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Overview

� We introduce cube summing, which extends dynamic 
programming algorithms for summing with non-local features

� Inspired by cube pruning (Chiang, 2007; Huang & Chiang, 2007)

� We relate cube summing to semiring-weighted logic 
programming

� Without non-local features, cube summing is a novel semiring

� Non-local features break some of the semiring properties

� We propose an implementation based on arithmetic circuits
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� Background
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� Cube Summing
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Fundamental Problems

� Two fundamental problems we often need to solve 

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model
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Fundamental Problems

� Two fundamental problems we often need to solve 

forward and backward algorithms

Viterbi algorithm

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model

yx
example: HMM

is a tag sequenceis a sentence,
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Fundamental Problems

� Two fundamental problems we often need to solve 

inside algorithm

probabilistic CKY

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model

yx
example: PCFG

is a sentence, is a parse tree
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Fundamental Problems

� Two fundamental problems we often need to solve 
unsupervised: 

self-training,  
Viterbi EM

EM,
hidden-variable 

models

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model

supervised:

perceptron,
MIRA,
MERT

log-linear models
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Dynamic Programming

� Consider the probabilistic CKY algorithm

CX,i−1,i = λX→wi

CX,i,k = max
Y,Z∈N ;j∈{i+1,...,k−1}

λX→Y Z × CY,i,j × CZ,j,k

goal = CS,0,n
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proof

axiom

theorem

Weighted Logic Programs

derivation

rule probability

chart item

ExampleProbabilistic CKY

CX,i,j

λX→Y Z

of   the    list

PP

NP
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� In semiring-weighted logic programming, theorem and 
axiom values come from a semiring

proof

axiom

theorem

Weighted Logic Programs

derivation

rule probability

chart item

ExampleProbabilistic CKY

CX,i,j

λX→Y Z

of   the    list

PP

NP
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Features

� Recall our model:

� The                 are feature functions and the        are 
nonnegative weights

p(y | x) ∝
M∏

m=1

λhm(x,y)m

hm(x, y) λm
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Features

� Recall our model:

� The                 are feature functions and the        are 
nonnegative weights

� Local features depend only on theorems used in an 
equation (or any of the axioms), not on the proofs of 
those theorems

p(y | x) ∝
M∏

m=1

λhm(x,y)m

CX,i,k = max
Y,Z∈N ;j∈{i+1,...,k−1}

λX→Y Z × CY,i,j × CZ,j,k

hm(x, y) λm
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There near the   top    of   the    list    is  quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP
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There near the   top    of   the    list    is  quarterback Troy Aikman

S

RB IN

NP

NP

NP
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PP NP

PP
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Features

� Recall our model:

� The                 are feature functions and the        are 
nonnegative weights

� Local features depend only on theorems used in an 
equation (or any of the axioms), not on the proofs of 
those theorems

� Non-local features depend on theorem proofs

p(y | x) ∝
M∏

m=1

λhm(x,y)m

CX,i,k = max
Y,Z∈N ;j∈{i+1,...,k−1}

λX→Y Z × CY,i,j × CZ,j,k

hm(x, y) λm
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There near the   top    of   the    list    is  quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

“NGramTree” feature
(Charniak & Johnson, 2005)
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There near the   top    of   the    list    is  quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

“NGramTree” feature
(Charniak & Johnson, 2005)

Non-local features break dynamic programming!
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Other Algorithms for Approximate Inference

� Beam search (Lowerre, 1979)
� Reranking (Collins, 2000)
� Algorithms for graphical models

� Variational methods (MacKay, 1997; Beal, 2003; Kurihara & Sato, 2006)
� Belief propagation (Sutton & McCallum, 2004; Smith & Eisner, 2008)
� MCMC (Finkel et al., 2005; Johnson et al., 2007)
� Particle filtering (Levy et al., 2009)

� Integer linear programming (Roth & Yih, 2004)
� Stacked learning (Cohen & Carvalho, 2005; Martins et al., 2008)
� Cube pruning (Chiang, 2007; Huang & Chiang, 2007)
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Other Algorithms for Approximate Inference

� Beam search (Lowerre, 1979)
� Reranking (Collins, 2000)
� Algorithms for graphical models

� Variational methods (MacKay, 1997; Beal, 2003; Kurihara & Sato, 2006)
� Belief propagation (Sutton & McCallum, 2004; Smith & Eisner, 2008)
� MCMC (Finkel et al., 2005; Johnson et al., 2007)
� Particle filtering (Levy et al., 2009)

� Integer linear programming (Roth & Yih, 2004)
� Stacked learning (Cohen & Carvalho, 2005; Martins et al., 2008)
� Cube pruning (Chiang, 2007; Huang & Chiang, 2007)

� Why add one more?
� Cube pruning extends existing, widely-understood dynamic 

programming algorithms for decoding
� We want this for summing too
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Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion
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Cube Pruning
(Chiang, 2007; Huang & Chiang, 2007)

� Modification to dynamic programming algorithms for 
decoding to use non-local features approximately

� Keeps a k-best list of proofs for each theorem

� Applies non-local feature functions on these proofs when 
proving new theorems
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There  near  the  top  of  the  list  is  quarterback Troy Aikman

S

VP

NP

NP

VBZ

0 1 7

NN NNP NNP

NP

PP

NP

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP
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CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

CNP,0,1 =

CPP,1,7 =

There

RB

NP

There

NNP

NP

There

EX

NP

0.2 0.1 0.05

0.4 0.3 0.02

near the   top    of   the    list

IN

NP

PP

PP

NP

DT NN DT NNIN

NP

near the   top    of   the    list

IN

NP

PP

PP

NP

DT JJ DT NNIN

NP

near the   top    of   the    list

RB

NP

PP

PP

NP

DT NN DT NNIN

NP
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CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.08 0.04 0.02

0.03 0.0150.06

0.1

0.4

0.3

0.002 0.0010.0040.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the   top    ...

...

IN

NP

PP

DT JJ

NP

near the   top    ...

...

IN

NP

PP

DT NN

NP

RB

near the   top    ...

...

NN

NP

PP

DT

NP

0.05
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λNP→NP PP = 0.5

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.08  × 0.5 0.04  × 0.5 0.02  × 0.5

0.03  × 0.5 0.015  × 0.50.06  × 0.5

0.1

0.4

0.3

0.002  × 0.5 0.001  × 0.50.004  × 0.50.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the   top    ...

...

IN

NP

PP

DT JJ

NP

near the   top    ...

...

IN

NP

PP

DT NN

NP

RB

near the   top    ...

...

NN

NP

PP

DT

NP

0.05
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CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.04 0.02 0.01

0.015 0.00750.03

0.1

0.4

0.3

0.001 0.00050.0020.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the   top    ...

...

IN

NP

PP

DT JJ

NP

near the   top    ...

...

IN

NP

PP

DT NN

NP

RB

near the   top    ...

...

NN

NP

PP

DT

NP

0.05
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0.2

0.04  × 0.2 0.02  × 0.2 0.01

0.015 0.00750.03

0.1

0.4

0.3

0.001 0.00050.0020.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the   top    ...

...

IN

NP

PP

DT JJ

NP

near the   top    ...

...

IN

NP

PP

DT NN

NP

RB

near the   top    ...

...

NN

NP

PP

DT

NP

0.05

There near the   top    of   the    list

EX IN

NP

NP

NP

PP

PP

NP

DT NN DT NNIN

NP

λThere EX NP NP PP IN near = 0.2
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0.2

0.04  × 0.2 0.02  × 0.2 0.01  × 0.1

0.015  × 0.6 0.0075  × 0.40.03  × 0.6

0.1

0.4

0.3

0.001  × 0.1 0.0005  × 0.20.002  × 0.10.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the   top    ...

...

IN

NP

PP

DT JJ

NP

near the   top    ...

...

IN

NP

PP

DT NN

NP

RB

near the   top    ...

...

NN

NP

PP

DT

NP

0.05

λ
There EX NP NP PP IN near

= 0.2

λ
There RB NP NP PP IN near

= 0.6

λThere NNP NP NP PP IN near = 0.1

λThere EX NP NP PP RB near = 0.1

λThere RB NP NP PP RB near = 0.4

λThere NNP NP NP PP RB near = 0.2
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0.2
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0.2
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There
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DT NN

NP

RB
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...

NN
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DT
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0.050.1
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0.2

0.008 0.004 0.001

0.009 0.0030.018

0.4

0.3

0.0001 0.00010.00020.02

CNP,0,1

CPP,1,7

CNP,0,7

There

RB

NP

There

NNP

NP

There

EX

NP

There near the   top ...

RB IN

NP

NP

NP

PP

DT NN

NP

...

There near the   top ...

EX IN

NP

NP

NP

PP

DT NN

NP

...

There near the   top ...

RB IN

NP

NP

NP

PP

DT JJ

NP

...

0.050.1

0.018 0.0080.009
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Clarification
� Cube pruning does not actually expand all k2 proofs as 

this example showed

� It uses an approximation that only looks at O(k) proofs

� But since we are summing, we want to look at as many 
proofs as possible

� We use the algorithm that we just showed as the basis 
for cube summing (we call it cube decoding – details in 
paper)
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Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion
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CNP,0,1 =

CPP,1,7 =

There

RB

NP

There

NNP

NP

“residual”

There

EX

NP

0.2 0.1 0.05

0.4 0.3 0.02

near the   top    ...

...

IN

NP

PP

DT JJ

NP

near the   top    ...

...

IN
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PP

DT NN

NP

RB

near the   top    ...

...

NN

NP

PP

DT

NP



lti

CNP,0,1 =

CPP,1,7 =

There

RB

NP

There

NNP

NP

“residual”

There

EX

NP

0.2 0.1 0.05

0.4 0.3 0.02 0.05

0.03

near the   top    ...

...

IN

NP

PP

DT JJ

NP

near the   top    ...

...

IN

NP

PP

DT NN

NP

RB

near the   top    ...

...

NN

NP

PP

DT
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0.2

0.008 0.004 0.001

0.009 0.0030.018

0.4

0.3

0.0001 0.00010.00020.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.0287CNP,0,7 0.018 0.0080.009

� Computation of local and non-local features is same as before
� Only difference is computing the residual for the result
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0.2
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0.0090.018
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0.0287CNP,0,7 0.018 0.0080.009

0.0084
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0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.01 0.00250.005

0.0287CNP,0,7 0.018 0.0080.009

0.0084



lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.01  × 0.5 0.0025  × 0.50.005  × 0.5

0.0287CNP,0,7 0.018 0.0080.009

0.0084

λNP→NP PP = 0.5

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP
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0.2
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0.0287CNP,0,7 0.018 0.0080.009

0.0084
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0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084
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0.2
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0.0090.018
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0.3

0.02
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0.2
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0.4

0.3
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0.2

0.008

0.0090.018

0.4

0.3

0.02

0.0108

0.05

CNP,0,1

CPP,1,7
0.05 0.03

0.00075

0.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084

=0.0287 0.0084 0.0108 0.000750.00875
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Summary

� Maintain residual sum of all proofs not in k-best list

� Redefine operations to update the residual as necessary

� Result is approximate k-best proof list for goal and 
approximate sum of all other proofs of goal

� When k = ∞, result is exact
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Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion
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Semirings

� A semiring is a tuple such that:
� is associative and commutative
� is associative and distributes over 
�

10,,,, ⊗⊕A
AAA →×⊕ :

AAA →×⊗ :

000 =⊗=⊗ aa
,aa =⊗1
,, aaAa =⊕∈∀ 0

⊕

Inside
Viterbi

ASemiring ⊕ 10⊗
ba + ab

ab),max( ba
0
0 1

1
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Non-local features break some of the semiring 
properties!

(see paper for details)
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k-best proof
Goodman, 1999

k-best+residual

Semirings
“Generalized” Semirings

Viterbi proof
Goodman, 1999

cube decoding

cube summing

all proof
Goodman, 1999

Viterbi
Viterbi, 1967

ignore
proof

inside
Baum et al., 1970
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Implementation
� Several implementation tools exist for dynamic 

programming
� Dyna (Eisner et al., 2005) and Goodman (1999) assume 

semirings
� Hypergraphs (Klein & Manning, 2001; Huang, 2008) do not 

require semirings but are aimed at decoding

� These could be extended for cube summing, but we 
instead use a lower-level formalism: arithmetic circuits
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Arithmetic Circuits
� Explicitly represent computations to be performed using 

a directed graph
� Operators and operands are nodes in the graph
� A value is associated with each node
� Operators point to their operands

� Allow automatic differentiation in the reverse mode 
(Griewank & Corliss, 1991) for efficient gradient 
computation
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Example

0.5

...

...

+

+
+

CNP,0,1

CPP,1,7

CNP,0,7

λNP→NP PP
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Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
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Conclusion and Ongoing Work
� We have described cube summing, a technique for 

approximate summing using dynamic programming with 
non-local features

� With only local features, cube summing is a semiring that 
generalizes those in common use

� Some semiring properties are broken by non-local 
features but an implementation based on arithmetic 
circuits can be used

� We are currently using cube summing to train a log-
linear syntactic translation model with hidden variables
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Thanks!

Cube Summing, 
Approximate Inference with 

Non-Local Features, 
and Dynamic Programming 

without Semirings

Kevin Gimpel and Noah A. Smith


