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1 Structured Support Vector Machine
Reranking

We now describe the reranking algorithm of Yadol-
lahpour et al. (2013) and discuss how we applied it
to MT.

LetY,; = {ygl) . .yZ(M)} denote the set of M
translations for source sentence x;, and YIR the
set of reference translations.! Note that frequently
it is the case that Y; N Y/ = @. Let y} de-
note the highest-quality translation in the set, i.e.,
y; = argmingcy, UYE,y), where £(YE y) is the
negated BLEU+1 score (Lin and Och, 2004) of y.
The quality of solution y; leads to an upper-bound
on the reranker performance since we must select
one solution from Y.

The reranking model assigns a score .S, to each
translation in the set, i.e., S,(y) = aTy(z,y),
where a and v (z,y) are the reranker weights
and features respectively. The reranking features
can be quite complex, as decoding simply finds
the highest scoring solution in the set: y; =
argmaxycy, Sr(y)-

The objective of the reranker (picking the best so-
lution y; from the set) is formulated as a structured
SVM (Tsochantaridis et al., 2005). For training, we
use the following loss function, defined for a hypoth-
esis y;:

)

i.e., the negated BLEU+1 score of translation y;
relative to that of the best translation in this set

"For conciseness, we do not explicitly show the derivation

variable th ) associated with translation J,butitis always avail-
able for computing features for yEJ ).

(y}). This relative loss forces the reranker to fo-
cus its effort on training instances where it is under-
performing w.r.t. the set, rather than in absolute
terms. For instance, consider two input sentences
1, 7 with two translations each. The translations for
sentence ¢ have BLEU+1 scores of 65 and 45 while
the translations for sentence j have scores 40 and
35. Using only absolute ¢ in the reranking objective
would emphasize sentence 7, since both translations
for 7 have low BLEU compared to translations for
1. Using the relative loss correctly shifts the focus
to ¢ because an incorrect choice in that set is much
costlier (difference of 20 points) than an incorrect
choice in set j (5 points).

We learn the reranker parameters a by solving the
following quadratic program:

min ||a\|§ +C Z &i (2a)
@t i€[n]

(2b)

& >0, vy €Y \y;, (20)

Intuitively, (2b) maximizes the (soft) margin be-
tween the score of the oracle solution and all other
solutions in the set. The violation in the margin &; is
scaled by the loss of the solution. Thus if in ad-
dition to y; there are other good solutions in the
set, the margin for such solutions will not be tightly
enforced. On the other hand, the margin between
y; and bad solutions will be very strictly enforced.
We solve (2) via the 1-slack cutting-plane algorithm
of Joachims et al. (2009). We used OOQP (Gertz
and Wright, 2003) to solve the quadratic program



in the inner loop, which uses HSL, a collection of
Fortran codes for large-scale scientific computation
(www.hsl.rl.ac.uk).
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