TTIC 31190: Natural Language Processing
Assignment 2: Text Classification

Instructor: Kevin Gimpel
Assigned: Friday, April 13, 2018
Due: 6:00 pm, Monday, April 30, 2018
Submission: email to kgimpel@ttic.edu

Submission Instructions

Package your report and code in a single zip file or tarball, name the file with your full name followed
by “_hw2”, and email the file to kgimpel@ttic.edu by 6:00 pm on Monday, April 30.

Collaboration Policy

You are welcome to discuss assignments with others in the course, but your code and report should be
written individually.

1 Implementation/Experimentation with Linear Text Classifiers (50 points)

You will implement and experiment with simple ways of building text classifiers based on linear models.
Consider a classifier defined by the function classify:

classify(x, w) = argmax score(x,y, w)
yeL
where x is a textual input, y is an output class label, £ is the space of all possible classification labels,
and the parameters are contained in the parameter (weight) vector w. The score function is defined:

SCOI‘G(:I}7 Y, W) = Z wlfz(a:, y)
i
where each f; is a feature function and w; is the corresponding weight of the feature function.

Provided Data:

* sst3.zip: contains sst3.{train,dev,devtest,train-full-sentences}; 3-way senti-
ment analysis of movie reviews, adapted from the 5-way dataset from Socher et al. (2013). Each
line in each file contains a textual input followed by a tab followed by an integer containing the
gold standard label. The label set £ is {0, 1,2}, where 0 is negative sentiment, 1 is neutral, and
2 is positive sentiment. Note that the t rain file has some lines that are complete sentences and
other lines that are constituents within sentences, while dev and devtest contain only complete
sentences. The file with suffix train-full-sentences contains only the complete sentences
from the train file. You do not need to use train-full-sentences. Training on train usu-
ally works better. We provide t rain-full-sentences since you may want to refer to it when
designing features or doing analysis.

1.1 Building a Linear Classifier (24 points)

Implement a linear model for 3-way sentiment classification using the features and loss function speci-
fied below.

Learning:
For learning, use the perceptron loss function:

lossperc(, y, W) = —score(z,y, w) + max score(x,y’, W)
y'e

We will denote our training dataset by 7 = {(x(?, y(i)>}£‘1, where 3 € L is the label of (). We want
to minimize the perceptron loss function on the training set 7, i.e.:

||
W = argmin Z lossperc(a:(i), y D w)
W=t

We can solve this optimization problem by using stochastic subgradient descent (SSD). The update rule
for the above loss for a single weight w; and a single training example (", (")) has the following form:

Olossperc(a:(i), y®, w)

wj < wi —1n
j j .
ow;

where 7 is the step size or learning rate. For a linear model, entry j in the subgradient is:

Olossperc (€, Y, W)

awj = *fj(may) +fj(w’ClaSSifY(mv‘N))

So, the update rule becomes:
wj < w; +nfi(xD, D) —nfi(x?, classity(z®, w))

That is, update the weight w; by adding the value of the feature function f; applied to the given training
example (2", y()) (scaled by 1) and subtract the value of the feature function f; applied to the given
input () paired with the predicted label classify(z¥), w) (again scaled by 7). If y(?) = classify(x®), w),
i.e., if the current classifier is correct, then the terms will cancel for all weights and no update will be
made to w for (z(, y(®).

Classifying held-out data:

Once you have an estimate w, use it to classify the held-out data (DEV or DEVTEST) by calling
classify (z, W) for each « in the held-out dataset. As the evaluation metric, compute the prediction accu-
racy, that is, the percentage of instances that were classified correctly.

Features:
Implement unigram binary features for your text classifier using the following feature template:
o0 (x,y) = I[y = label] A I[z contains word]

Using a feature count cutoff of 1, instantiate this feature template for all (label, word) pairs observed in
your training data. That is, create a binary feature for each word in an input () in the training data T,
paired with its observed label y(*). Create a weight w for each feature. This is the first thing you should
do in your program after reading in the training data. (Hint: When I did this, I found 36,964 features in
T, i.e., 36,964 instances of the unigram binary feature template. This also means that my weight vector
w has 36,964 entries in it.)

Experimental details:

Experiment with your implementation. Set the initial values of the weights (w) to zeroes. Run SSD for
N epochs over the training set (/N = 20 is likely enough), using a mini-batch size of 1 (i.e., “online”) and
a fixed stepsize of n = 0.01. An epoch is defined as processing all examples in 7. On each epoch, you
can simply loop through 7 in order.

Periodically during training, compute the classification accuracy on DEV using your current weights. I
computed classification accuracy on DEV every 20,000 examples within each epoch, then again at the
end of each epoch. Each time your compute classification accuracy on DEV, check if the DEV accuracy is
the highest seen so far. If so, compute the classification accuracy on DEVTEST.

After you finish training for IV epochs, report the best accuracy achieved on DEV and the accuracy on
DEVTEST corresponding to the single model that achieved the best accuracy on DEV. This practice is
often called early stopping because it correspond to using a model from somewhere in the middle of
the training procedure (based on DEV accuracy) rather than using the model at the end of training.
Report your results and submit your code.

(Hint: my best DEV accuracy tended to be in the range of 64% to 66%, depending on how often I com-
puted DEV accuracy and how many total epochs (V) I trained for. The models with these best DEV
accuracies typically reached 55.5% to 56.5% on DEVTEST. Your results may vary, but hopefully they are
close to these ranges.)

1.2 Hinge Loss (4 points)

Let’s define hinge loss as follows:

1Osshinge(mv Y, W) = —SCOI‘G(ZL’, Y, W) + maz((SCOI‘G(QL‘, ylv W) +]I[y 75 yq)
y'e

with subgradient entry j as follows:

Olosshinge (€, Y, W)

= —fj(x,y) + f;(x, costClassify(x, w))
ﬁwj

where costClassify(x, w) is defined:

costClassify (z, w) = argmax (score(x, y', w) + I[y # ¢/])
y' el

The SSD update rule for hinge loss can be derived following the same line of reasoning as for the
perceptron loss above.

Implement and experiment with minimizing hinge loss instead of perceptron loss. Use the same step
size (1) and number of epochs (V) as above. Also as above, compute DEV accuracy periodically during
training and compute DEVTEST accuracy when you see a new best accuracy on DEV. Report your best
DEV accuracy and the corresponding DEVTEST accuracy. Hint: You should see increases in accuracy on
DEV and DEVTEST of 1 to 3% compared to using the perceptron loss.

1.3 Feature Weight Analysis (4 points)

Inspect the learned feature weights in the model from 1.2 (i.e., trained with hinge loss) that has the
highest accuracy on DEV. In your report, list the 10 features with the largest weights for each label.
Describe what you observe in these features. Is anything noteworthy? How would you characterize
the words that appear for each label?

You can also look at the features with the lowest (i.e., most negative) weights, but they are often harder
to interpret. (Hint: as a sanity check, my highest weighted feature for label 0 is the one for the word
“lacks” and for label 2 it is the feature for the word “pleasant”. Your weights may vary from mine, but
hopefully these two words are strongly indicative of these respective labels in your trained model.)

1.4 Error Analysis (8 points)

Inspect the errors made on DEVTEST by the same model from 1.3 above (the model trained with hinge
loss that has the highest accuracy on DEV). After looking at a few errors, you will likely notice repeated
patterns among them. You should attempt to identify the primary cause of the misclassification by your
model. The error could be due to issues with the annotations, challenging linguistic phenomena in the
inputs, insufficient training data, inadequate features, overfitting during training, etc. For some of these
error categories, you may want to look through your training data and learned model file to identify
the cause of the error.

To get you started thinking about error categories, here are some potential categories (some of which we
discussed in class):

* incorrect (or at least questionable) gold standard annotation

* negation

¢ multiple sentiments with most important sentiment at the end
¢ word sense ambiguity

¢ unknown words, i.e., words in DEV or DEVTEST but not in the training data, and therefore have no
features (for example, the word “treasures” appears in DEVTEST but not in the training data)

The above list is by no means exhaustive, and you should look for other categories as you go through
your model’s errors. You can also design subcategories of any of the above categories if you feel they
are too general.

In your report, list 20 errors your model made on DEVTEST and, for each, manually choose one error
category that fits best. When listing an error in your report, include the sentence, its gold standard
label, your model’s predicted label, and your annotation of the error category.

1.5 Feature Engineering (10 points)

Hopefully your error analysis gave you lots of ideas for features to add to your model! In this section,
you will brainstorm new feature templates, implement them, train using hinge loss, and report the
results on DEV and DEVTEST (using the same experimental procedure as used above in 1.2). Hopefully
you can find features that both increase your overall DEVTEST accuracy while also addressing some of
the error categories you identified above. After learning feature weights for your new features, inspect
the learned weights and discuss them in your report: do the feature weights match your expectations
or are they different? Looking at the feature weights will help you to determine if the feature templates
you designed are helping you to fit the data better in the way that you expected them to.

Define two new feature templates, implement them in your model, and experiment with them. For
each feature template, describe it in words (and also formally if that will help us understand it),
report the results of running experiments with the new features, and discuss what you observe
about their learned weights. You will receive 5 points for each of the two new feature templates you
develop (so they should not be trivial variations of each other).

If you impress us by coming up with especially interesting features that lead to significant accuracy
gains, you will receive extra credit.

Hints: Remember that your new feature templates can be any function of the entire « and the label y
(as long as the function looks at the label y, as we discussed in class). For example, a feature template
can look at more than one word in x, consider the positions of the words in addition to their pres-
ence/absence, count occurrences of words instead of merely checking if they are present, and look at
subword structure, among other things. Features can also consider characteristics of the entire sentence
(e.g., its length, the number of capitalized words it contains, etc.) and be defined based on external
resources like stemmers, lemmatizers, and part-of-speech taggers.

References

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. (2013). Recursive deep
models for semantic compositionality over a sentiment treebank. In Proceedings of EMNLP. [1]

	Implementation/Experimentation with Linear Text Classifiers (50 points)

