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Abstract

Variational autoencoders (VAEs) are widely
used for latent variable modeling of text. We
focus on variations that learn expressive prior
distributions over the latent variable. We find
that existing training strategies are not effec-
tive for learning rich priors, so we add the
importance-sampled log marginal likelihood
as a second term to the standard VAE objective
to help when learning the prior. Doing so im-
proves results for all priors evaluated, includ-
ing a novel choice for sentence VAEs based
on normalizing flows (NF). Priors parameter-
ized with NF are no longer constrained to a
specific distribution family, allowing a more
flexible way to encode the data distribution.
Our model, which we call FlowPrior, shows
a substantial improvement in language model-
ing tasks compared to strong baselines. We
demonstrate that FlowPrior learns an expres-
sive prior with analysis and several forms of
evaluation involving generation.

1 Introduction

Variational autoencoders (VAEs; Kingma and
Welling, 2014) have been widely applied to many
natural language processing tasks (Bowman et al.,
2016; Zhang et al., 2016; Shen et al., 2017; Kim
et al., 2018; Fang et al., 2019; Chen et al., 2019).
VAEs provide statistical transparency in describing
observations in a latent space and flexibility when
used in applications that require directly manipulat-
ing the learned representation (Hu et al., 2017). Re-
cent work (Li et al., 2020) has combined VAEs with
BERT/GPT in representation learning and guided
generation. However, the representation capacity
of VAEs is still limited for modeling sentences due
to two main reasons.

One is known as the posterior collapse problem,
in which the posterior “collapses” to the prior and
the generator learns to ignore the latent variable
(Bowman et al., 2016). Many methods have been
developed to address it: annealing (Fu et al., 2019),

weakening the capacity of the generator (Semeniuta
et al., 2017; Yang et al., 2017), manipulating train-
ing objectives (Burda et al., 2016; Higgins et al.,
2017; Zhao et al., 2017), including the use of free
bits (FB) (Kingma et al., 2016; Li et al., 2019), and
changing training (He et al., 2019).

The other reason is the restrictive assumption of
the parametric forms for the prior and approximate
posterior. While these forms are computationally
efficient, they limit the expressivity of the model.
The main existing solutions (Kingma et al., 2016;
Tomczak and Welling, 2018; Razavi et al., 2019)
focus on enriching the variational posterior, while
other work focuses on learning an expressive prior
(Tomczak and Welling, 2018; Serban et al., 2017;
Chen et al., 2017).

In this paper, we follow the latter line of research
and draw upon methods in building and learning ex-
pressive priors. We first show empirically that the
original VAE objective, the evidence lower bound
(ELBO), is not effective when learning priors. The
issue is not solely due to posterior collapse since
it is not resolved by using modifications based on
free bits. To address this issue, we propose using a
combined objective, adding to the ELBO a second
objective (denoted MIS) which is a different lower
bound on the log marginal likelihood obtained us-
ing importance sampling (Burda et al., 2016).

Using the combination of the ELBO and MIS, we
compare multiple choices for the prior, including a
mixture of Gaussians, a prior based on a variational
mixture of posteriors (VampPrior; Tomczak and
Welling, 2018), and a prior based on normalizing
flows (NF), specifically real NVP transformations
(Dinh et al., 2016). Using a real NVP prior entails
creating an invertible mapping from a simple base
distribution to the prior distribution of the latent
variable in a VAE. This choice allows a flexible
prior distribution that is not constrained to a spe-
cific parametric family. The hope is that it would
be better at modeling the data distribution.



We perform an empirical evaluation of priors
and objective functions for training VAE sentence
models on four standard datasets. We �nd the best
performance overall when using the �ow-based
prior and the combined objective in the training ob-
jective. We refer to this setting asFlowPrior. The
generation of prior samples with FlowPrior com-
ports to the training distribution while maintaining
a higher diversity than competing models in our
quantitative and qualitative evaluation.

To summarize, this paper contributes: (1) a strat-
egy for improved training of sentence VAEs based
on combining multiple lower bounds on the log
marginal likelihood; (2) the �rst results applying
real NVP to model the prior in sentence VAEs; and
(3) comprehensive evaluation and analysis with
three expressive priors and training objective varia-
tions.

2 Background

Variational autoencoders(VAEs; Kingma and
Welling, 2014) are a popular framework for learn-
ing latent variable models with continuous latent
variables. Letx be the observed variable andz the
latent variable. The model factorizes the joint dis-
tribution overx andz into a priorp (z) and a gen-
eratorp� (x j z). Maximizing the log marginal like-
lihood logp(x) is intractable in general, so VAEs
introduce an approximate posteriorq� (z j x) pa-
rameterized using a neural network (i.e., an “in-
ference network”), and replace the log marginal
likelihood with theevidence lower bound(ELBO):

logp(x) � Eq� (zjx) [logp� (xjz)]

� KL( q� (zjx) jj p (z)) (1)

Maximizing the right-hand side of the equation
above can be viewed as a regularized autoencoder
in which the �rst term is the negative reconstruction
error and the second is the negative KL divergence
between the approximate posteriorq� (zjx) and the
latent variable priorp (z). It is common in practice
to �x the prior p (z) to be a standard Gaussian
distribution and only learn� and� (Bowman et al.,
2016; Yang et al., 2017; Shen et al., 2017).

While constraining the prior to be a �xed stan-
dard Gaussian is common, it is not necessary for
tractability. Researchers have found bene�t from
using richer priors and posteriors (Rezende and
Mohamed, 2015; Kingma et al., 2016; Chen et al.,
2017; Ziegler and Rush, 2019; Ma et al., 2019).
In this paper, we consider investigating alternative

priors while still using the standard Gaussian form
for the approximate posterior.

3 Choices for Prior Families

We now describe the three kinds of priors we will
compare in our experiments. The �rst two are
based on Gaussian mixtures (Sec. 3.1) and the third
is based on normalizing �ows (Sec. 3.2). We take
these three prior families into consideration be-
cause they represent the three main categories of
work in learning priors: simple Gaussian mixtures
(usually as baselines), de�ning the prior as a func-
tion of the approximate posterior (Tomczak and
Welling, 2018; Chen et al., 2018), and �ow-based
priors (Chen et al., 2017; Ziegler and Rush, 2019;
Ma et al., 2019; Lee et al., 2020). Note that we
do not make any changes to the approximate poste-
rior distribution. That is, the approximate posterior
follows a Gaussian distribution with a diagonal
covariance matrix as in standard VAEs.

3.1 Gaussian Mixture Priors

Our �rst choice is a uniform mixture ofK Gaus-
sians (MoG):

p (z) =
1
K

KX

k=1

f (z; � k ; diag(� 2
k )) (2)

wheref (z; �; �) is the density function of ad-
dimensional Gaussian with mean� and covariance
matrix � . The� k and� k are learnable parameter
vectors with dimensionalityd (which is 32 in our
experiments). This prior was used as a baseline by
Tomczak and Welling (2018). We refer to a VAE
that uses this prior asMoG-VAE.

Tomczak and Welling (2018) extend MoG-VAE
to a “Variational Mixture of Posteriors” prior
(VampPrior). This approach parameterizes the
prior using a mixture of Gaussians with compo-
nents given by a variational posterior conditioned
on learnable “pseudo-inputs”:

p (z) =
1
K

KX

k=1

q� (z j uk ) (3)

whereK is the number of pseudo-inputs, each of
which is denoteduk . Pelsmaeker and Aziz (2020)
applied this idea to text modeling and we follow
their strategy for de�ning pseudo-inputs. That is,
eachuk consists of a sequence of embeddings that
have the same dimensionality as word embeddings.
For each componentk, the lengths of pseudo-inputs



can vary; they are sampled based on the statistics
of the lengths in the training set. We refer to a VAE
with this prior asVamp-VAE.

3.2 Flow-based Priors

Our third choice for a prior distribution is to lever-
age normalizing �ows (NF). A normalizing �ow is
a sequence of invertible, deterministic transforma-
tions. By repeatedly applying the rule for change of
variables (see the Appendices for details), the base
density is transformed into a more complex one.
Networks parameterized using NF can be trained
through exact maximum log-likelihood computa-
tion. Exact sampling is performed by drawing a
sample from the base distribution and performing
the chain of transformations. This allows a �exible
prior and is expected to have more expressive latent
components compared to those based on Gaussian
mixtures.

Computing the Jacobian of functions with high
dimension and the determinants of large matrices
(i.e., the two main computations in NF) are very
expensive. Our �ow-based prior usesreal-valued
non-volume preserving(real NVP) transformations
(Dinh et al., 2016) which are ef�cient in both train-
ing and sampling. The transformations are based
on scaleandtranslationoperations.1 It is worth
noting that these two operations are not used in
computing the Jacobian determinant and inverse.
So one can design arbitrarily complex operations
that allow a �exible transformation without incur-
ring large computational cost.

More speci�cally, we apply real NVP as a prior
by creating an invertible mapping between a base
distributionp0(z0) (in our case,z0 � N (0; I) ) and
the prior distributionp (zL ) in the VAE:

zL = f L � f L � 1 � ::: � f 1(z0) (4)

where zL is the sentence latent variable and
f 1; f 2; :::; f L are all bijective functions.

Using the change-of-variables theorem, given a
latent variablezL , we can compute the exact den-
sity under the prior with the “image”z0 acquired
by inverting the transformation:

z0 = f � 1
1 � ::: � f � 1

L � 1 � f � 1
L (zL ) (5)

logp (zL ) = log p0(z0) �
LX

l=1

log jdet(
@fl (zl � 1)

@zl � 1
)j

(6)

1More details about normalizing �ows and real NVP are
in the Appendices.

We refer to a VAE with a real NVP prior as real
NVP-VAE. We �nd our best setting to consist of a
real NVP prior and the combined objective in Sec-
tion 4.1 and we refer to this setting asFlowPrior.

4 Objectives for Learning Priors in VAEs

ELBO. Our preliminary experiments found that,
when training with the standard ELBO, using more
sophisticated priors does not improve perplexity
compared to standard Gaussian priors (Table 3).
Though these priors could potentially be highly
multimodal, the learned prior parameters yield ap-
proximately unimodal forms (Figure 1, left).

Several approaches have been proposed to miti-
gate or avoid collapse in the approximate posterior.
One method that we include in our experiments is
a variation of KL divergence known as “free bits”
(FB) KL (Li et al., 2019; Kingma et al., 2016). Pos-
terior collapse is mitigated, but the VAE models
still do not bene�t much from expressive priors
(Tables 1-2). Pelsmaeker and Aziz (2020) made
similar observations with an improved FB objec-
tive. We speculate that these undesirable results
are due to the lack of learning signal for the prior
parameters.

Marginal Likelihood via Importance Sampling.
In the ELBO, the prior distribution only appears in
the KL term. As a consequence, the prior param-
eters receive a limited amount of learning signal.
The posterior network, by contrast, receives gradi-
ent updates from both the reconstruction and KL
terms. When minimizing the KL term the poten-
tially expressive prior density can “collapse” to a
unimodal form, as this may facilitate minimizing
the KL divergence between the approximate poste-
rior and prior.

We consider optimizing another objective, a dif-
ferent lower bound on the log marginal likelihood
obtained using importance sampling (Burda et al.,
2016):

log
1
N

NX

i =1

p� (xjz(i ) )p (z(i ) )
q� (z(i ) jx)

; s:t : z(i ) � q� (zjx)

wherex is an input in the training data andN is the
number of samples in use. This objective was pro-
posed as the training objective in the importance-
weighted autoencoder (IWAE; Burda et al., 2016),
and was shown to be a tighter lower bound on the
log marginal likelihood than the ELBO. In this pa-
per, we denote this objective by MIS.



In addition to providing a tighter lower bound,
MIS also increases the �exibility of the approxi-
mate posterior, as shown by Cremer et al. (2017).
By increasingN , the approximate posterior has
an implicit complex distribution that approaches
the true posterior, which may also be bene�cial in
learning an expressive prior.

Combination of the Two. However, MIS is not
necessarily optimal by itself for training VAEs.
Rainforth et al. (2018) prove that using MIS with
a large value ofN is detrimental in learning the
posterior, which is also shown in our empirical
evaluation in Table 3. If we only have MIS, the
approximate posteriorq only appears in the denom-
inator so learning seeks to make samples from the
posteriorq less likely underq, which could causeq
to become a poor proposal distribution. The ELBO,
with its reconstruction loss, appears helpful in learn-
ing a better posterior. Therefore, we optimize the
sum of the ELBO and MIS, which was proposed
by Rainforth et al. (2018).

4.1 Combined Training Objective

Our combined training objective then contains
three terms: MIS, reconstruction, and sample-based
KL. We drawN samples fromq� (zjx), and com-
pute the three terms using the same samples:

L (�; �;  ; x) = log
1
N

NX

i =1

p� (xjz(i ) )p (z(i ) )
q� (z(i ) jx)

+
1
N

NX

i =1

logp� (xjz(i ) ) � KL �; (x; f z(i )gN
i =1 )

s:t : z(i ) � q� (zjx) (7)

When training with the ELBO alone, one typically
uses a single sample fromq� (zjx). However, since
we draw multiple samples anyway in order to com-
pute MIS, we use those same samples for the re-
construction term, which can lead to more robust
gradients of that term than the standard approach
of using one sample.

The reason we use sample-based estimates for
the KL divergence is because our choices for the
prior preclude the possibility of a closed form
for the KL. We consider two different approaches
when computing sample-based KLs:standard KL
and a modi�ed one inspired by free bits (Li et al.,
2019; Pelsmaeker and Aziz, 2020; Kingma et al.,
2016), which we refer to asFB KL.

For standard KL, we use Monte Carlo estimation
in computing the KL divergence withN samples:

KL �; (x; f z(i )gN
i =1 ) =

1
N

NX

i =1

(log q� (z(i ) jx) � logp (z(i ) )) (8)

For the FB KL, we follow prior work (Kingma
et al., 2016) that replaces the KL with a hinge loss
term in each latent dimension:

FB KL �; (x; f z(i )gN
i =1 ) =

dX

j =1

max(�; KL j
�; (x; f z(i )gN

i =1 )) (9)

whereKL j
�; denotes the KL computed only for

dimensionj of the latent variable, and� is the
“target rate” hyperparameter.

4.2 Training Procedure

We describe our training procedure below for Flow-
Prior, which combines a real NVP prior with the
objective in Eq. 7. For simplicity, our description
only uses one inputx. In practice, we use mini-
batches with a stochastic gradient based optimizer.
All the parameters (�; �;  ) are updated simultane-
ously during training.

1. Draw N samplesz(1)
L ; z(2)

L ; :::; z(N )
L from the

inference network using the reparameterization
trick.

2. Perform the inverse transformation to get the
image of each point under the base distribution:
z(1)

0 ; z(2)
0 ; :::; z(N )

0 .

3. Compute the exact log likelihood of the sample
prior with change of variable theorem (Eq. 6).

4. Compute and backpropagate the loss (Eq. 7).

When using the other priors (standard Gaussian,
MoG, and VampPrior), we do not need steps 2 and
3 above because those priors can be computed di-
rectly without the inverse transformation or change
of variable theorem.

5 Experiments

5.1 Datasets

We consider four widely-used, publicly available
English datasets: the Penn Treebank (PTB) (Mar-
cus et al., 1993; Bowman et al., 2016), Yahoo (Yang
et al., 2017; He et al., 2019), Yelp sentiment (Shen
et al., 2017), and SNLI (Bowman et al., 2015).



5.2 Baselines

Our baselines includestandard VAEwith linear
KL annealing (Bowman et al., 2016);Cyc-VAE(Fu
et al., 2019) in which the KL term is reweighted
with a cyclical annealing schedule;Lag-VAE(He
et al., 2019) which updates the encoder multi-
ple times before each decoder update;VAE+FB
(Kingma et al., 2016; Chen et al., 2017) which re-
places the standard KL with FB (i.e., Eq. 9 with
N = 1 ); andPre-VAE+FB(Li et al., 2019) which
initializes the VAE with a pretrained autoencoder
and replaces standard KL with FB. We evaluated
these baselines using their open source implemen-
tations.2

In addition, we include two prior-learning base-
lines: MoG-VAE (Eq. 2) and Vamp-VAE (Eq. 3).
We follow Pelsmaeker and Aziz (2020) and set 100
components/pseudo-inputs. Unlike the earlier base-
lines, for which we used open source codebases,
we implemented the MoG-VAE and Vamp-VAE
models on top of our standard VAE implementa-
tion, which was also used for FlowPrior.

5.3 Implementation and Training Details

Across all the experiments for our implemented
baselines (i.e., standard VAE, MoG-VAE, Vamp-
VAE) and our proposed model FlowPrior, we fol-
low prior work (Kim et al., 2018; He et al., 2019; Li
et al., 2019) and use a single-layer LSTM encoder
and decoder with a 32-dimensional latent variable.
We use a batch size of 32 and train using SGD.3

5.4 Evaluation Metrics

Our evaluation measures language modeling per-
formance, the use of the latent variable, and the
quality and diversity of generations from the prior
and posterior. The metrics are listed below:
PPL: We estimate log marginal likelihood using
importance sampling (Burda et al., 2016) and cal-
culate perplexity on the test set.4

KL: We report the KL term in the ELBO on the
test set. When training with FB KL, we still report
standard KL. For standard VAE, we compute KL
with its closed-form expression. Otherwise, we
report the KL estimated with samples.

2The links to their implementations are in the Appendix.
3We use the open source implementations for other base-

lines. All models are trained with the simple linear annealing
schedule, with same hyperparameter search space. We run
each setting with 5 random seeds and report the medians.

4We use 1000 samples which appears to be more than suf�-
cient for estimation; Ziegler and Rush (2019) found that using
more than 50 samples did not even show much difference.

Model PPL(#) Recon(#) KL AU( " ) MI(" )

VAE 101.40 101.28 0.00 0 0.00
Cyc-VAE 107.73 101.17 2.01 5 1.24
Lag-VAE 100.25 100.41 1.04 3 0.79
VAE + FB 101.56 99.84 4.46 32 0.90
Pre-VAE + FB 96.35 94.52 8.15 32 6.30
MoG-VAE 98.22 100.54 0.00 0 0.00
MoG-VAE + FB 97.50 99.44 2.35 32 0.68
Vamp-VAE 98.27 100.56 0.00 0 0.00
Vamp-VAE + FB 97.83 99.53 2.31 32 0.72

FlowPrior 94.72 98.46 3.28 2 2.25
FlowPrior + FB 93.58 99.20 7.21 31 2.83

Table 1: Language modeling results on PTB dataset.

MI: We follow Hoffman and Johnson (2016) and
report estimated mutual information between the
observation and its latent variable.
AU: A dimensionz in the latent variable is consid-
ered “active” ifCovx (Ezv q(zjx) [z]) > 10� 2. AU is
then the number of active latent dimensions (Burda
et al., 2016).
F-PPL and R-PPL: These metrics measure the
correspondence between generated sentences from
the model and the training corpus. We evaluate
both F-PPL and R-PPL by estimating 5-gram lan-
guage models using the KenLM toolkit (Hea�eld,
2011) with its default smoothing method. For F-
PPL, we estimate language models from the actual
text and compute the perplexity of the generated
samples. For R-PPL, we estimate language mod-
els from the generated samples and compute the
perplexity of the actual text.5

Self-BLEU: The self-BLEU metric is one measure
of the diversity of a set of samples (Zhu et al.,
2018). It is calculated by averaging the BLEU
scores computed between all pairs of samples.

6 Results

6.1 Language Modeling

We �rst perform language modeling tasks to char-
acterize models' ef�cacy at modeling texts in terms
of modeling the distribution of language data and
making use of the latent variable. We refer to our
model asFlowPrior , which uses the training objec-
tive in Eq. 7 which includes MIS and the standard
KL (Eq. 8). We useFlowPrior + FB to refer to
our model with the FB KL (Eq. 9).

5Our R-PPL is slightly different from that in Fang et al.
(2019). For R-PPL, we always concatenate the training set
vocabulary (one word per line) to the set of samples from the
models to ensure LMs have seen the entire vocabulary.



Model PPL(#) Recon(#) KL AU( " ) MI(" )

Yahoo

VAE 65.77 333.17 0.00 0 0.00
MoG-VAE 64.60 332.90 0.00 0 0.00
Vamp-VAE 74.81 344.61 0.01 0 0.00

FlowPrior 62.49 331.57 1.43 4 1.62
FlowPrior + FB 68.29 345.68 10.99 25 0.61

Yelp

VAE 35.10 35.18 0.00 0 0.00
MoG-VAE 35.18 35.20 0.01 0 0.00
Vamp-VAE 34.99 35.15 0.00 0 0.00

FlowPrior 31.82 30.25 4.15 2 2.46
FlowPrior + FB 39.03 36.87 10.13 32 2.57

SNLI

VAE 25.97 41.34 0.00 0 0.00
MoG-VAE 28.05 40.96 0.44 1 0.41
Vamp-VAE 25.98 41.35 0.00 0 0.00

FlowPrior 22.41 37.89 3.83 3 0.97
FlowPrior + FB 26.19 43.56 7.59 32 3.16

Table 2: Language modeling results on other datasets.

Comparison to baselines. Table 1 shows results
on the PTB dataset for several VAEs from prior
work and our implemented models. Since our con-
tributions lie in learning the prior instead of chang-
ing the training procedure or manipulating the KL
term, we set the baselines as standard VAE, MoG,
and VampPrior for the rest of the paper. We report
the performance of FlowPrior and those baselines
on Yahoo, Yelp, and SNLI in Table 2.

From Tables 1 and 2, we observe that FlowPrior
consistently outperforms the baselines in test set
perplexity, sometimes by large margins. This is
not surprising since the MIS term in our training
objective directly targets the perplexity metric be-
cause the expressions are identical (differing only
in the number of samples used). While FB typically
improves models on PTB, and helps FlowPrior to
reach a higher AU and KL on the other datasets,
it does not lead to better test PPL and reconstruc-
tion. We report additional results on measuring the
impact of FB in the Appendix.

Another �nding is that simply enriching the para-
metric family of the prior is not suf�cient to im-
prove our evaluation metrics. Tables 1 and 2 show
mixed results when moving from the VAE with its
standard Gaussian prior to the MoG- or Vamp-VAE.
Though these priors have the potential to be multi-
modal, they could still be unimodal after training.
For example, the MoG-VAE might learn a mixture
in which all Gaussians have the same location and

Prior PPL(#) KL AU( " )

PTB

Standard 101.8 / 101.4 / 98.4 0.0 / 0.0 / 3.2 0 / 0 / 2
MoG 101.9 / 98.2 / 96.7 0.0 / 0.0 / 0.0 0 / 0 / 0
Vamp 101.7 / 98.3 / 96.1 0.0 / 0.0 / 3.1 0 / 0 / 4
Real NVP 102.5 / 98.4 / 94.7 0.0 / 0.0 / 3.3 0 / 0 / 2

Yahoo

Standard 65.6 / 65.8 / 63.9 0.0 / 0.0 / 2.7 0 / 0 / 1
MoG 65.6 / 64.6 / 62.7 0.0 / 0.0 / 0.5 0 / 0 / 1
Vamp 78.5 / 74.8 / 62.9 0.0 / 0.0 / 1.5 0 / 0 / 2
Real NVP 65.6 / 65.8 / 62.5 0.0 / 0.0 / 1.4 0 / 0 / 4

Yelp

Standard 35.4 / 35.1 / 33.2 0.0 / 0.0 / 2.9 0 / 0 / 2
MoG 36.0 / 35.2 / 34.9 0.0 / 0.0 / 0.0 0 / 0 / 0
Vamp 38.0 / 35.0 / 33.7 0.0 / 0.0 / 4.1 0 / 0 / 1
Real NVP 35.6 / 35.1 / 31.8 0.0 / 0.0 / 4.2 0 / 0 / 2

SNLI

Standard 27.4 / 26.0 / 25.3 0.0 / 0.0 / 1.2 0 / 0 / 3
MoG 27.2 / 28.1 / 24.3 0.0 / 0.4 / 4.2 0 / 1 / 5
Vamp 27.6 / 26.0 / 23.7 0.0 / 0.0 / 2.8 0 / 0 / 2
Real NVP 27.7 / 26.1 / 22.4 0.0 / 0.0 / 3.8 0 / 0 / 3

Table 3: Comparing training objectives with several
choices for priors. Each cell has three results: train-
ing with MIS only, ELBO only, and the combination of
ELBO + MIS . The combination consistently improves
performance across models and datasets.

scale. Also, the complexity of the prior learned
by the Vamp-VAE is dependent upon the inference
network, so if the inference network does not learn
anything useful, the learned prior may not be useful
either.

Impact of selection of objectives. The learned
prior baselines (MoG-VAE and Vamp-VAE) fail
to learn to use the latent variable, as shown by the
small numbers (nearly zero) for the AU and MI
metrics in Tables 1-2. Similar observations were
made by Pelsmaeker and Aziz (2020). We argue
that only improving the prior might not be suf�-
cient, as the ELBO objective is dif�cult to optimize
and little information may be learnable for the prior
from the ELBO alone. To measure the utility of
the MIS term, we introduce this term to standard-
VAE, MoG-VAE, and Vamp-VAE and evaluate the
improved models under the same language model
metrics.

Table 3 compares models trained with MIS, the
ELBO, and the combined training objective (Eq. 7).
The combined objective is bene�cial to all metrics
for all priors and datasets. Our results are consistent
with the observations of Rainforth et al. (2018) that
tighter bounds are preferable for training the gener-



Vamp-VAE + M IS

Three people are sitting on a bench .
People are walking down the street .
Man in a blue shirt and jeans is sitting on a bench .
Man in a blue shirt and jeans is sitting on a bench .
Women in a white dress and a man in a black shirt are
standing in front of a microphone .
Women in a white dress and a man in a black shirt are
standing in front of a microphone .
two men are playing soccer
two men are playing basketball
Two men are playing a game of chess .
Two men are playing a game of chess .

FlowPrior

The dog is running through the snow .
Two young boys are playing in the snow .
There is a man in a blue shirt and a woman in a black shirt
and black pants .
Three people are sitting on a bench .
two men are standing on a bench
A girl is sitting on a bench .
A young girl is sitting on a bench .
A young man is sitting on a bench .
A woman in a black shirt is sitting on a bench .
A woman is sitting on a bench .

Table 4: Interpolation from the prior on SNLI dataset.
In each cell, the �rst and last sentences correspond to
two sampled latent codes and between are linearly in-
terpolated samples.

ative network, while looser bounds are preferable
for training the inference network. Still, FlowPrior
(real NVP + MIS) performs the best in PPL and MI
compared to other models, showing the �exibility
and the power of the real NVP architecture.

For the “Standard” setting in Table 3, the prior
is �xed and not learned while in the other three
settings the prior is learned. The combination of
ELBO and MIS is helpful across all settings.6

6.2 Interpolations Between Prior Samples

One appealing aspect of VAEs for sentence mod-
eling is the potential for learning a smooth, inter-
pretable space for sentences. A qualitative way to
explore the latent space is to interpolate between
samples from the prior distribution. We randomly
sample two latent vectors from the prior and lin-
early interpolate between them with evenly divided
intervals (Bowman et al., 2016).7 We use greedy

6For the MoG setting, we also performed experiments
with setting the number of Gaussian componentsK = 1 and
observed comparable or slightly worse test PPL under all 3
choices of training loss than Standard setting.

7FlowPrior is slightly different. Instead of directly sam-
pling from the latent variable of VAE (in MoG-VAE and Vamp-
VAE), FlowPrior samples from the base distribution of real
NVP, interpolates in the base distribution, and maps to the

(a) MoG-VAE / ELBO (b) MoG-VAE / ELBO+MIS

(c) Vamp-VAE / ELBO (d) Vamp-VAE / ELBO+MIS

(e) Real NVP-VAE / ELBO (f) FlowPrior

Figure 1: Densities of 4 dimensions of learned priors
(SNLI dataset).

decoding in generation.8 Table 4 shows linear inter-
polation between prior samples in FlowPrior and
Vamp-VAE + MIS (i.e., Vamp-VAE with the com-
bined training objective). We observe substantial
improvement with FlowPrior, as it can generate sen-
tences with smooth semantic evolution while main-
taining plausible generations in terms of �uency.
This semantic evolution may re�ect the complex
structure in the learned prior distribution. Interpola-
tions with MoG-VAE + MIS and Vamp-VAE + MIS

have more repetitions and do not transit smoothly
from one to the other. (Results with MoG-VAE are
in the appendix.)

6.3 Visualization of Learned Priors

We randomly select 4 dimensions from the learned
priors per model and plot their densities in Fig. 1.

In MoG-VAE, each dimension is a Gaussian mix-
ture with 100 components. When only using the
ELBO for training (Fig. 1(a)), the four visualized
components all have similar shapes. After adding
MIS (Fig. 1(b)), different dimensions have similar
locations but different scales.

Vamp-VAE permits relatively complex compo-
nents because the means and variances are acquired
from the inference network applied to learned

latent with Eq. 4. We also experiment with interpolating the
two samples after mapping, namely interpolating in the VAE
latent space, and �nd similar results.

8We additionally tried various sampling methods for decod-
ing. This leads to more noise and becomes harder to interpret.
Generations can be found in the Appendices.



MoG-VAE MoG-VAE + M IS

The man is wearing a black shirt . An older gentleman in a white shirt is walking in a parking lot .
A man is standing in front of a building . A woman is walking in a �eld .
A man is standing in front of a building . A young girl in a red shirt is playing with a toy .

Vamp-VAE Vamp-VAE + M IS

A man is playing a guitar . Man in a blue shirt and jeans is sitting on a bench .
A man is playing a guitar . The man is wearing a black shirt .
A man is playing a guitar . People are walking down the street .

VAE FlowPrior

A man is sitting on a bench . Man in a blue shirt and blue jeans is sitting on a rock with a hammer .
A man is sitting on a bench . Two young boys are playing in the snow .
A man is sitting on a bench . A dog is running through the snow .

Table 5: Generations from prior samples with greedy decoding (SNLI dataset).

pseudo-inputs. Fig. 1(c) shows that Vamp-VAE
trained without MIS does not show much difference
compared to MoG-VAE. However, when training
with MIS (Fig. 1(d)), the distributions in several
dimensions appear to be multimodal.

The real NVP prior learns little information
when training without MIS, as all dimensions are
akin to standard normal distributions. When train-
ing with MIS, different dimensions show distinct
placement and shape. The prior in FlowPrior is
highly multimodal overall and smooth in each di-
mension.

6.4 Generations from Prior Samples

Sampling from Prior. To measure the expres-
siveness of the prior and the richness of the
learned latent variable, we randomly sample 5000
times from the prior distribution and evaluate their
greedy-decoded generations qualitatively and quan-
titatively. Table 5 shows greedy generations from
prior samples. We observe substantial improve-
ments in term of generation diversity when adding
MIS in the training objective. Note that these di-
verse samples are achieved with a purely deter-
ministic decoding. A diverse set of samples im-
plies that (1) richer latent codes and a highly multi-
modal distribution is learned by the model; (2) and
the generator is trained to attend to the latent codes.

Sample Mundanity and Coverage. A strongly-
performing generative model should be able to gen-
erate samples that comport to the training data dis-
tribution. We use the forward and reverse PPL to
estimate the similarity between the training data
and samples. We can consider F-PPL as agen-
eration “precision” as it re�ects the amount of
information in the samples that is relevant to the
actual text. Analogously, we can consider R-PPL

Yelp SNLI

F-PPL R-PPL SB F-PPL R-PPL SB

VAE 4 30248 96 4 51127 100
VAE+M IS 5 10818 30 4 19047 73
Vamp-VAE 4 32504 100 4 56050 100
Vamp-VAE+MIS 7 5280 10 5 8420 29
FlowPrior 209 1677 3 42 5725 13

Table 6: Forward PPL (F-PPL), Reverse PPL (R-PPL),
and Self-BLEU (SB) of greedy-decoded prior samples.

as ageneration “recall'' as it re�ects how much
the samples as a whole provide coverage of the ac-
tual text. Moreover, both F-PPL and R-PPL re�ect
whether the decoder is able to attend to the latent
variable in generation.

Table 6 shows the F-PPL and R-PPL with greedy
generation from prior samples. While Fang et al.
(2019) treats a lower F-PPL as an indicator of bet-
ter samples, we argue that it is not necessarily
true. A model could achieve a low F-PPL by sim-
ply generating identical (or nearly-identical) high-
probability sequences, like those observed from
the VAE, MoG-VAE, and Vamp-VAE in Table 5.
This re�ects how an overly-simpli�ed or restrictive
assumption in the prior can lead to less diversity in
samples.

Indeed, we �nd that models with very low F-
PPL values often have very high R-PPL values. A
lower R-PPL indicates the distribution of generated
samples matches the distribution of the training
data. From Table 6 we observe that adding MIS is
bene�cial as it leads to a lower R-PPL. FlowPrior
has the best R-PPL, and shows the capability of
capturing characteristics of the target distribution
that are not captured by simpler priors.



Generation Diversity. To identify which model
has richer usage of latent variables, we use self-
BLEU to measure the diversity of a set of samples.
We observe signi�cant improvements in FlowPrior
in Table 6, which implies a diverse latent represen-
tation and a better utilization of the latent variable.

7 Related Work

When considering the parameterized family of VAE
models, expressive latent components (i.e., poste-
rior and prior) have been widely studied in com-
puter vision (Dinh et al., 2015, 2016; Kingma and
Dhariwal, 2018). However, multimodal priors have
been seldom applied to language, with some excep-
tions (Serban et al., 2017; He et al., 2018; Ziegler
and Rush, 2019; Ma et al., 2019; Lee et al., 2020).

Chen et al. (2017) use autoregressive �ow for
the prior and posterior and experiment with im-
ages. Ziegler and Rush (2019) propose several
autoregressiveNF architectures and characterize
performance on character-level language model-
ing. Ma et al. (2019) design priors using the Glow
architecture to improve the performance of non-
autoregressive neural machine translation. Lee et al.
(2020) empirically characterize the performance of
NF and simple Gaussian priors in token-level latent
variable models, and observe that �exible priors
yield higher log-likelihoods but not better BLEU
scores on machine translation tasks.

Our work differs from that of Ziegler and Rush
(2019) and Chen et al. (2017) as we are using a
non-autoregressive �ow-based architecture for the
prior, while they are using autoregressive NF. Also,
we focus on models with a single latent variable
for an entire sentence, while similar prior work has
focused on token-level latent variables (Ziegler and
Rush, 2019; Ma et al., 2019; Lee et al., 2020).

Several others have employed NF for �exible
modeling in NLP. Setiawan et al. (2020) present
a variational translation model that uses NF in the
approximate posterior while keeping the prior as
Gaussian. Wang and Wang (2019) apply NF to
a variational Wasserstein autoencoder in order to
make the posterior more �exible. Jin et al. (2019)
use transformed distributions via NF to model the
emission density, which improves parsing perfor-
mance as compared to Gaussian baselines.

8 Conclusion

We proposed a method, FlowPrior, that uses nor-
malizing �ow to de�ne the prior in a sentence VAE

and adds the importance-sampled marginal likeli-
hood (MIS) as a second term to the standard VAE
objective. Our empirical results show FlowPrior
yields a substantial improvement in language mod-
eling and generation tasks as compared to prior
work. Adding MIS improves performance for other
models as well, especially in settings when the
prior parameters are being learned.
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Appendix

A Normalizing Flow

Change of Variable Formula. We start with a
base densityp� (� ), and de�ne abijectionfunction
f : � ! Z , that maps from� � p� to the targetz �
pZ . According to thechange of variableformula:

logpZ (z)= log p� (f � 1(z))+log

�
�
�
�det

�
@f� 1(z)

@z

� �
�
�
�



where
@f� 1(z)

@z
is the Jacobian off at z.

Normalizing Flows. A normalizing �ow is a se-
quence ofinvertible, deterministictransformations.
By repeatedly applying the rule for change of
variables, the base density is transformed into a
more complex one. Networks parameterized us-
ing NF can be trained through exact maximum
log-likelihood computation. Exact sampling is per-
formed by drawing sample from the base distribu-
tion and performing the chain of transformations.
Our work uses NF because it allows a �exible func-
tional form, and it is capable of capturing data
complexity and performing exact likelihood com-
putation and sampling.

Real NVP. Computing the Jacobian of functions
with high dimension and the determinants of large
matrices (i.e., the two main computation in NF)
are very expensive. Prior work has addressed this
challenge by introducing ef�cient transformations
(Dinh et al., 2015, 2016; Germain et al., 2015;
Kingma et al., 2016; Kingma and Dhariwal, 2018;
Ho et al., 2019).

Our �ow-based prior is based onreal-valued
non-volume preserving(real NVP; Dinh et al.,
2016) which is ef�cient in both training and sam-
pling. The main building block of real NVP trans-
formation is theaf�ne coupling layer.

An af�ne coupling layer is a bijective transfor-
mationf i : zi � 1 ! zi that follows the equations:

z(1:d)
i = z(1:d)

i � 1

z(d+1: D )
i = z(d+1: D )

i � exp(s(z(1:d)
i � 1 )) + t(z(1:d)

i � 1 )

whereD is the dimensionality,z(1:d)
i stands for the

�rst d dimensions ofzi (d < D ); s andt denote the
functions forscaleandtranslationoperations that
map fromRd ! RD � d; and� denotes element-
wise product.

The Jacobian determinant and inverse of the
af�ne coupling layer are easy to compute. The
transformation is �exible because its computation
of the Jacobian determinant and inverse do not re-
quire any operation with the functionss andt, so
these two functions could be designed to be arbi-
trarily complex.

B Datasets

The statistic of our dataset is in Table 7. For Yelp
and SNLI, we follow Li et al. (2019) and create the

# Train # Dev # Test Avg L Max L # Vocab

PTB 42,068 3,370 3,761 21 82 10,002
Yahoo 100,000 10,000 10,000 68 100 19,982
Yelp 100,000 10,000 10,000 9 15 9,389
SNLI 100,000 10,000 10,000 12 82 19,978

Table 7: Statistics of the datasets. # Train/Dev/Test
is the number of train/dev/test instances. Avg L and
Max L are the average and maximum length of the se-
quences in the training sets. # Vocab is the size of the
vocabulary includinghunki , hsosi , heosi , andhpadi .

PTB Yahoo SNLI Yelp

Word Embedding 256 512 128 128
Encoder Hidden States 256 1024 512 512
Decoder Hidden States 256 1024 512 512

Table 8: The size of word embeddings and hidden
states in VAE models used in this paper, which are
adopted from prior work.

dataset with downsampling. For Yahoo, we trun-
cate sentences to length 100 due to computational
constraints.

C Training Details

We use a batch size of 32 and train using SGD with-
out momentum. The optimizer is initialized with
learning rate 1 or 0.5, and the learning rate is de-
cayed by 1/2 if the dev loss is not improved in two
consecutive epochs. The training stops early after
5 learning rate decay operations. We use a linear
annealing schedule that increases the weight from
0 to 1 in the �rst 10 or 20 epoch for the weight of
both KL and MIS term if they are in the training ob-
jective. When training with the combined objective,
we start adding MIS after training ELBO objective
10 epochs. For each model variation, we experi-
ment with 5 different random seeds and report the
median numbers in the paper.

D Hyperparameter Settings

Across all the experiments for our implemented
baselines (i.e., standard VAE, MoG-VAE, Vamp-
VAE) and our proposed model FlowPrior, we fol-
low prior work (Kim et al., 2018; He et al., 2019; Li
et al., 2019) and use a single-layer LSTM encoder
and decoder with a 32-dimensional latent variable.9

We follow the prior work (He et al., 2019; Li et al.,
2019) and set the embedding dimension as in Ta-
ble 8. We set a dropout rate of 0.5 to both the

9For other baselines, we use their open source implemen-
tations.



Model PPL(#) KL AU( " ) MI(" )

PTB

VAE 101.4 / 101.6 0.00 / 4.46 0 / 32 0.0 / 0.1
VAE+M IS 96.9 / 95.8 1.57 / 6.34 24 / 32 0.6 / 1.5
MoG-VAE 98.2 / 96.8 0.00 / 2.35 0 / 32 0.00 / 0.68
Vamp-VAE 98.3 / 97.3 0.00 / 2.31 0 / 32 0.00 / 0.72
FlowPrior 94.7 / 93.6 3.28 / 7.21 2 / 31 2.3 / 2.8

Yahoo

VAE 65.8 / 64.6 0.00 / 4.88 0 / 32 0.0 / 0.9
VAE+M IS 63.9 / 61.7 2.72 / 13.31 1 / 32 2.0 / 1.7
MoG-VAE 64.6 / 67.3 0.00 / 1.83 0 / 32 0.0 / 0.6
Vamp-VAE 74.8 / 75.9 0.01 / 1.24 0 / 32 0.0 / 0.6
FlowPrior 62.5 / 68.3 1.43 / 10.99 4 / 25 1.6 / 0.6

Yelp

VAE 35.1 / 37.5 0.00 / 3.59 0 / 32 0.0 / 1.0
VAE+M IS 33.2 / 39.6 2.91 / 4.16 28 / 32 0.9 / 2.2
MoG-VAE 35.2 / 39.8 0.01 / 1.81 0 / 32 0.0 / 0.6
Vamp-VAE 35.0 / 39.4 0.00 / 1.78 0 / 32 0.0 / 0.6
FlowPrior 31.8 / 39.0 4.15 / 10.13 2 / 32 2.5 / 2.6

SNLI

VAE 26.0 / 30.5 0.00 / 1.84 0 / 32 0.0 / 0.9
VAE+M IS 25.3 / 17.8 1.23 / 15.48 23 / 32 0.5 / 2.0
MoG-VAE 28.1 / 27.5 0.44 / 2.28 1 / 32 0.4 / 0.7
Vamp-VAE 26.0 / 29.3 0.00 / 5.11 0 / 32 0.0 / 0.8
FlowPrior 22.4 / 26.2 3.83 / 7.59 3 / 32 1.0 / 3.2

Table 9: Results when comparing standard KL and FB
KL for several models. The left part in each cell shows
training with standard KL and the right part shows us-
ing FB KL instead.

input embeddings and the output embeddings be-
fore the softmax layer in the decoder. All the pa-
rameters are initialized with a uniform distribution
U(-0.01,0.01). For both MoG and Vamp-VAE we
use 100 components/pseudo-inputs in the prior. For
real NVP, we use 10 af�ne coupling layers with
3-layer MLP networks for the parameterized scale
and translation operations with the dimensionality
of 32. We follow Dinh et al. (2016) to compose
the af�ne coupling layers in an alternative pattern
and add batch normalization (Ballé et al., 2016) be-
tween adjacent af�ne coupling layers. For models
trained with FB KL, we set the target rate as 2, 4,
or 8.

E Additional Results with Free Bits KL

Using the Free Bits method can help achieve a
consistently better AU and higher KL as shown
in the overall results in the main text. We report
additional empirical comparisons to focus on mea-
suring the impact of FB for three models in Table
9.

Though adding FB yields higher AU and MI, it

Yelp SNLI

KL FB KL KL FB KL

VAE 0.26 0.49 1.66 2.18
VAE+M IS 0.65 0.71 1.91 3.57
FlowPrior 1.50 0.74 4.87 3.64

Table 10: Test set reconstruction BLEU scores.

Yelp SNLI

F-PPL R-PPL SB F-PPL R-PPL SB

VAE 4 30248 96 4 51127 100
VAE+M IS 5 10818 30 4 19047 73
MoG-VAE 4 30413 100 3 45979 77
MoG-VAE+MIS 4 33624 100 6 5257 26
Vamp-VAE 4 32504 100 4 56050 100
Vamp-VAE+MIS 7 5280 10 5 8420 29
FlowPrior 209 1677 3 42 5725 13

VAE+FB 7 7517 29 4 22536 42
VAE+M IS +FB 8 5713 13 4 24204 48
FlowPrior+FB 8 5179 9 15 4876 11

Table 11: Forward PPL (F-PPL), Reverse PPL (R-PPL),
and Self-BLEU (SB) of greedy-decoded prior samples.

is not always true that it leads to a better test PPL
and reconstruction. This phenomenon has been
pointed out by Razavi et al. (2019) that adding FB
makes the objective non-smooth which can lead to
optimization dif�culties. Possible solutions could
be changing to a better training procedure. Li et al.
(2019) remedy this issue by combining pretraining
with FB, namely using a pretrained autoencoder
to initialize the inference network before starting
training the VAE networks. This suggests that it
may be necessary to pretrain the inference network
and decoder to unilaterally bene�t from FB.

Table 10 considers standard VAEs and FlowPrior
when comparing the use of standard KL to FB KL.
Using FB KL does not lead to a higher BLEU score
in FlowPrior, though FB does improve BLEU when
combined with standard VAE and VAE+MIS.

F Additional Results with FB and M IS

Table 11 shows the impact of MIS and FB on F-
PPL, R-PPL, and self-BLEU with greedy genera-
tion from prior samples.

G Reconstruction Results with Sampling

Tables 12-13 show the reconstruction performance
with standard sampling and nucleus sampling with
p = 0 :9 (Holtzman et al., 2020). We observe the
trends are consistent with the results that use greedy
decoding.



Yelp SNLI

ELBO ELBO+MIS ELBO ELBO+MIS

Standard 0.07 0.15 0.43 0.57
MoG 0.08 0.00 0.66 2.36
Vamp 0.06 0.32 0.55 0.76
Real NVP 0.28 0.60 0.97 1.91

KL FB KL KL FB KL

VAE 0.07 0.13 0.43 0.74
VAE+M IS 0.15 0.28 0.57 0.95
MoG 0.08 0.08 0.66 0.54
Vamp 0.06 0.10 0.55 0.78
FlowPrior 0.60 0.34 1.91 0.91

Table 12: Test set reconstruction BLEU scores using
standard sampling in decoding.

Yelp SNLI

ELBO ELBO+MIS ELBO ELBO+MIS

Standard 0.08 0.20 0.56 0.72
MoG 0.09 0.06 0.80 2.66
Vamp 0.08 0.44 0.71 1.01
Real NVP 0.30 0.72 1.31 2.40

KL FB KL KL FB KL

VAE 0.08 0.17 0.56 1.03
VAE+M IS 0.20 0.36 0.72 1.22
MoG 0.09 0.16 0.80 0.82
Vamp 0.08 0.13 0.71 1.07
FlowPrior 0.72 0.40 2.40 1.23

Table 13: Test set reconstruction BLEU scores using
nucleus sampling in decoding.

H Interpolation with Sampling

Table 14 shows more examples of interpolation-
based generation with greedy decoding. We show
results with sampling methods for decoding in Ta-
bles 15 and 16. The results with greedy decod-
ing provide a lower-variance way to interpret the
learned latent space. The additional results with
sampling methods provide a richer picture as they
also capture the randomness in the relationship
between the latent variable and the text. This is
especially helpful when we observe repetition in
neighboring samples with greedy decoding, as we
see with MoG-VAE and Vamp-VAE in Table 14.
Even with sampling, FlowPrior shows a smoother
semantic evolution in the latent space than MoG-
VAE and Vamp-VAE, at least in terms of aspects
of the subjects of the generated sentences.

I Sampling from Priors

Table 17 shows more greedy generations from prior
samples. We observe substantial improvements in
term of generation diversity in FlowPrior and Flow-

Mog-VAE

The man is wearing a black shirt .
The man is wearing a black shirt .
The man is wearing a black shirt .
A man is standing in front of a building .
A man is standing in front of a building .
A man is standing in front of a building .
A man is standing in front of a building .
A man is standing in front of a building .
A man is standing in front of a building .
A man is standing in front of a building .

Vamp-VAE

Three people are sitting on a bench .
People are walking down the street .
People are walking down the street .
People are walking down the street .
Man in a blue shirt and jeans is sitting on a bench .
Man in a blue shirt and jeans is sitting on a bench .
Man in a blue shirt and jeans is sitting on a bench .
Man in a blue shirt and jeans is sitting on a bench .
Man in a blue shirt and jeans is sitting on a bench .
Man in a blue shirt and jeans is sitting on a bench .

FlowPrior

The dog is running through the snow .
Two young boys are playing in the snow .
There is a man in a blue shirt and a woman in a black shirt
and black pants .
Three people are sitting on a bench .
two men are standing on a bench
A girl is sitting on a bench .
A young girl is sitting on a bench .
A young man is sitting on a bench .
A woman in a black shirt is sitting on a bench .
A woman is sitting on a bench .

Table 14: Interpolation between two prior samples with
greedy decoding. Dataset used is SNLI. In each cell,
the �rst sentence and the last sentence correspond to
the two sampled latent codes, and between are linearly
interpolated samples.

Prior + FB. While standard VAE always yields
identical samples because the latent variable is ig-
nored, using FB KL yields better sample diver-
sity as it encourages more information encoded
into latent variable during training. This can be
easily observed by comparing the samples from
standard VAE with those from VAE+FB, compar-
ing MoG-VAE with MoG-VAE + MIS, comparing
Vamp-VAE with Vamp-VAE + MIS.

J More Visualizations of Real NVP Prior
and FlowPrior

Visualizations of each dimension alone and all di-
mensions together are in Figures 2 and 3.



(a) dim 1 (b) dim 2 (c) dim 3 (d) dim 4 (e) all 32 dims

Figure 2: Visualization of dimensions of learned prior when using real NVP on SNLI dataset. Plots from left to
right are first dimension alone, second dimension alone, third dimension alone, fourth dimension alone, and all 32
dimensions together.

(a) dim 1 (b) dim 2 (c) dim 3 (d) dim 4 (e) all 32 dims

Figure 3: Visualization of dimensions of learned prior when using real NVP with MIS (i.e., FlowPrior) on SNLI
dataset. Plots from left to right are first dimension alone, second dimension alone, third dimension alone, fourth
dimension alone, and all 32 dimensions together.

K Reproducibility

We train our models on 1080 TI and 2080 TI GPUs.
The number of parameters in each model is listed
in Table 18. We report the average runtime for each
approach on the PTB dataset in Table 19. We report
the validation performance in Table 20.

The datasets are downloaded via
https://github.com/jxhe/
vae-lagging-encoder/blob/
master/prepare_data.py, https:
//nlp.stanford.edu/projects/snli/,
https://github.com/fangleai/
Implicit-LVM/tree/master/lang_
model_ptb/data, and https://github.
com/fangleai/Implicit-LVM/tree/
master/lang_model_yelp/data.

The links to open source implementa-
tion of the other baselines follow: Cyc-
VAE (Fu et al., 2019) : github.com/
snakeztc/NeuralDialog-CVAE; Lag-VAE
(He et al., 2019) : github.com/jxhe/
vae-lagging-encoder; Pre-VAE+FB
(Li et al., 2019) : github.com/bohanli/
vae-pretraining-encoder.


