
SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 1623–1646

LEARNING KERNEL-BASED HALFSPACES WITH THE 0-1 LOSS∗

SHAI SHALEV-SHWARTZ† , OHAD SHAMIR‡ , AND KARTHIK SRIDHARAN§

Abstract. We describe and analyze a new algorithm for agnostically learning kernel-based
halfspaces with respect to the 0-1 loss function. Unlike most of the previous formulations, which rely
on surrogate convex loss functions (e.g., hinge-loss in support vector machines (SVMs) and log-loss
in logistic regression), we provide finite time/sample guarantees with respect to the more natural
0-1 loss function. The proposed algorithm can learn kernel-based halfspaces in worst-case time
poly(exp(L log(L/ε))), for any distribution, where L is a Lipschitz constant (which can be thought
of as the reciprocal of the margin), and the learned classifier is worse than the optimal halfspace by
at most ε. We also prove a hardness result, showing that under a certain cryptographic assumption,
no algorithm can learn kernel-based halfspaces in time polynomial in L.

Key words. learning halfspaces, kernel methods, learning theory

AMS subject classifications. 68Q32, 68T05, 68Q17

DOI. 10.1137/100806126

1. Introduction. A highly important hypothesis class in machine learning the-
ory and applications is that of halfspaces in a reproducing kernel Hilbert space
(RKHS). Choosing a halfspace based on empirical data is often performed using sup-
port vector machines (SVMs) [27]. SVMs replace the more natural 0-1 loss function
with a convex surrogate—the hinge-loss. By doing so, we can rely on convex optimiza-
tion tools. However, there are no guarantees on how well the hinge-loss approximates
the 0-1 loss function. There do exist some recent results on the asymptotic relation-
ship between surrogate convex loss functions and the 0-1 loss function [29, 4], but
these do not come with finite-sample or finite-time guarantees. In this paper, we
tackle the task of learning kernel-based halfspaces with respect to the nonconvex 0-1
loss function. Our goal is to derive learning algorithms and to analyze them in the
finite-sample finite-time setting.

Following the standard statistical learning framework, we assume that there is
an unknown distribution, D, over the set of labeled examples, X × {0, 1}, and our
primary goal is to find a classifier, h : X → {0, 1}, with low generalization error,

(1.1) errD(h)
def
= E

(x,y)∼D
[|h(x)− y|] .

The learning algorithm is allowed to sample a training set of labeled examples,
(x1, y1), . . . , (xm, ym), where each example is sampled independent and identically

∗Received by the editors August 20, 2010; accepted for publication (in revised form) September
28, 2011; published electronically December 13, 2011. This work was supported by Israeli Science
Foundation grant 590-10. A preliminary version of this paper appeared in Proceedings of the 23rd
Annual Conference on Learning Theory (COLT), A. T. Kalai and M. Mohri, eds., Omnipress, Madi-
son, WI, 2010, pp. 441–450.

http://www.siam.org/journals/sicomp/40-6/80612.html
†School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel

(shais@cs.huji.ac.il).
‡School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel.

Current address: Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142
(ohadsh@microsoft.com).

§Toyota Technological Institute, 6045 S. Kenwood Ave., Chicago, IL 60637 (karthik@ttic.edu).

1623

1624 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

distributed (i.i.d.) from D, and it returns a classifier. Following the agnostic proba-
bly approximately correct (PAC) learning framework [17], we say that an algorithm
(ε, δ)-learns a concept class H of classifiers using m examples if with probability of at

least 1 − δ over a random choice of m examples the algorithm returns a classifier ĥ
that satisfies

(1.2) errD(ĥ) ≤ inf
h∈H

errD(h) + ε .

We note that ĥ does not necessarily belong to H . Namely, we are concerned with
improper learning, which is as useful as proper learning for the purpose of deriving
good classifiers. A common learning paradigm is the empirical risk minimization
(ERM) rule, which returns a classifier that minimizes the average error over the
training set,

ĥ ∈ argmin
h∈H

1

m

m∑
i=1

|h(xi)− yi| .

The class of (origin centered) halfspaces is defined as follows. Let X be a compact
subset of an RKHS, which w.l.o.g. will be taken to be the unit ball around the origin.
Let φ0−1 : R → R be the function φ0−1(a) = 1(a ≥ 0) = 1

2 (sgn(a) + 1). The class of
halfspaces is the set of classifiers

Hφ0−1

def
= {x �→ φ0−1(〈w,x〉) : w ∈ X} .

Although we represent the halfspace using w ∈ X , which is a vector in the RKHS
whose dimensionality can be infinite, in practice we need only a function that imple-
ments inner products in the RKHS (a.k.a. a kernel function), and one can define w
as the coefficients of a linear combination of examples in our training set. To simplify
the notation throughout the paper, we represent w simply as a vector in the RKHS.

It is well known that if the dimensionality of X is n, then the Vapnik–Chervonenkis
(VC) dimension of Hφ0−1 equals n. This implies that the number of training examples
required to obtain a guarantee of the form given in (1.2) for the class of halfspaces
scales at least linearly with the dimension n [27]. Since kernel-based learning algo-
rithms allow X to be an infinite dimensional inner product space, we must use a
different class in order to obtain a guarantee of the form given in (1.2).

One way to define a slightly different concept class is to approximate the noncon-
tinuous function, φ0−1, with a Lipschitz continuous function, φ : R → [0, 1], which is
often called a transfer function. For example, we can use a sigmoidal transfer function

(1.3) φsig(a)
def
=

1

1 + exp(−4La)
,

which is an L-Lipschitz function. Other L-Lipschitz transfer functions are the erf
function and the piecewise linear function:

(1.4) φerf(a)
def
=

1

2

(
1 + erf

(√
π L a

))
, φpw(a)

def
= max

{
min

{
1

2
+ La, 1

}
, 0

}
.

An illustration of these transfer functions is given in Figure 1.1.
Analogously to the definition of Hφ0−1 , for a general transfer function φ we define

Hφ to be the set of predictors x �→ φ(〈w,x〉). Since now the range of φ is not {0, 1} but

LEARNING KERNEL-BASED HALFSPACES 1625

-1 1

1

-1 1

1

-1 1

1

-1 1

1

-1 1

1

-1 1

1

-1 1

1

Fig. 1.1. Transfer functions used throughout the paper. From top to bottom and left to right:
The 0-1 transfer function; the sigmoid transfer function (L = 3 and L = 10); the erf transfer
function (L = 3 and L = 10); the piecewise linear transfer function (L = 3 and L = 10).

rather the entire interval [0, 1], we interpret φ(〈w,x〉) as the probability of outputing
the label 1. The definition of errD(h) remains1 as in (1.1).

The advantage of using a Lipschitz transfer function can be seen via Rademacher
generalization bounds [5]. In fact, a simple corollary of the so-called contraction
lemma implies the following.

Theorem 1.1. Let ε, δ ∈ (0, 1), and let φ be an L-Lipschitz transfer function.
Let m be an integer satisfying

m ≥
(
2L+ 3

√
2 ln(8/δ)

ε

)2

.

Then, for any distribution D over X × {0, 1}, the ERM algorithm (ε, δ)-learns the
concept class Hφ using m examples.

The above theorem tells us that the sample complexity of learningHφ is Ω̃(L2/ε2).

1Note that in this case errD(h) can be interpreted as P(x,y)∼D,b∼φ(〈w,x〉)[y �= b].

1626 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

Crucially, the sample complexity does not depend on the dimensionality of X but only
on the Lipschitz constant of the transfer function. This allows us to learn with kernels
when the dimensionality of X can even be infinite. A related analysis compares the
error rate of a halfspace w to the number of margin mistakes that w makes on the
training set; see subsection 4.1 for a comparison.

From the computational complexity point of view, the result given in Theorem 1.1
is problematic, since the ERM algorithm should solve the nonconvex optimization
problem

(1.5) argmin
w:‖w‖≤1

1

m

m∑
i=1

|φ(〈w,xi〉)− yi| .

Solving this problem in polynomial time is hard under reasonable assumptions, as we
formally show in section 3. Adapting a technique due to [7] we show in Appendix A
that it is possible to find an ε-accurate solution to (1.5) (where the transfer function

is φpw) in time poly(exp(L
2

ε2 log(Lε))). The main contribution of this paper is the
derivation and analysis of a more simple learning algorithm that (ε, δ)-learns the class
Hsig using time and sample complexity of at most poly

(
exp
(
L log(Lε)

))
. That is, the

runtime of our algorithm is exponentially smaller than the runtime required to solve
the ERM problem using the technique described in [7]. Moreover, the algorithm of
[7] performs an exhaustive search over all (L/ε)2 subsets of the m examples in the

training set, and therefore its runtime is always on the order of mL2/ε2 . In contrast,
our algorithm’s runtime depends on a parameter B, which is bounded by exp(L) only
under a worst-case assumption. Depending on the underlying distribution, B can be
much smaller than the worst-case bound. In practice, we will cross-validate for B,
and therefore the worst-case bound will often be pessimistic.

Interestingly, the very same algorithm we use in this paper also recovers the
complexity bound of [16] for agnostically learning halfspaces with the 0-1 transfer
function, without kernels and under a distributional assumption.

The rest of the paper is organized as follows. In section 2 we describe our main
positive results. Next, in section 3 we provide a hardness result, showing that it is not
likely that there exists an algorithm that learns Hsig or Hpw in time polynomial in L.
We outline additional related work in section 4. In particular, the relation between our
approach and margin-based analysis is described in subsection 4.1, and the relation to
approaches utilizing a distributional assumption is discussed in subsection 4.2. In the
latter subsection, we also point out how our algorithm recovers the same complexity
bound as [16]. We wrap up with a discussion in section 5.

2. Main result. Recall that we would like to derive an algorithm which learns
the class Hsig. However, the ERM optimization problem associated with Hsig is non-
convex. The main idea behind our construction is to learn a larger hypothesis class,
denoted HB, which approximately containsHsig, and for which the ERM optimization
problem becomes convex. The price we need to pay is that from the statistical point
of view, it is more difficult to learn the class HB than the class Hsig, and therefore
the sample complexity increases.

The class HB we use is a class of linear predictors in some other RKHS. The
kernel function that implements the inner product in the newly constructed RKHS is

(2.1) K(x,x′) def
=

1

1− ν〈x,x′〉 ,

LEARNING KERNEL-BASED HALFSPACES 1627

where ν ∈ (0, 1) is a parameter and 〈x,x′〉 is the inner product in the original RKHS.
As mentioned previously, 〈x,x′〉 is usually implemented by some kernel function
K ′(z, z′), where z and z′ are the preimages of x and x′ with respect to the fea-
ture mapping induced by K ′. Therefore, the kernel in (2.1) is simply a composition
with K ′, i.e., K(z, z′) = 1/(1− νK ′(z, z′)).

To simplify the presentation we will set ν = 1/2, although in practice other choices
might be more effective. It is easy to verify that K is a valid positive definite kernel
function (see, for example, [23, 11]). Therefore, there exists some mapping ψ : X → V,
where V is an RKHS with 〈ψ(x), ψ(x′)〉 = K(x,x′). The class HB is defined to be

(2.2) HB
def
= {x �→ 〈v, ψ(x)〉 : v ∈ V, ‖v‖2 ≤ B} .

The main positive result we prove in this section is the following.
Theorem 2.1. Let ε, δ ∈ (0, 1). For any L ≥ 3, let

B = 6L4 + exp

(
9L log

(
2L

ε

)
+ 5

)
,

and let m be a sample size that satisfies m ≥ (8B/ε2) (2 + 9
√
ln(8/δ))2. Then, for

any distribution D, with probability of at least 1− δ, any ERM predictor ĥ ∈ HB with
respect to HB satisfies

errD(ĥ) ≤ min
h∈Hsig

errD(hsig) + ε .

We note that the bound on B is far from being the tightest possible in terms of
constants and second-order terms. Also, the assumption of L ≥ 3 is rather arbitrary
and is meant to simplify the presentation of the bound.

2.1. Proof of Theorem 2.1. To prove this theorem, we start with analyzing the
time and sample complexities of learning HB. The sample complexity analysis follows
directly from a Rademacher generalization bound [5]. In particular, the following
theorem tells us that the sample complexity of learning HB with the ERM rule is on
the order of B/ε2 examples.

Theorem 2.2. Let ε, δ ∈ (0, 1), let B ≥ 1, and let m be a sample size that
satisfies

m ≥ 2B

ε2

(
2 + 9

√
ln(8/δ)

)2
.

Then, for any distribution D, the ERM algorithm (ε, δ)-learns HB.
Proof. Since K(x,x) ≤ 2, the Rademacher complexity of HB is bounded by√

2B/m (see also [15]). Additionally, using the Cauchy–Schwarz inequality, we have

that the loss is bounded, |〈v, ψ(x)〉 − y| ≤ √
2B + 1. The result now follows directly

from [5, 15].
Next, we show that the ERM problem with respect to HB can be solved in time

poly(m). The ERM problem associated with HB is

min
v:‖v‖2≤B

1

m

m∑
i=1

|〈v, ψ(xi)〉 − yi| .

Since the objective function is defined only via inner products with ψ(xi), and the
constraint on v is defined by the �2-norm, it follows by the Representer theorem

1628 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

[28] that there is an optimal solution v� that can be written as v� =
∑m

i=1 αiψ(xi).
Therefore, instead of optimizing over v, we can optimize over the set of weights
α1, . . . , αm by solving the equivalent optimization problem

min
α1,...,αm

1

m

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

αjK(xj ,xi)− yi

∣∣∣∣∣∣ such that
m∑

i,j=1

αiαjK(xi,xj) ≤ B .

This is a convex optimization problem in R
m and therefore can be solved in time

poly(m) using standard optimization tools.2 We therefore obtain the following.

Corollary 2.3. Let ε, δ ∈ (0, 1) and let B ≥ 1. Then, for any distribution D,
it is possible to (ε, δ)-learn HB in sample and time complexity of poly

(
B
ε log(1/δ)

)
.

We now explain why the class HB approximately contains the class Hsig. Recall
that for any transfer function, φ, we define the class Hφ to be all the predictors of
the form x �→ φ(〈w,x〉). The first step is to show that HB contains the union of Hφ

over all polynomial transfer functions that satisfy a certain boundedness condition on
their coefficients.

Lemma 2.4. Let PB be the following set of polynomials (possibly with infinite
degree):

(2.3) PB
def
=

⎧⎨
⎩p(a) =

∞∑
j=0

βj a
j :

∞∑
j=0

β2
j 2

j ≤ B

⎫⎬
⎭ .

Then,

⋃
p∈PB

Hp ⊂ HB .

Proof. To simplify the proof, we first assume that X is simply the unit ball in R
n

for an arbitrarily large but finite n. Consider the mapping ψ : X → R
N defined as

follows: for any x ∈ X , we let ψ(x) be an infinite vector, indexed by k1, . . . , kj for all
(k1, . . . , kj) ∈ {1, . . . , n}j and j = 0, . . . ,∞, where the entry at index k1, . . . , kj equals
2−j/2xk1 · xk2 · · ·xkj . The inner-product between ψ(x) and ψ(x′) for any x,x′ ∈ X
can be calculated as

〈ψ(x), ψ(x′)〉 =
∞∑
j=0

∑
(k1,...,kj)∈{1,...,n}j

2−jxk1x
′
k1

· · ·xkjx
′
kj

=

∞∑
j=0

2−j(〈x,x′〉)j =
1

1− 1
2 〈x,x′〉 .

This is exactly the kernel function defined in (2.1) (recall that we set ν = 1/2),
and therefore ψ maps to the RKHS defined by K. Consider any polynomial p(a) =∑∞

j=0 βja
j in PB and any w ∈ X . Let vw be an element in R

N explicitly defined as

being equal to βj2
j/2wk1 · · ·wkj at index k1, . . . , kj (for all k1, . . . , kj ∈ {1, . . . , n}j , j =

2In fact, using stochastic gradient descent, we can (ε, δ)-learn HB in time O(m2), where m is as
defined in Theorem 2.2; see, for example, [9, 24].

LEARNING KERNEL-BASED HALFSPACES 1629

0, . . . ,∞). By definition of ψ and vw, we have that

〈vw, ψ(x)〉 =
∞∑
j=0

∑
k1,...,kj

2−j/2βj2
j/2wk1 · · ·wkjxk1 · · ·xkj

=

∞∑
j=0

βj(〈w,x〉)j = p(〈w,x〉) .

In addition,

‖vw‖2 =

∞∑
j=0

∑
k1,...,kj

β2
j 2

jw2
k1

· · ·w2
kj

=

∞∑
j=0

β2
j 2

j
∑
k1

w2
k1

∑
k2

w2
k2

· · ·
∑
kj

w2
kj

=
∞∑
j=0

β2
j 2

j
(‖w‖2)j ≤ B.

Thus, the predictor x �→ 〈vw, ψ(x)〉 belongs to HB and is the same as the predictor
x �→ p(〈w,x〉). This proves that Hp ⊂ HB for all p ∈ PB, as required. Finally, if X
is an infinite dimensional RKHS, the only technicality is that in order to represent
x as a (possibly infinite) vector, we need to show that our RKHS has a countable
basis. This holds since the inner product 〈x,x′〉 over X is continuous and bounded
(see [1]).

Finally, the following lemma states that with a sufficiently large B, there exists
a polynomial in PB which approximately equals φsig. This implies that HB approxi-
mately contains Hsig.

Lemma 2.5. Let φsig be as defined in (1.3), where for simplicity we assume L ≥ 3.
For any ε > 0, let

B = 6L4 + exp

(
9L log

(
2L

ε

)
+ 5

)
.

Then there exists p ∈ PB such that

∀x,w ∈ X , |p(〈w,x〉) − φsig(〈w,x〉)| ≤ ε .

The proof of the lemma is based on a Chebyshev approximation technique and
is given in Appendix B. Since the proof is rather involved, we also present a similar
lemma, whose proof is simpler, for the φerf transfer function (see Appendix C). It is
interesting to note that φerf actually belongs to PB for a sufficiently large B, since it
can be defined via its infinite-degree Taylor expansion. However, the bound for φerf
depends on exp(L2) rather than exp(L) for the sigmoid transfer function φsig.

Combining Theorem 2.2 and Lemma 2.4, we get that with probability of at least
1− δ,

(2.4) errD(ĥ) ≤ min
h∈HB

errD(h) + ε/2 ≤ min
p∈PB

min
h∈Hp

errD(h) + ε/2 .

From Lemma 2.5 we obtain that for any w ∈ X , if h(x) = φsig(〈w,x〉), then there
exists a polynomial p0 ∈ PB such that if h′(x) = p0(〈w,x〉), then errD(h′) ≤ errD(h)+

1630 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

ε/2. Since it holds for all w, we get that

min
p∈PB

min
h∈Hp

errD(h) ≤ min
h∈Hsig

errD(h) + ε/2 .

Combining this with (2.4), Theorem 2.1 follows.

3. Hardness. In this section we derive a hardness result for agnostic learning
of Hsig or Hpw with respect to the 0-1 loss. The hardness result relies on the hard-
ness of standard (nonagnostic)3 PAC learning of intersection of halfspaces given in
Klivans and Sherstov [18] (see also similar arguments in [13]). The hardness result is
representation-independent—it makes no restrictions on the learning algorithm and
in particular also holds for improper learning algorithms. The hardness result is based
on the following cryptographic assumption.

Assumption 1. There is no polynomial time solution to the Õ(n1.5)-unique-
shortest-vector-problem.

In a nutshell, given a basis v1, . . . ,vn ∈ R
n, the Õ(n1.5)-unique-shortest-vector-

problem consists of finding the shortest nonzero vector in {a1v1 + · · · + anvn :
a1, . . . , an ∈ Z}, even given the information that it is shorter by a factor of at least
Õ(n1.5) than any other nonparallel vector. This problem is believed to be hard—there
are no known subexponential algorithms, and it is known to be NP-hard if Õ(n1.5) is
replaced by a small constant (see [18] for more details).

With this assumption, Klivans and Sherstov proved the following.
Theorem 3.1 (Theorem 1.2 in Klivans and Sherstov [18]). Let X = {±1}n, let

H = {x �→ φ0,1(〈w,x〉 − θ − 1/2) : θ ∈ N,w ∈ N
n, |θ|+ ‖w‖1 ≤ poly(n)} ,

and let Hk = {x �→ (h1(x) ∧ · · · ∧ hk(x)) : for all i, hi ∈ H}. Then, based on
Assumption 1, Hk is not efficiently learnable in the standard PAC model for any
k = nρ, where ρ > 0 is a constant.

The above theorem implies the following.
Lemma 3.2. Based on Assumption 1, there is no algorithm that runs in time

poly(n, 1/ε, 1/δ) and (ε, δ)-learns the class H defined in Theorem 3.1.
Proof. To prove the lemma we show that if there is a polynomial time algorithm

that learns H in the agnostic model, then there exists a weak learning algorithm
(with a polynomial edge) that learns Hk in the standard (nonagnostic) PAC model.
In the standard PAC model, weak learning implies strong learning [22], and hence the
existence of a weak learning algorithm that learns Hk will contradict Theorem 3.1.

Indeed, let D be any distribution such that there exists h� ∈ Hk with errD(h�) =
0. Let us rewrite h� = h�1∧· · ·∧h�k, where for all i, h�i ∈ H . To show that there exists a
weak learner, we first show that there exists some h ∈ H with errD(h) ≤ 1/2− 1/2k2.

Since for each x, if h�(x) = 0, then there exists j such that h�j (x) = 0, we can use
the union bound to get that

1 = P[∃j : h�j (x) = 0|h�(x) = 0] ≤
∑
j

P[h�j (x) = 0|h�(x) = 0]

≤ kmax
j

P[h�j (x) = 0|h�(x) = 0] .

3In the standard PAC model, we assume that some hypothesis in the class has errD(h) = 0, while
in the agnostic PAC model, which we study in this paper, errD(h) might be strictly greater than
zero for all h ∈ H. Note that our definition of (ε, δ)-learning in this paper is in the agnostic model.

LEARNING KERNEL-BASED HALFSPACES 1631

So, for j that maximizes P[h�j (x) = 0|h�(x) = 0] we get that P[h�j (x) = 0|h�(x) =
0] ≥ 1/k. Therefore,

errD(h�j) = P[h�j (x) = 1 ∧ h�(x) = 0] = P[h�(x) = 0] P[h�j (x) = 1|h�(x) = 0]

= P[h�(x) = 0] (1− P[h�j (x) = 0|h�(x) = 0]) ≤ P[h�(x) = 0] (1− 1/k) .

Now, if P[h�(x) = 0] ≤ 1/2 + 1/k2, then the above gives

errD(h�j) ≤ (1/2 + 1/k2)(1 − 1/k) ≤ 1/2− 1/2k2 ,

where the inequality holds for any positive integer k. Otherwise, if P[h�(x) = 0] >
1/2 + 1/k2, then the constant predictor h(x) = 0 has errD(h) < 1/2 − 1/k2. In
both cases we have shown that there exists a predictor in H with error of at most
1/2− 1/2k2.

Finally, if we can agnostically learn H in time poly(n, 1/ε, 1/δ), then we can find
h′ with errD(h′) ≤ minh∈H errD(h) + ε ≤ 1/2 − 1/2k2 + ε in time poly(n, 1/ε, 1/δ)
(recall that k = nρ for some ρ > 0). This means that we can have a weak learner that
runs in polynomial time, and this concludes our proof.

Let h be a hypothesis in the class H defined in Theorem 3.1, and take any
x ∈ {±1}n. Then, there exist an integer θ and a vector of integers w such that
h(x) = φ0,1(〈w,x〉 − θ− 1/2). But since 〈w,x〉 − θ is also an integer, if we let L = 1,
this means that h(x) = φpw(〈w,x〉− θ− 1/2) as well. Furthermore, letting x′ ∈ R

n+1

denote the concatenation of x with the constant 1, and letting w′ ∈ R
n+1 denote the

concatenation of w with the scalar (−θ − 1/2), we obtain that h(x) = φpw(〈w′,x′〉).
Last, let us normalize w̃ = w′/‖w′‖, x̃ = x/‖x′‖ and redefine L to be ‖w′‖ ‖x′‖; we
then get that h(x) = φpw(〈w̃, x̃〉). That is, we have shown that H is contained in a
class of the form Hpw with a Lipschitz constant bounded by poly(n). Combining the
above with Lemma 3.2 we obtain the following.

Corollary 3.3. Let L be a Lipschitz constant, and let Hpw be the class defined
by the L-Lipschitz transfer function φpw. Then, based on Assumption 1, there is no
algorithm that runs in time poly(L, 1/ε, 1/δ) and (ε, δ)-learns the class Hpw.

A similar argument leads to the hardness of learning Hsig.
Theorem 3.4. Let L be a Lipschitz constant, and let Hsig be the class defined

by the L-Lipschitz transfer function φsig. Then, based on Assumption 1, there is no
algorithm that runs in time poly(L, 1/ε, 1/δ) and (ε, δ)-learns the class Hsig.

Proof. Let h be a hypothesis in the class H defined in Theorem 3.1, and take
any x ∈ {±1}n. Then, there exist an integer θ and a vector of integers w such that
h(x) = φ0,1(〈w,x〉−θ−1/2). However, since 〈w,x〉−θ is also an integer, we see that∣∣∣∣φ0,1

(
〈w,x〉 − θ − 1

2

)
− φsig

(
〈w,x〉 − θ − 1

2

)∣∣∣∣ ≤ 1

1 + exp(2L)
.

This means that for any ε > 0, if we pick L = log(2/ε−1)
2 and define hsig(x) =

φsig(〈w,x〉 − θ − 1/2), then |h(x) − hsig(x)| ≤ ε/2. Furthermore, letting x′ ∈ R
n+1

denote the concatenation of x with the constant 1 and letting w′ ∈ R
n+1 denote the

concatenation of w with the scalar (−θ−1/2), we obtain that hsig(x) = φsig(〈w′,x′〉).
Last, let us normalize w̃ = w′/‖w′‖, x̃ = x/‖x′‖ and redefine L to be

L =
‖w′‖‖x′‖ log(2/ε− 1)

2
(3.1)

1632 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

so that hsig(x) = φsig(〈w̃, x̃〉). Thus we see that if there exists an algorithm that runs
in time poly(L, 1/ε, 1/δ) and (ε/2, δ)-learns the class Hsig, then, since for all h ∈ H
there exists hsig ∈ Hsig such that |hsig(x)−h(x)| ≤ ε/2, there also exists an algorithm
that (ε, δ)-learns the concept class H defined in Theorem 3.1 in time polynomial in
(L, 1/ε, 1/δ) (for L defined in (3.1)). But by definition of L in (3.1) and the fact that
‖w′‖ and ‖x′‖ are of size poly(n), this means that there is an algorithm that runs
in time polynomial in (n, 1/ε, 1/δ) and (ε, δ)-learns the class H , which contradicts
Lemma 3.2.

4. Related work. The problem of learning kernel-based halfspaces has been ex-
tensively studied before, mainly in the framework of support vector machines (SVMs)
[27, 11, 23]. When the data is separable with a margin μ, it is possible to learn half-
spaces in polynomial time. The learning problem becomes much more difficult when
the data is not separable with a margin.

In terms of hardness results, [7] derives hardness results for proper learning with
sufficiently small margins. There are also strong hardness of approximation results
for proper learning without margin (see, for example, [14] and the references therein).
We emphasize that we allow improper learning, which is just as useful for the purpose
of learning good classifiers, and thus these hardness results do not apply. Instead,
the hardness result we derived in section 3 holds for improper learning as well. As
mentioned before, the main tool we rely on for deriving the hardness result is the
representation independent hardness result for learning intersections of halfspaces
given in [18].

Practical algorithms such as SVMs often replace the 0-1 error function with a
convex surrogate and then apply convex optimization tools. However, there are no
guarantees on how well the surrogate function approximates the 0-1 error function.
Recently, [29, 4] studied the asymptotic relationship between surrogate convex loss
functions and the 0-1 error function. In contrast, in this paper we show that even
with a finite sample, surrogate convex loss functions can be competitive with the
0-1 error function as long as we replace inner-products with the kernel K(x,x′) =
1/(1− 0.5〈x,x′〉).

4.1. Margin analysis. Recall that we circumvented the dependence of the VC
dimension of Hφ0−1 on the dimensionality of X by replacing φ0−1 with a Lipschitz
transfer function. Another common approach is to require that the learned classifier
be competitive with the margin error rate of the optimal halfspace. Formally, the
μ-margin error rate of a halfspace of the form hw(x) = 1(〈w,x〉 > 0) is defined as

(4.1) errD,μ(w) = Pr[hw(x) �= y ∨ |〈w,x〉| ≤ μ] .

Intuitively, errD,μ(w) would be the error rate of hw had we μ-shifted each point in the
worst possible way. Margin-based analysis restates the goal of the learner (as given
in (1.2)) and requires that the learner find a classifier h that satisfies

(4.2) errD(h) ≤ min
w:‖w‖=1

errD,μ(w) + ε .

Bounds of the above form are called margin-based bounds and are widely used in
the statistical analysis of SVMs and AdaBoost. It was shown [5, 21] that m =
Θ(log(1/δ)/(μ ε)2) examples are sufficient (and necessary) to learn a classifier for
which (4.2) holds with probability of at least 1− δ. Note that, as in the sample com-
plexity bound we gave in Theorem 1.1, the margin-based sample complexity bound
also does not depend on the dimension.

LEARNING KERNEL-BASED HALFSPACES 1633

In fact, the Lipschitz approach used in this paper and the margin-based approach
are closely related. First, it is easy to verify that if we set L = 1/(2μ), then for
any w the hypothesis h(x) = φpw(〈w,x〉) satisfies errD(h) ≤ errD,μ(w). Therefore,
an algorithm that (ε, δ)-learns Hpw also guarantees that (4.2) holds. Second, it is
also easy to verify that if we set L = 1

4μ log
(
2−ε
ε

)
, then for any w the hypothesis

h(x) = φsig(〈w,x〉) satisfies errD(h) ≤ errD,μ(w) + ε/2. Therefore, an algorithm that
(ε/2, δ)-learns Hsig also guarantees that (4.2) holds.

As a direct corollary of the above discussion we obtain that it is possible to learn
a vector w that guarantees (4.2) in time poly(exp(Õ(1/μ))).

A computational complexity analysis under margin assumptions was first carried
out in [7] (see also the hierarchical worst-case analysis recently proposed in [6]). The
technique used in [7] is based on the observation that in the noise-free case, an optimal
halfspace can be expressed as a linear sum of at most 1/μ2 examples. Therefore, one
can perform an exhaustive search over all subsequences of 1/μ2 examples and choose

the optimal halfspace. Note that this algorithm will always run in time m1/μ2

. Since
the sample complexity bound requires that m will be on the order of 1/(με)2, the
runtime of the method described by [7] becomes poly(exp(Õ(1/μ2))). In comparison,
our algorithm achieves a better runtime of poly(exp(Õ(1/μ))). Moreover, while the
algorithm of [7] performs an exhaustive search, our algorithm’s runtime depends on
the parameter B, which is poly(exp(Õ(1/μ))) only under a worst-case assumption.
Since in practice we will cross-validate for B, it is plausible that in many real-world
scenarios the runtime of our algorithm will be much smaller.

4.2. Distributional assumptions and low-degree approaches. The idea of
approximating the 0-1 transfer function with a polynomial was first proposed by Kalai
et al. [16] who studied the problem of agnostically learning halfspaces without kernels
in R

n under a distributional assumption. In particular, they showed that if the data
distribution is uniform over X , where X is the unit ball, then it is possible to agnos-
tically learn Hφ0−1 in time poly(n1/ε4). Their approach is based on approximating
the 0-1 transfer function with a low-degree polynomial, and then explicitly learning
the O(nd) coefficients in the polynomial expansion, where d is the polynomial degree.
This approach was further generalized by Blais, O’Donnell, and Wimmer [8], who
showed that similar bounds hold for product distributions.

Besides distributional assumptions, these works are characterized by strong de-
pendence on the dimensionality n and therefore are not adequate for the kernel-based
setting we consider in this paper, in which the dimensionality of X can even be in-
finite. In contrast, our algorithm requires only the coefficients, not the degree, of
the polynomials to be bounded, and no explicit handling of polynomial coefficients
is required. The principle that when learning in high dimensions “the size of the
parameters is more important than their number” was one of the main advantages in
the analysis of the statistical properties of several learning algorithms (see, e.g., [3]).

However, one can still ask how these approaches compare in the regime where
n is considered a constant. Indeed, the proof of our main theorem, Theorem 2.1,
is based on a certain approximating polynomial which in fact has finite degree. In
principle, one could work explicitly with the polynomial expansion corresponding to
this polynomial, but this does not seem to lead to improved sample complexity or
time complexity guarantees. Moreover, this results in a rather inelegant algorithm,
with guarantees which hold only with respect to that particular approximating poly-
nomial. In contrast, our algorithm learns with respect to the much larger class HB,
which includes all polynomials with an appropriate coefficient bound (see Lemma 2.4),

1634 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

without the need to explicitly specify an approximating polynomial.
Finally, and quite interestingly, it turns out that the very same algorithm we

use in this paper recovers the same complexity bound of [16]. To show this, note
that although the φ0−1 transfer function cannot be expressed as a polynomial in PB

for any finite B, it can still be approximated by a polynomial in PB. In particular,
the following lemma shows that by imposing a uniform distribution assumption on
the marginal distribution over X , one can approximate the φ0−1 transfer function
by a polynomial. In fact, to obtain the approximation, we use exactly the same
Hermite polynomials construction as in [16]. However, while [16] shows that the φ0−1

transfer function can be approximated by a low-degree polynomial, we are concerned
with polynomials having bounded coefficients. By showing that the approximating
polynomial has bounded coefficients, we are able to rederive the results in [16] with a
different algorithm.

Lemma 4.1. Let D be a distribution over X × {0, 1}, where X is the unit ball
in R

n and the marginal distribution of D on X is uniform. For any ε ∈ (0, 1), if

B = poly(n1/ε4), then there exists p ∈ PB such that

E[|p(〈w,x〉) − y|] ≤ E[|φ0−1(〈w,x〉) − y|] + ε .

The proof of the lemma is provided in Appendix D. As a direct corollary, using
Theorem 2.2, we obtain the following.

Corollary 4.2. Assume that the conditions of Lemma 4.1 hold. Let ε, δ ∈ (0, 1),

and let B = poly(n1/ε4). Then the ERM predictor with respect to HB (as described
in section 2) (ε, δ)-learns Hφ0−1 in time and sample complexity poly(B log(1/δ)).

As mentioned earlier, this result matches the complexity bound of [16] up to
second-order terms. We note that [16, 8] also obtained results under more general
families of distributions, but our focus in this paper is different, and therefore we
made no attempt to recover all of their results.

5. Discussion. In this paper we described and analyzed a new technique for
agnostically learning kernel-based halfspaces with the 0-1 loss function. The bound
we derive has an exponential dependence on L, the Lipschitz coefficient of the trans-
fer function. While we prove that (under a certain cryptographic assumption) no
algorithm can have a polynomial dependence on L, the immediate open question is
whether the dependence on L can be further improved.

A perhaps surprising property of our analysis is that we propose a single algo-
rithm, returning a single classifier, which is simultaneously competitive against all
transfer functions p ∈ PB . In particular, it learns with respect to the “optimal”
transfer function, where by optimal we mean the one which attains the smallest error
rate, E[|p(〈w,x〉) − y|], over the distribution D.

Our algorithm boils down to linear regression with the absolute loss function and
while composing a particular kernel function over our original RKHS. It is possible
to show that solving the vanilla SVM, with the hinge-loss, and composing again
our particular kernel over the desired kernel, can also give similar guarantees. It is
therefore interesting to study whether there is something special about the kernel we
propose, or maybe other kernel functions (e.g., the Gaussian kernel) can give similar
guarantees.

Another possible direction is to consider other types of margin-based analysis or
transfer functions. For example, in the statistical learning literature, there are several
definitions of “noise” conditions; some of them are related to margin, which leads

LEARNING KERNEL-BASED HALFSPACES 1635

to faster decrease of the error rate as a function of the number of examples (see, for
example, [10, 26, 25]). Studying the computational complexity of learning under these
conditions is left to future work.

Appendix A. Solving the ERM problem given in (1.5). In this section
we show how to approximately solve (1.5) when the transfer function is φpw. The
technique we use is similar to the covering technique described in [7].

For each i, let bi = 2(yi − 1/2). It is easy to verify that the objective of (1.5) can
be rewritten as

(A.1)
1

m

m∑
i=1

f(bi〈w,xi〉), where f(a) = min

{
1,max

{
0,

1

2
− La

}}
.

Let g(a) = max{0, 1/2−La}. Note that g is a convex function, g(a) ≥ f(a) for every
a, and equality holds whenever a ≥ −1/2L.

Let w� be a minimizer of (A.1) over the unit ball. We partition the set [m] into

I1 = {i ∈ [m] : g(bi〈w�,xi〉) = f(bi〈w�,xi〉)}, I2 = [m] \ I1 .

Now, let ŵ be a vector that satisfies

(A.2)
∑
i∈I1

g(bi〈ŵ,xi〉) ≤ min
w:‖w‖≤1

∑
i∈I1

g(bi〈w,xi〉) + εm .

Clearly, we have

m∑
i=1

f(bi〈ŵ,xi〉) ≤
∑
i∈I1

g(bi〈ŵ,xi〉) +
∑
i∈I2

f(bi〈ŵ,xi〉)

≤
∑
i∈I1

g(bi〈ŵ,xi〉) + |I2|

≤
∑
i∈I1

g(bi〈w�,xi〉) + εm+ |I2|

=
m∑
i=1

f(bi〈w�,xi〉) + εm .

Dividing the two sides of the above by m we obtain that ŵ is an ε-accurate solution
to (A.1). Therefore, it suffices to show a method that finds a vector ŵ that satisfies
(A.2). To do so, we use a standard generalization bound (based on Rademacher
complexity) as follows.

Lemma A.1. Let us sample i1, . . . , ik i.i.d. according to the uniform distribution
over I1. Let ŵ be a minimizer of

∑k
j=1 g(bij 〈w,xij 〉) over w in the unit ball. Then,

E

[
1

|I1|
∑
i∈I1

g(bi〈ŵ,xi〉)− min
w:‖w‖≤1

1

|I1|
∑
i∈I1

g(bi〈w,xi〉)
]

≤ 2L√
k
,

where expectation is over the choice of i1, . . . , ik.

Proof. Simply note that g is L-Lipschitz, and then apply a Rademacher general-
ization bound with the contraction lemma (see [5]).

1636 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

The above lemma immediately implies that if k ≥ 4L2/ε2, then there exist
i1, . . . , ik in I1 such that if

(A.3) ŵ ∈ argmin
w:‖w‖≤1

k∑
j=1

g(bij 〈w,xij 〉),

then ŵ satisfies (A.2) and therefore it is an ε-accurate solution of (A.1). The algorithm
will simply perform an exhaustive search over all i1, . . . , ik in [m]; for each such
sequence the procedure will find ŵ as in (A.3) in polynomial time. Finally, the
procedure will output the ŵ that minimizes the objective of (A.1). The total runtime
of the procedure is therefore poly(mk). Plugging in the value of k = �4L2/ε2� and
the value of m according to the sample complexity bound given in Theorem 1.1, we
obtain the total runtime of

poly

((
L

ε

)L2/ε2
)

= poly

(
exp

(
L2

ε2
log

(
L

ε

)))
.

Appendix B. Proof of Lemma 2.5. In order to approximate φsig with a
polynomial, we will use the technique of Chebyshev approximation (cf. [20]). One can
write any continuous function on [−1,+1] as a Chebyshev expansion

∑∞
n=0 αnTn(·),

where each Tn(·) is a particular nth degree polynomial denoted as the nth Chebyshev
polynomial (of the first kind). These polynomials are defined as T0(x) = 1, T1(x) = x
and then recursively via Tn+1(x) = 2xTn(x) − Tn−1(x). For any n, Tn(·) is bounded
in [−1,+1]. The coefficients in the Chebyshev expansion of φsig are equal to

(B.1) αn =
1+ 1(n > 0)

π

∫ 1

x=−1

φsig(x)Tn(x)√
1− x2

dx.

Truncating the series after some threshold n = N provides an Nth degree polynomial
which approximates the original function.

Before we start, we note that there has been much work and strong theorems
about the required polynomial degree as a function of the desired approximation
(e.g., Jackson-type inequalities [2]). However, we do not know how to apply these
theorems here, since we need a bound on the required coefficient sizes as a function
of the desired approximation. This is the reason for the explicit and rather laborious
calculation below.

In order to obtain a bound on B, we need to understand the behavior of the
coefficients in the Chebyshev approximation. These are determined in turn by the
behavior of αn as well as the coefficients of each Chebyshev polynomial Tn(·). The
following two lemmas provide the necessary bounds.

Lemma B.1. For any n > 1, |αn| in the Chebyshev expansion of φsig on [−1,+1]
is upper bounded as follows:

|αn| ≤ 1/L+ 2/π

(1 + π/4L)n
.

Also, we have |α0| ≤ 1, |α1| ≤ 2.
Proof. The coefficients αn, n = 1, . . . , in the Chebyshev series are given explicitly

by

(B.2) αn =
2

π

∫ 1

x=−1

φsig(x)Tn(x)√
1− x2

dx.

LEARNING KERNEL-BASED HALFSPACES 1637

For α0, the same equality holds with 2/π replaced by 1/π, so α0 equals

1

π

∫ 1

x=−1

φsig(x)√
1− x2

dx,

which by definition of φsig(x) is at most (1/π)
∫ 1

x=−1

(√
1− x2

)−1
dx = 1. As for α1,

it equals

2

π

∫ 1

x=−1

φsig(x)x√
1− x2

dx,

whose absolute value is at most (2/π)
∫ 1

x=−1

(√
1− x2

)−1
dx = 2.

To get a closed-form bound on the integral in (B.2) for general n and L, we will
need to use some tools from complex analysis. The calculation closely follows [12].4

Let us consider φsig(x) at some point x, and think of x as a complex number in
the two-dimensional complex plain. A basic result in complex analysis is Cauchy’s
integral formula, which states that we can rewrite the value of a function at a given
point by an integral over some closed path which “circles” that point in the complex
plane. More precisely, we can rewrite φsig(x) as

(B.3) φsig(x) =
1

2πi

∮
C

φsig(z)

z − x
dz,

where C is some closed path around x (with the integration performed counter-
clockwise). For this to be valid, we must assume that φsig is holomorphic in the
domain bounded by C, namely, that it is (complex) differentiable there. Substituting
this into (B.2), we get that

(B.4) αn =
1

π2i

∮
C

φsig(z)

(∫ 1

x=−1

Tn(x)√
1− x2(z − x)

dx

)
dz.

Performing the variable change x = cos(θ), and using the well-known fact that
Tn(cos(θ)) = cos(nθ), it is easily verified that

∫ 1

x=−1

Tn(x)√
1− x2(z − x)

dx =
π√

z2 − 1(z ±√
z2 − 1)n

,

where the sign in ± is chosen so that |z ± √
z2 − 1| > 1. Substituting this back into

(B.4), we get

(B.5) αn =
1

πi

∮
C

φsig(z)dz√
z2 − 1(z ±√

z2 − 1)n
dz,

where C is a closed path which contains the interval [−1,+1].
This equation is valid whenever φsig(z) is holomorphic in the domain bounded

by C. In such domains, we can change the path C in whichever way we want, with-
out changing the value of the integral. However, φsig is not holomorphic everywhere.

4We note that such calculations also appear in standard textbooks on the subject, but they are
usually carried out under asymptotic assumptions and disregarding coefficients which are important
for our purposes.

1638 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

Recalling that φsig(z) = 1/(1 + exp(−4Lz)) and using the closure properties of holo-
morphic functions, φsig(z) is holomorphic at z if and only if 1+exp(−4Lz) �= 0. Thus,
the singular points are zk = i(π + 2πk)/4L for any k = 0,±1,±2, Note that this
forms a discrete set of isolated points. Functions of this type are called meromorphic
functions. The fact that φsig is “well behaved” in this sense allows us to perform the
analysis below.

If C contains any of these problematic points, then (B.5) is not valid. However,
by the well-known residue theorem from complex analysis, this can be remedied by
augmenting C with additional path integrals, which go in a small clockwise circle
around these points, and then taking the radius of these circles to zero. Intuitively,
these additional paths “cut off” the singular points from the domain bounded by C.
This leads to additional terms in (B.5), one for any singular point zk, which can be
written as

lim
z→zk

−2(z − zk)
φsig(z)√

z2k − 1
(
zk ±

√
z2k − 1

)n ,
assuming the limit exists (this is known as the residue of the function we integrate in
(B.5)). This limit for z0 = iπ/4L equals

− 2√
z20 − 1

(
z0 ±

√
z20 − 1

)n lim
z→z0

(z − z0)φsig(z).

Plugging in the expression for φsig, and performing a variable change, the limit in the
expression above equals

lim
z→0

z

1 + e−iπ−4Lz
= lim

z→0

z

1− e−4Lz
= lim

z→0

1

4Le−4Lz
= 1/4L,

where we used l’Hôpital’s rule to calculate the limit. Thus, we get that the residue
term corresponding to z0 is

− 1/2L√
z20 − 1

(
z0 ±

√
z20 − 1

)n .
Performing a similar calculation for the other singular points, we get that the residue
term for zk is

− 1/2L√
z2k − 1

(
zk ±

√
z2k − 1

)n .
Overall, we get that for well-behaved curves C, which do not cross any of the singular
points,

(B.6) αn =
1

πi

∮
C

φsig(z)dz√
z2 − 1(z ±√

z2 − 1)n
dz −

∑
k∈KC

1/2L√
z2k − 1

(
zk ±

√
z2k − 1

)n ,
where k ∈ KC if and only if the singular point zk is inside the domain bounded by C.

It now remains to pick C appropriately. For some parameter ρ > 1, we pick C
to be an ellipse such that any point z on it satisfies |z ± √

z2 − 1| = ρ. We assume

LEARNING KERNEL-BASED HALFSPACES 1639

that ρ is such that the ellipse is uniformly bounded away from the singular points
of our function. This is possible because the singular points constitute a discrete,
well-spaced set of points along a line. We then let ρ→ ∞.

Since we picked ρ so that the ellipse is bounded away from the singular points, it
follows that |φsig(z)| is uniformly bounded along the ellipse. From that it is easy to
verify that as ρ→ ∞, the integral

1

πi

∮
C

φsig(z)dz√
z2 − 1(z ±√

z2 − 1)n
dz =

1

πi

∮
C

φsig(z)dz√
z2 − 1ρn

dz

tends to zero. Also, as ρ → ∞, all singular points eventually get inside the domain
bounded by C, and it follows that (B.6) can be rewritten as

αn = −
∞∑

k=−∞

1/2L√
z2k − 1

(
zk ±

√
z2k − 1

)n .
Substituting the values of zk and performing a routine simplification leads to the
following:5

αn =
∞∑

k=−∞

−1/2L

in+1

√
((π + 2πk)/4L)

2
+ 1

(
(π + 2πk)/4L±

√
((π + 2πk)/4L)

2
+ 1

)n .

Recall that ± was chosen such that the absolute value of the relevant terms is as large
as possible. Therefore,

|αn| ≤
∞∑

k=−∞

1/2L√
((π + 2πk)/4L)

2
+ 1

(
|π + 2πk|/4L+

√
((π + 2πk)/4L)

2
+ 1

)n

≤
∞∑

k=−∞

1/2L

(|π + 2πk|1/4L+ 1)
n ≤ 1/2L

(1 + π/4L)n
+ 2

∞∑
k=1

1/2L

(1 + π(1 + 2k)/4L)
n

≤ 1/2L

(1 + π/4L)n
+

∫ ∞

k=0

1/L

(1 + π(1 + 2k)/4L)n
dk.

Solving the integral and simplifying gives us

|αn| ≤ 1

(1 + π/4L)n

(
1/4L+

2 + π/2L

π(n− 1)

)
.

Since n ≥ 2, the result in the lemma follows.
Lemma B.2. For any nonnegative integer n and j = 0, 1, . . . , n, let tn,j be the

coefficient of xj in Tn(x). Then tn,j = 0 for any j with a different parity than n, and
for any j > 0,

|tn,j | ≤ en+j

√
2π
.

5On first look, it might appear that αn takes imaginary values for even n, due to the in+1 factor,
despite αn being equal to a real-valued integral. However, it can be shown that αn = 0 for even n.
This additional analysis can also be used to slightly tighten our final results in terms of constants in
the exponent, but it was not included for simplicity.

1640 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

Proof. We have the standard facts that tn,j = 0 for j, n with different parities,
and that |tn,0| ≤ 1. Using an explicit formula from the literature for the coefficients
of Chebyshev polynomials (see [20, p. 24]), as well as Stirling approximation, we have
that

|tn,j | = 2n−(n−j)−1 n

n− n−j
2

(
n− n−j

2
n−j
2

)
=

2jn

n+ j

(
n+j
2

)
!(

n−j
2

)
!j!

≤ 2jn

j!(n+ j)

(
n+ j

2

)j

=
n(n+ j)j

(n+ j)j!
≤ n(n+ j)j

(n+ j)
√
2πj(j/e)j

=
nej

(n+ j)
√
2πj

(
1 +

n

j

)j

≤ nej

(n+ j)
√
2πj

en,

from which the lemma follows.

We are now in a position to prove a bound on B. As discussed earlier, φsig(x)
in the domain [−1,+1] equals the expansion

∑∞
n=0 αnTx. The error resulting from

truncating the Chebyshev expanding at index N , for any x ∈ [−1,+1], equals

∣∣∣∣∣φsig(x)−
N∑

n=0

αnTn(x)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

αnTn(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

|αn|,

where in the last transition we used the fact that |Tn(x)| ≤ 1. Using Lemma B.1 and
assuming N > 0, this is at most

∞∑
n=N+1

1/L+ 2/π

(1 + π/4L)n
=

4+ 8L/π

π(1 + π/4L)N
.

In order to achieve an accuracy of less than ε in the approximation, we need to equate
this to ε and solve for N , i.e.,

(B.7) N =

⌈
log1+π/4L

(
4 + 8L/π

πε

)⌉
.

The series left after truncation is
∑N

n=0 αnTn(x), which we can write as a poly-

nomial
∑N

j=0 βjx
j . Using Lemmas B.1 and B.2, the absolute value of the coefficient

βj for j > 1 can be upper bounded by

∑
n=j...N,n=j mod 2

|an||tn,j| ≤
∑

n=j...N,n=j mod 2

1/L+ 2/π

(1 + π/4L)n
en+j

√
2π

=
(1/L+ 2/π)ej√

2π

∑
n=j...N,n=j mod 2

(
e

1 + π/4L

)n

=
(1/L+ 2/π)ej√

2π

(
e

1 + π/4L

)j �N−j
2 �∑

n=0

(
e

1 + π/4L

)2n

≤ (1/L+ 2/π)ej√
2π

(
e

1 + π/4L

)j
(e/(1 + π/4L))N−j+2 − 1

(e/(1 + π/4L))2 − 1
.

LEARNING KERNEL-BASED HALFSPACES 1641

Since we assume L ≥ 3, we have in particular e/(1 + π/4L) > 1, so we can upper
bound the expression above by dropping the 1 in the numerator, to get

1/L+ 2/π√
2π((e/(1 + π/4L))2 − 1)

(
e

1 + π/4L

)N+2

ej .

The cases β0, β1 need to be treated separately, due to the different forms of the
bounds on α0, α1. Repeating a similar analysis (using the fact that |tn,1| = n for any
odd n, and |tn,0| = 1 for any even n), we get

β0 ≤ 1 +
2

π
+

4L

π2
,

β1 ≤ 2 +
3(1 + 2L/π)(4L+ π)

π2
.

Now that we have a bound on the βj , we can plug it into the bound on B and
get that B is upper bounded by

N∑
j=0

2jβ2
j ≤ β2

0 + 2β2
1 +

N∑
j=2

(
1/L+ 2/π√

2π((e/(1 + π/4L))2 − 1)

)2 (
e

1 + π/4L

)2N+4

(2e2)j

≤ β2
0 + 2β2

1 +

(
1/L+ 2/π√

2π((e/(1 + π/4L))2 − 1)

)2(
e

1 + π/4L

)2N+4
(2e2)N+1

e2 − 1

= β2
0 + 2β2

1 +
(1/L+ 2/π)2e6

(e2 − 1)π((e/(1 + π/4L))2 − 1)2(1 + π/4L)4

(√
2e2

1 + π/4L

)2N

.

Using the assumption L ≥ 3, a straightforward numerical calculation allows us to
upper bound the above by

6L4 + 0.56

(√
2e2

1 + π/4L

)2N

≤ 6L4 + 0.56(2e4)N .

Combining this with (B.7), we get that this is upper bounded by

6L4 + 0.56(2e4)log1+π/4L(
4+8L/π

πε)+1,

which can be rewritten as

(B.8) 6L4 + 1.12 exp

⎛
⎝ log(2e4) log

(
2+4L/π

πε

)
log(1 + π/4L)

+ 4

⎞
⎠ .

Using the fact that log(1 + x) ≥ x(1 − x) for x ≥ 0, and the assumption that L ≥ 3,
we can bound the exponent by

log(2e4) log
(

2+4L/π
πε

)
π
4L

(
1− π

4L

) + 4 ≤
4L log(2e4) log

(
2+4L/π

πε

)
π(1 − π

12)
+ 4 ≤ 9 log(2L/ε)L+ 4.

Substituting back into (B.8), and upper bounding 1.12 by e for readability, we get an
overall bound on B of the form

6L4 + exp (9 log(2L/ε)L+ 5) .

1642 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

Appendix C. The φerf (·) function. In this section, we prove a result analogous
to Lemma 2.5, using the φerf(·) transfer function. In a certain sense, it is stronger,
because we can show that φerf(·) actually belongs to PB for sufficiently large B.
However, the resulting bound is worse than Lemma 2.5, as it depends on exp(L2)
rather than exp(L). However, the proof is much simpler, which helps to illustrate the
technique.

The relevant lemma is the following.
Lemma C.1. Let φerf(·) be as defined in (1.4), where for simplicity we assume

L ≥ 3. For any ε > 0, let

B ≤ 1

4
+ 2L2

(
1 + 3πeL2e4πL

2
)
.

Then φerf(·) ∈ PB.
Proof. By a standard fact, φerf(·) is equal to its infinite Taylor series expansion

at any point, and this series equals

φerf(a) =
1

2
+

1√
π

∞∑
n=0

(−1)n(
√
πLa)2n+1

n!(2n+ 1)
.

Luckily, this is an infinite degree polynomial, and it is only left to calculate for which
values of B does it belong to PB. Plugging in the coefficients in the bound on B, we
get that

B ≤ 1

4
+

1

π

∞∑
n=0

(2πL2)2n+1

(n!)2(2n+ 1)2
≤ 1

4
+

1

π

∞∑
n=0

(2πL2)2n+1

(n!)2

=
1

4
+ 2L2

(
1 +

∞∑
n=1

(2πL2)2n

(n!)2

)
≤ 1

4
+ 2L2

(
1 +

∞∑
n=1

(2πL2)2n

(n/e)2n

)

=
1

4
+ 2L2

(
1 +

∞∑
n=1

(
2πeL2

n

)2n
)
.

Thinking of (2πeL2/n)2n as a continuous function of n, a simple derivative exercise

shows that it is maximized for n = 2πL2, with value e4πL
2

. Therefore, we can upper
bound the series in the expression above as follows:

∞∑
n=1

(
2πeL2

n

)2n

=

�2√2πeL2�∑
n=1

(
2πeL2

n

)2n

+

∞∑
n=�2√2πeL2�

(
2πeL2

n

)2n

≤ 2
√
2πeL2e4πL

2

+

∞∑
n=�2√2πeL2�

(
1

2

)n

≤ 3πeL2e4πL
2

,

where the last transition is by the assumption that L ≥ 3. Substituting into the
bound on B, we get the result stated in the lemma.

Appendix D. Proof of Lemma 4.1. Our proof technique is closely related to
the one in [16]. In particular, we use the same kind of approximating polynomials
(based on Hermite polynomials). The main difference is that while in [16] the degree
of the approximating polynomial was the dominating factor, for our algorithm the
dominating factor is the size of the coefficients in the polynomial. We note that we

LEARNING KERNEL-BASED HALFSPACES 1643

have made no special attempt to optimize the proof or the choice of polynomials to
our algorithm, and it is likely that the result below can be substantially improved.
To maintain uniformity with the rest of the paper, we will assume that the halfspace
with which we compete passes through the origin, although the analysis below can be
easily extended when we relax this assumption.

For the proof, we will need two auxiliary lemmas. The first provides a polynomial
approximation to φ0−1, which is an L2 approximation to φ0−1 under a Gaussian-like
weighting, using Hermite polynomials. The second lemma shows how to transform
this L2 approximating polynomial into a new L1 approximating polynomial.

Lemma D.1. For any d > 0, there is a degree-d univariate polynomial pd(x) =∑d
j=0 βjx

j such that

(D.1)

∫ ∞

−∞
(pd(x)− sgn(x))2

exp(−x2)√
π

dx = O

(
1√
d

)
.

Moreover, it holds that |βj | ≤ O(2(j+d)/2).

Proof. Our proof closely follows that of Theorem 6 in [16]. In that theorem,
a certain polynomial is constructed, and it is proved there that it satisfies (D.1).
Thus, to prove the lemma it is enough to show the bound on the coefficients of that
polynomial. The polynomial is defined there as

pd(x) =

d∑
i=0

ciH̄i(x),

where H̄i(x) = Hi(x)/
√
2ii!, Hi(x) is the ith Hermite polynomial, and

ci =

∫ ∞

−∞
sgn(x)H̄i(x)

exp(−x2)√
π

dx .

In the proof of Theorem 6 in [16], it is shown that |ci| ≤ Ci−3/4, where C > 0 is an
absolute constant. Letting βj be the coefficient of xj in pd(x), and letting hn,j be the
coefficient of xj in Hn(x), we have

(D.2) |βj | =
∣∣∣∣∣∣

d∑
n=j

cn
hn,j√
2nn!

∣∣∣∣∣∣ ≤ C

d∑
n=j

|hn,j|√
2nn!

.

Now, using a standard formula for hn,j (cf. [19]),

|hn,j| = 2j
n!

j!
(
n−j
2

)
!

whenever n = j mod 2; otherwise hn,j = 0. Therefore, we have that for any n, j,

(D.3)
|hn,j |√
2nn!

≤ 2j−n/2

√
n!

(j!)2
((

n−j
2

)
!
)2 .

Now, we claim that (((n−j)/2)!)2 ≥ (n−j)!2j−n. This follows from (((n−j)/2)!)2

1644 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

being equal to

n−j
2 −1∏
i=0

(
n− j − 2i

2

)(
n− j − 2i

2

)

≥
n−j
2 −1∏
i=0

(
n− j − 2i

2

)(
n− j − 2i− 1

2

)
= 2j−n(n− j)!.

Plugging this into (D.3), we get that |hn,j |/
√
2nn! is at most

2j/2

√
n!

(j!)2(n− j)!
≤ 2j/2

√
n!

j!(n− j)!
= 2j/2

√(
n

j

)
≤ 2j/22n/2.

Plugging this into (D.2) and simplifying, the second part of the lemma follows.
Lemma D.2. For any positive integer d, define the polynomial

Q′
d(x) = pd

(√
n− 3

2
x

)
,

where pd(·) is defined as in Lemma D.1. Let U denote the uniform distribution on
Sn−1. Then for any w ∈ Sn−1,

E
x∼U

[(Q′
d(w · x)− sgn(w · x))2] ≤ O(1/

√
d).

As a result, if we define Qd(x) = Q′
d/2 + 1/2, we get

E
x∼U

[(Qd(w · x)− φ0−1(w · x))2] ≤ O(1/
√
d).

The first part of this lemma is identical (up to notation) to Theorem 6 in [16],
and we refer the reader to it for the proof. The second part is an immediate corollary.

With these lemmas at hand, we are now ready to prove the main result. Using
the polynomial Qd(·) from Lemma D.2, we know it belongs to PB for

(D.4) B =

d∑
j=0

2j

((√
n

2

)j

βj

)2

≤ O

⎛
⎝ d∑

j=0

nj2j2d

⎞
⎠ = O

(
(4n)d

)
.

Now, recall by Theorem 2.2 that if we run our algorithm with these parameters,
then the returned hypothesis f̃ satisfies the following with probability at least 1− δ:

(D.5) err(f̃) ≤ E[|QD(〈w∗,x〉)− y|] +O

(√
B log(1/δ)

m

)
.

Using Lemma D.2, we have that∣∣∣E[|Q(〈w∗,x〉)− y|]− E[|φ0−1(〈w∗,x〉)− y|]
∣∣∣ ≤ E[|Q(〈w∗,x〉)− φ0−1(〈w∗,x〉)|]

≤
√
E[(Q(〈w∗,x〉)− φ0−1(〈w∗,x〉))2] ≤ O(d−1/4).

Plugging this back into (D.5) and choosing d = Θ(1/ε4), the result follows.

LEARNING KERNEL-BASED HALFSPACES 1645

Acknowledgments. We would like to thank Adam Klivans for helping with the
hardness results, as well as the anonymous reviewers for their detailed and helpful
comments.

REFERENCES

[1] C. Thomas-Agnan and A. Berlinet, Reproducing Kernel Hilbert Spaces in Probability and
Statistics, Springer, Berlin, New York, 2003.

[2] N. I. Achieser, Theory of Approximation, Frederick Ungar Publishing, New York, 1956.
[3] P. L. Bartlett, For valid generalization, the size of the weights is more important than the

size of the network, in Advances in Neural Information Processing Systems 9, MIT Press,
Cambridge, MA, 1997, pp. 134–140.

[4] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, Convexity, classification, and risk
bounds, J. Amer. Statist. Assoc., 101 (2006), pp. 138–156.

[5] P. L. Bartlett and S. Mendelson, Rademacher and Gaussian complexities: Risk bounds
and structural results, J. Mach. Learn. Res., 3 (2002), pp. 463–482.

[6] S. Ben-David, Alternative measures of computational complexity with applications to agnostic
learning, in Theory and Applications of Models of Computation, Lecture Notes in Comput.
Sci. 3959, Springer, Berlin, 2006, pp. 231–235.

[7] S. Ben-David and H. Simon, Efficient learning of linear perceptrons, in Advances in Neural
Information Processing Systems 13, MIT Press, Cambridge, MA, 2000, pp. 189–195.

[8] E. Blais, R. O’Donnell, and K. Wimmer, Polynomial regression under arbitrary product dis-
tributions, in Proceedings of the 21st Annual Conference on Learning Theory, R. Servedio
and T. Zhang, eds., Omnipress, Madison, WI, 2008, pp. 193–204.

[9] L. Bottou and O. Bousquet, The tradeoffs of large scale learning, in Advances in Neural
Information Processing Systems 20, MIT Press, Cambridge, MA, 2008, pp. 161–168.

[10] O. Bousquet, Concentration Inequalities and Empirical Processes Theory Applied to the Anal-

ysis of Learning Algorithms, Ph.D. thesis, École Polytechnique, Palaiseau, France, 2002.
[11] N. Cristianini and J. Shawe-Taylor, Kernel Methods for Pattern Analysis, Cambridge Uni-

versity Press, Cambridge, UK, 2004.
[12] D. Elliot, The evaluation and estimation of the coefficients in the Chebyshev series expansion

of a function, Math. Comp., 18 (1964), pp. 274–284.
[13] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami, New results for learning noisy

parities and halfspaces, in Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science, IEEE Press, Piscataway, NJ, 2006, pp. 563–574.

[14] V. Guruswami and P. Raghavendra, Hardness of learning halfspaces with noise, in Proceed-
ings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
IEEE Press, Piscataway, NJ, 2006, pp. 543–552.

[15] S. Kakade, K. Sridharan, and A. Tewari, On the complexity of linear prediction: Risk
bounds, margin bounds, and regularization, in Advances in Neural Information Processing
21, MIT Press, Cambridge, MA, 2009, pp. 793–800.

[16] A. Kalai, A. R. Klivans, Y. Mansour, and R. Servedio, Agnostically learning halfspaces,
in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE Press, Piscataway, NJ, 2005, pp. 11–20.

[17] M. Kearns, R. Schapire, and L. Sellie, Toward efficient agnostic learning, Machine Learn-
ing, 17 (1994), pp. 115–141.

[18] A. Klivans and A. Sherstov, Cryptographic hardness for learning intersections of halfspaces,
in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Press, Piscataway, NJ, 2006, pp. 553–562.

[19] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[20] J. Mason, Chebyshev Polynomials, CRC Press, Boca Raton, FL, 2003.
[21] D. McAllester, Simplified PAC-Bayesian margin bounds, in Proceedings of the 16th Annual

Conference on Computational Learning Theory (COLT), Lecture Notes in Comput. Sci.
2777, Springer, Berlin, New York, 2003, pp. 203–215.

[22] R. Schapire, The strength of weak learnability, Machine Learning, 5 (1990), pp. 197–227.
[23] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regulariza-

tion, Optimization and Beyond, MIT Press, Cambridge, MA, 2002.
[24] S. Shalev-Shwartz and N. Srebro, SVM optimization: Inverse dependence on training set

size, in Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 2008, pp. 928–935.

[25] I. Steinwart and C. Scovel, Fast rates for support vector machines using Gaussian kernels,
Ann. Statist., 35 (2007), pp. 575–607.

1646 S. SHALEV-SHWARTZ, O. SHAMIR, AND K. SRIDHARAN

[26] A. Tsybakov, Optimal aggregation of classifiers in statistical learning, Ann. Statist., 32 (2004),
pp. 135–166.

[27] V. N. Vapnik, Statistical Learning Theory, John Wiley, New York, 1998.
[28] G. Wahba, Spline Models for Observational Data, CBMS-NSF Reg. Conf. Ser. Appl. Math.

59, SIAM, Philadelphia, 1990.
[29] T. Zhang, Statistical behavior and consistency of classification methods based on convex risk

minimization, Ann. Statist., 32 (2004), pp. 56–85.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

