TTIC 31190:
Natural Language Processing

Kevin Gimpel
Spring 2018

Lecture 10:

Recurrent, Recursive, and
Convolutional Neural Networks in NLP

Assignment 2 due Monday

* guestions?

Project Proposal

project proposal details have been posted (see
main course page or assignments page)

due May 9

groups of 2-3 are ok (but think about how you
will divide up the work, especially with 3)

let me know if you’re still looking for a partner

Project

* final report due Wednesday, June 6
* for graduating students, due May 30

Roadmap

words, morphology, lexical semantics

text classification

language modeling

word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing
machine translation and other NLP tasks

word2vec Score Functions

* skip-gram:

(in,z) (out,y) agriculture <s>
score(x,y, w) = wi¥) L wloUhY . .
agriculture is
agriculture the

* CBOW:

Score(7 y? (| ’ Z W(ln xl)) (OUt,y)
X
T st | owpush)

{<s>, is, the, traditional} agriculture
{<s>, agriculture, the, traditional} is

{agriculture, is, traditional, mainstay} the

A Simple Neural Text Classification Model

* represent x by averaging its word embeddings
e output is a score vector over all possible labels:

s = Uf,(T)
s; = score(x, y;, w)

n

(O fove () = — Z emb(x;)

Encoders

encoder: a function to represent a word
sequence as a vector

simplest: average word embeddings:

n

1
fove () = - ; emb(x;)
many other functions possible!

lots of recent work on developing better ways
to encode word sequences

Recurrent Neural Networks

Input is a sequence:

“hidden vector” @ ° @

Recurrent Neural Networks
h, = tanh W<x>xt+w h,_ 1+b

“hidden vector” @ ° @

Long Short-Term Memory Networks (gateless)

“memory cell” O Q @

Long Short-Term Memory Networks (gateless)

Long Short-Term Memory Networks (gateless)
Ct = C¢—1 T tanh WEIx, - WHh, |, +b c))

h; = tanh(c;)

Long Short-Term Memory Networks (gateless)

Experiment: text classification
Stanford Sentiment Treebank

* binary classification (positive/negative)
25-dim word vectors 30.6

50-dim cell/hidden vectors

classification layer on final hidden vector
AdaGrad, 10 epochs, mini-batch size 10
early stopping on dev set

14

Adding Output Gates

Adding Output Gates

16

ht — tanh(ct)

Adding Output Gates

17

O¢+1

Adding Output Gates

ht — tanh(ct)

I

h; = o; ® tanh(c;)

18

Adding Output Gates

h; = tanh(c;) 0 ° @

h; = o; ® tanh(cy) 0 0 @

f Ot 11
this is pointwise
multiplication!

0 is a vector

19

Adding Output Gates

ht — tanh(ct)

I

h; = o; ® tanh(c;)

output gate affects how
much “information” is
transmitted from cell

vector to hidden vector

20

O¢+1

O¢

Adding Output Gates

(W@eo)X +WHon, 4 Wi, + b(o)

21

O¢+1

h; = o; ® tanh(c;)

Adding Output Gates

0O =0 (W(ZUO)Xt _I_ W(hO)ht—l _I_ W(CO)Ct _I_ b(O))

/

logistic sigmoid, so Xs 1
output ranges from
Oto1l
Ct—1
h; 4

22

diagonal
matrix
Ct Ct+1
O—1 O¢ Ot 1

h; = o; © tanh(cy)

Adding Output Gates

o¥ (W(xo)x + WUh, ; + W, + b(o)

output gate is a function
of current observation,
previous hidden vector,
and current cell vector

O¢+1

h; = o; ® tanh(c;)

23

Adding Output Gates

gateless 80.6

output gates | 81.9

What's being learned?
(demo)

Adding Input Gates

Adding Input Gates

¢t = ¢t + tanh (W x, + Wb, ;4 b))

s

ct = C¢—1 +1; ©® tanh (W(mc)xt + W(hc)ht_l T b(C))

input gate controls how
much cell is affected by
current observation and
previous hidden vector

27

Input Gates

i, =0 (W(“”i)xt WL, W, , + b(@'))

Xt—1 Xt X¢41

input gate is a function of . . | diagonal |.
. 11 1 N TR |
current observation, matrix
previous hidden vector, - - .
: — 1
and previous cell vector t=1 t : tr
1; 111

ht—l ht ht—l—l

28

Input Gates

Output Gates

Ot g} (W(Q?O)Xt _I_ W<h0)ht—1 _I_ W(CO)Ct _I_ b(O))

difference

29

gateless 80.6
output gates | 81.9
input gates 84.4

Input Gates

30

Input and Output Gates

gateless 80.6 @ ° @
output gates 381.9))
14 1;

_ im
input gates 384.4

input & output gates | 84.6
Ot — 1 @— Ot+1

31

Adding Forget Gates

Adding Forget Gates

33

Adding Forget Gates

ci = f; ©c;_y + tanh (W@C)Xt L wWhon, 4 b(c))

forget gate controls how
much “information” is
kept from the previous
cell vector

34

Adding Forget Gates

f, =0 (W<wf>xt WO, + W, + b(f))

forget gate depends on
current observation,

previous hidden vector,

and previous cell vector

35

Adding Forget Gates

IO

gateless 80.6

output gates | 81.9 G I G I @
input gates 84.4

forget gates 82.1

36

All Gates

c; =1 ©ci—1 +1; © tanh W(xc>xt W(hc)ht |+ b(C)

h; = o; ® tanh(cy) @ @ @

37

All Gates

acc.
gateless 80.6

output gates 381.9 ° @
input gates 84.4
input & output gates 84.6
forget gates 82.1
input & forget gates 84.1
forget & output gates 82.6
input, forget, output gates | 85.3

38

Backward LSTMs

CHONS
s

Backward LSTMs

forward backward

—
gateless 80.6 80.3

output gates 381.9 83.7

input gates 84.4 82.9

forget gates 82.1 83.4

input, forget, output gates 385.3 85.9

AONE

40

Bidirectional LSTMs
bidirectional:

if shallow, just use forward and backward LSTMs in parallel, concatenate
final two hidden vectors, feed to softmax

forward backward bidirectional

gateless 80.6 80.3 81.5

output gates 381.9 83.7 82.6

input gates 84.4 82.9 83.9

forget gates 82.1 83.4 83.1

input, forget, output gates 85.3 85.9 385.1

41

42

Deep LSTM ° use hidden vectors
(2-layer) from layer 1 as
~ inputs to layer 2

1
Cit1

Xz

™~T

layer 1 <

layer 2 <

e

shallow (50) 80.6
gateless
deep (30, 30) 80.8
shallow (50) 85.3
input, forget, output
deep (30, 30) ~85

44

Deep Bidirectional LSTMSs

concatenate hidden vectors of forward & backward LSTMs, connect
each entry to forward and backward hidden vectors in next layer

Gated Recurrent Units (GRU)

 alternative to LSTMs, fewer parameters,
generally works pretty well

Gated Recurrent Units (GRU)

 alternative to LSTMs, fewer parameters,
generally works pretty well

* uses “reset” and “update” gates instead of
LSTM gates:

ht — (]_ — Zt) ® ht—l +Z: © tanh (WXt -+ U(I't O ht—l) + b)

N/)

update gate reset gate

Recursive Neural Networks for NLP
x = it fell apart
® run a syntactic parser on the sentence

* construct vector recursively at each split point:

Recursive Neural Networks for NLP
x = it fell apart
® run a syntactic parser on the sentence

* construct vector recursively at each split point:

h, = emb(it)

Recursive Neural Networks for NLP
x = it fell apart
® run a syntactic parser on the sentence

* construct vector recursively at each split point:

Recursive Neural Networks for NLP
x = it fell apart
® run a syntactic parser on the sentence

* construct vector recursively at each split point:

Recursive Neural Networks for NLP

* same parameters used at every split point

* order of children matters (different weights
used for left and right child)

52

Convolutional Neural Networks

e convolutional neural networks (convnets or
CNNs) use filters that are “convolved with”
(matched against all positions of) the input

* informally, think of convolution as “perform
the same operation everywhere on the input
in some systematic order”

e CNNs are often used in NLP to convert a
sentence into a feature vector

Filters

* for now, think of a filter as a vector in the word
vector space

* the filter matches a particular region of the space
* “match” = “has high dot product with”

Convolution

x = not that great

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great

consider a single convolutional filter w &]Rd

55

Convolution

compute dot product of filter and each word vector:

x = not that great
W

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great

C1 — W - X1q.d

56

Convolution

compute dot product of filter and each word vector:

x = not that great
\" 4

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
C1 — W X1.d

Co — W - Xd1+1:2d

57

Convolution
compute dot product of filter and each word vector:

x = not that great
W

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
C1 — W - X1.d
Co — W - Xd+1:2d

C3 = W * X24+1:3d

58

Convolution

x = not that great

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
€1 = W X1:d
C2 = W * Xq+1:2d
C3 = W * X2d+1:3d
Note: it’s common to add a bias b and use a nonlinearity g:

c1 =¢g(wW-x1.4+b)

59

Convolution

x = not that great

x=1[04..09 02..0.7 03..0.6]"
_ VAN AN J
Y Y Y

vector for not vector for that vector for great
C1 — W - X1.d
Co — W - Xd+1:2d

C3 = W * X24+1:3d

c = “feature map” for this filter,

has an entry for each position in input (in this case, 3 entries)

60

Pooling

x = not that great

how do we convert this into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in c

CT — YW ART.d
Co = W * XJd+1:2d

C3 = W * X24+1:3d

Pooling

x = not that great

how do we convert this into a fixed-length vector?
use pooling:
max-pooling: returns maximum value in ¢
average pooling: returns average of values in c

CT — W “»1:d

Co — W - Xd1+1:2d

then, this single filter w produces a single feature
value (the output of some kind of pooling).

in practice, we use many filters of many different
lengths (e.g., n-grams rather than words).

62

Convolutional Neural Networks

“convolutional layer” = set of filters that are convolved
with the input vector (whether x or hidden vector)

could be followed by more convolutional layers, or by a
type of pooling

filters of varying n-gram lengths commonly used (1- to
5-grams)

CNNs commonly used for character-level processing;
filters look at character n-grams

e see demo

