday past
MondayFriday July late
Auquét |
eptember carnly
TuesTJP%"\ZSZaV 4 P Becember
ednesday Novendieber lastaxt

Turian et al. (2010)

50

Collobert et al. (2011)

Journal of Machine Learning Research 12 (2011) 2493-2537 Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert* RONAN@ COLLOBERT.COM
Jason Weston' JWESTON @ GOOGLE.COM
Léon Bottou* LEON @BOTTOU.ORG
Michael Karlen MICHAEL .KARLEN @GMAIL.COM
Koray Kavukcuoglu® KORAY @CS.NYU.EDU
Pavel Kuksa’ PKUKSA@CS.RUTGERS.EDU

NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

Collobert et al. (2011)

e 631M word tokens, 100k vocab size, 11-word
input window, 4 weeks of training

e they didn’t care about getting good
perplexities, just good word embeddings for
their downstream NLP tasks

* so they used a pairwise ranking loss (make an
observed 11-word window have higher score
than an unobserved 11-word window)

Collobert et al. (2011)

 word embedding nearest neighbors:

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

word2vec (Mikolov et al., 20133)

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA

tmikolov@google.com

Greg Corrado
Google Inc., Mountain View, CA

gcorrado@google.com

Kai Chen
Google Inc., Mountain View, CA

kaichen@google.com

Jeffrey Dean
Google Inc., Mountain View, CA
jeff@google.com

54

word2vec (Mikolov et al., 2013b)

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com

55

Learning word vectors

let’s use our classification framework

we want to use unlabeled text to train the
vectors

we can convert our unlabeled text into a
classification problem!

how? (there are many possibilities)

skip-gram training data (window size = 5)

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

_____inputs() _____|____outputs (y)

agriculture <s>
agriculture is
agriculture the

IS <s>

is agriculture

is the

is traditional

the is

57

CBOW training data (window size = 5)

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

__inputs() | outputs(y)

{<s>, is, the, traditional} agriculture
{<s>, agriculture, the, traditional} is
{agriculture, is, traditional, mainstay} the
{is, the, mainstay, of} traditional
{the, traditional, of, the} mainstay
{traditional, mainstay, the, cambodian} of

{mainstay, of, cambodian, economy} the

58

