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Abstract—We discuss two scenarios of universal prediction, as
well as some recent advances in the study of minimax regret and
algorithmic development. We then propose an intermediate sce-
nario, the Semi-Probabilistic Setting, and make progress towards
understanding the associated minimax regret.

I. INTRODUCTION

Suppose a learner is observing a sequence z1, . . . , zn, . . .
from some alphabet Z . At each time instant t ∈ {1,2, . . . ,},
the learner is required to make a prediction, denoted by ft,
based on the accumulated knowledge zt−1 ≜ (z1, . . . , zt−1).
The quality of this decision is measured by the loss function
`(ft, zt), known to the learner. We are interested in prediction
methods that ensure good performance, as measured by the
average loss

1

n

n

∑
t=1

`(ft, zt) . (1)

As written, the problem is uninteresting: it decomposes into
n identical rounds, with zt−1 providing no information about
the next element zt of the sequence. For the prediction method
to be applicable, we need a way of injecting prior knowledge
into the problem, thereby making it possible to “learn” from
the sequence. This is typically done in two distinct ways, as
described, for instance, in [1].

The first approach (termed The Probabilistic Setting) is to
place assumptions on the data-generating mechanism. Such a
prior knowledge comes in the form of a set of possible sources

P = {P θ ∶ θ ∈ Θ},

made available to the learner. The sequence evolves according
to conditional probabilities P θ

∗

(zt∣z
t−1), yet the identity of θ∗

is not available to the decision-maker. Her task then is to incur
small average cost, relative to the best possible performance
obtained with the full knowledge of the process:

Rpr ≜
1

n

n

∑
t=1

`(ft, Zt) −
1

n

n

∑
t=1

inf
f∗t

E [`(f∗t , Zt)∣Z
t−1] . (2)

Here, the expectation is with respect to the unknown distribu-
tion P θ

∗

, and we replaced zt with Zt to indicate the random
nature of the sequence. Since (2) is a random variable, its size
is measured e.g. in expectation. The choice of f∗t for each P θ
defines1 a set of strategies Π = {πθ ∶ θ ∈ Θ} via

πθt (z
t−1

) = arg min
f∗t

E [`(f∗t , Zt) ∣ Zt−1
= zt−1] (3)

1For the sake of brevity, we are omitting the details pertaining to achiev-
ability of the infimum, as well as all the measurability issues.

and we may write (2) as

1

n

n

∑
t=1

`(ft, Zt) − inf
π∈Π

1

n

n

∑
t=1

E [`(πt(z
t−1

), Zt)∣Z
t−1

= zt−1] .

An approach that is “dual” to the Probabilistic Setting is
to directly model the set of strategies Π and to require good
performance for all sequences. Such an approach, termed The
Deterministic Setting, places an assumption on “what types
of strategies are expected to perform well” rather than on
the probabilistic nature of the sequence. Let Π be a set of
strategies, each π ∈ Π specifying decisions πt(zt−1) for all
possible prefixes zt−1, and incurring an instantaneous loss of
`(πt(z

t−1), zt). The learner is tasked with making predictions
in such a fashion that keeps regret

Rdet ≜
1

n

n

∑
t=1

`(ft, zt) − inf
π∈Π

1

n

n

∑
t=1

`(πt(z
t−1

), zt) (4)

small for any sequence z1, . . . , zn. We may say that the learner
“competes” in its performance with the set of strategies Π.

The set Π chosen in the Deterministic Setting may or
may not correspond to solutions for some well-defined set of
data-generating sources, giving us great flexibility in modeling
solutions to the problem at hand and relieving us from having
to solve (3). On the downside, the goal of ensuring small
regret (4) for all sequences is more demanding than that
in the Probabilistic Setting. A grand result would establish
properties of the set of sources P such that the performance
in the Probabilistic Setting is of the same order of magnitude
as that in the Deterministic Setting with the corresponding
(“dual”) set of solutions Π. For instance, one may consider
the set of Markov predictors as solutions to a set of Markov
processes; or, one may consider the set of linear predictors as
solutions to a Gaussian source (see [1]). Such a comparison
of optimal performance can be done by studying the minimax
formulations. The minimax redundancy in the Probabilistic
Setting is

V
pr
n (P) = inf

A
sup
Pθ∈P

E{Rpr} (5)

where the infimum is over algorithms A that produce pre-
dictions ft in the causal manner described above and the
expectation is under Pθ. The minimax regret, on the other hand,
can be defined as

V
det
n (Π) = inf

A
sup
zn

E{Rdet} , (6)

with expectation over the internal randomization of the predic-
tion method. While the two minimax values are of the same
order for some simple “parametric” cases [2], there exist also
examples on which the two differ [3]. Therefore, the “duality”



is, at the moment, philosophical rather than quantitative; it is
an interesting open question whether the relationship can be
made more precise [1].

The gaps between minimax redundancy and minimax regret
in the two scenarios can be attributed to the pessimistic nature
of the regret definition: the learner might alter the prediction
method significantly to go after a particular sequence that is
unlikely to appear in practice. The aim of this paper is to
formalize a setting in-between Probabilistic and Deterministic
settings. By doing so, the hope is to alleviate the pessimistic
requirement while still preserving the “distribution-free” qual-
ity of the results.

Back to the discussion about the two scenarios, we remark
that a similar “duality” has led to the Vapnik-Chervonenkis
theory in the realm of Statistical Learning (that is, learning
from a batch of i.i.d. data). It is being argued that if prediction
is the end goal, one may attempt to construct algorithms that
compete in prediction performance with a reference set of
decision rules G = {g ∶ X ↦ {0,1}} (solutions to a classi-
fication problem), as opposed to modeling the data-generating
distributions. This point of view has led to major developments
in the theory and practice of machine learning. The classical
results in this area are of a distribution-free nature, and the
possibility of the corresponding minimax value being small is
completely determined by complexity of the set G of decision
rules with which the learner “competes”. It is also recognized
within Statistical Learning that the distribution-free approach
is overly pessimistic and additional assumptions (such as large
margin, Tsybakov noise condition, etc) lead to better results
and suggest better algorithms. Yet, the setting augmented with
these assumptions is still far away from modeling the data-
generating process. In some sense, our attempt in this paper
is to propose a similar middle ground between Deterministic
and Probabilistic scenarios.

In the past few years, a theory similar to the distribution-
free Statistical Learning theory has been developed for the
case of universal prediction in the Deterministic Setting with
Π being a set of constant strategies

{πθ ∶ θ ∈ Θ, πθt (z
t−1

) = θ ∀zt−1,∀t} .

In this case, the complexities of the set of strategies (equiva-
lently, Θ) that dictate the behavior of Vdet

n (Π) can be seen
as temporal extensions of covering numbers, random aver-
ages, combinatorial parameters, and other complexity measures
from Statistical Learning [4]. For the case of real-valued
prediction with absolute loss, these “sequential” complexities
also yield matching lower bounds. In addition to providing
non-constructive analysis of Vdet

n (Π), sequential complexities
give a generic recipe for deriving computationally-feasible
algorithms. This is achieved through the notion of a relaxation
[5]. Both constructive and non-constructive results have been
extended in [6] to the case of non-constant strategies, where
the authors developed computationally attractive methods that
are not achieved with standard techniques. We are interested in
extending these results to the following “Semi-Probabilistic”
setting.

II. SUMMARY OF RESULTS

A. Minimax Regret

Let F denote the set of decisions of the learner and
∆(F) the set of distributions on F . Formally, a (deterministic)
strategy is a mapping πt ∶ Z

t−1 ↦ F , and π = (π1, . . . , πn).
Fix a set Π of strategies and let us write a more explicit version
of the minimax regret in (6) by sequentially writing out the
optimal choices of predictions and observations in a sequence
of infima, suprema, and expectations:

inf
q1

sup
z1

E
f1∼q1

. . . inf
qn

sup
zn

E
fn∼qn

{
n

∑
t=1

`(ft, zt)

− inf
π∈Π

n

∑
t=1

`(πt(z
t−1

), zt)} ,

where we omitted the normalization factor 1/n. Here, the
infima range over distributions qt ∈ ∆(F) and the notation
Eft∼qt denotes integration with respect to ft with distribution
qt. This formulation, in fact, allows the sequence z1, . . . , zn to
evolve based on the predictions of the learner, a setting known
as “non-oblivious adversary” in the online learning literature.
Crucially, zt does not depend on ft, but only on the mixed
strategy qt, as well as on f t−1.

In the above minimax regret definition, each zt is chosen in
an arbitrary manner, and thus an upper bound on this minimax
value ensures existence of a method (that is, a choice of qt at
each step) that enjoy small regret for all sequences z1, . . . , zn.
As argued in the previous section, we would like to restrict the
choices of zt, incorporating some additional prior knowledge
about the process. Unlike the Probabilistic Setting, however,
we are not matching the strategy set Π to the (possibly mild)
restrictions on the choice of the sequence.

Formally, following [7], we define subsets of allowed
distributions for zt on each round.

Definition 1. A restriction P1∶n is a sequence P1, . . . ,Pn of
mappings Pt ∶ Zt−1 ↦ 2∆(Z) such that Pt(zt−1) is a convex
subset of ∆(Z) for any zt−1 ∈ Zt−1.

We now define the (unnormalized) minimax regret with
respect to the set of strategies Π and the set of restrictions
P1∶n, denoted henceforth by V(Π,P1∶n) or, simply, V:

⟪inf
qt

sup
pt∈Pt(zt−1)

E
ft∼qt

E
zt∼pt

⟫

n

t=1

{
n

∑
t=1

`(ft, zt)

− inf
π∈Π

n

∑
t=1

`(πt(z
t−1

), zt)} .

We have used the notation ⟪. . .⟫
n
t=1 as a shorthand to denote

n repeated applications of the operators within the angular
bracket pairs. If Pt(zt−1) = ∆(Z), the supremum over pt is
achieved at a point mass on some zt. Thus, P1∶n = ∆(Z)1∶n
models the Deterministic Setting with arbitrary sequences.

The goal of universal prediction in the Semi-Probabilistic
setting is now formulated as finding methods that choose the
mixed strategy qt in a near-optimal manner with respect to the
above minimax regret definition. Clearly, the long sequence of
infima and suprema is, in general, impossible to compute in
closed form, and it is not clear how “near-optimal” solutions



can be found. The first step to resolving this problem is the
following reformulation in the spirit of dynamic programming.

For any zn, let us recursively define n + 1 functions

V(zn) ≜ − inf
π∈Π

n

∑
t=1

`(πt(z
t−1

), zt)

and

V(zt−1
) ≜ inf

qt

sup
pt∈Pt(zt−1)

E
ft∼qt

E
zt∼pt

{`(ft, zt) + V(z
t
)} (7)

for t ≥ 1. We call the function V(zt) a conditional value
since it can be thought of as minimax regret given the
observed sequence zt. It is not difficult to verify that the
final unconditional value V(z0) (that is, V(∅)) is precisely
the minimax regret V(Π,P1∶n), justifying the overloading of
the notation. A minimax optimal qt is obtained by solving (7).

B. Relaxations

While the recursive reformulation does not shed light on
a minimax optimal solution, it does give hope for deriving
near-optimal computationally feasible methods. The idea is
to replace each V(zt) with a good upper bound. Formally,
a sequence of functions Rel is an admissible relaxation if for
any sequence zn,

Rel(zn) ≥ − inf
π∈Π

n

∑
t=1

`(πt(z
t−1

), zt)

and

Rel(zt−1
) ≥ inf

qt

sup
pt∈Pt(zt−1)

E
ft∼qt

E
zt∼pt

{`(ft, zt) +Rel(zt)}

Any choice of qt’s, for each t, that ensures the above inequal-
ities is an algorithm with a regret bound of Rel(∅) (see [5]
for a short proof).

The problem of finding low-regret algorithms now boils
down to coming up with a relaxation and a choice qt that en-
sures admissibility. For instance, for any admissible relaxation
Rel one can obtain an associated low regret algorithm which
at time t picks the distribution qt over set of decisions F as
follows:

qt = argmin
q∈∆(F)

sup
pt∈Pt(zt−1)

E
ft∼q

E
zt∼pt

{`(ft, zt) +Rel(zt)}

For appropriately chosen relaxations, this algorithm can often
be written in a closed form, or at least qt can be obtained by
solving a tractable numerical optimization procedure.

What are the candidates for an admissible relaxation Rel?
This is where minimax duality comes into play. We may start
with the conditional value V(zt−1) written in the extended
form with multiple infima and suprema, and, given the ap-
propriate conditions, exchange them. The resulting quantity
is often easier to upper bound. This is the idea employed in
[5], and it led the authors to recover many known methods,
but also to develop novel prediction algorithms with superior
computational performance and guarantees on regret. Before
proceeding to develop relaxations for the Semi-Probabilistic
setting, let us recap this approach for the case of constant
strategies in the Deterministic setting.

C. Constant Strategies, Deterministic Setting

Consider the case of constant strategies with decisions in
Θ and no restrictions on the sequence zn. This is the most
studied scenario (see [8]), often termed “Online Learning”.
Most results in this literature are obtained by exhibiting an
algorithm and proving a bound on its regret for all sequences.
Here, we would like to mention an approach that directly
studies complexity of the set Θ by upper and lower-bounding
V(Θ).

After appealing to minimax duality for the conditional
value V(zt), one can employ the process of sequential sym-
metrization [4]. Roughly speaking, it allows us to replace
the randomness arising from the mixed strategies with a σ-
algebra generated by coin flips. In particular, if the symmetriza-
tion process is performed for V(Θ), we arrive at sequential
Rademacher complexity, defined for the set of constant strate-
gies as

R(Θ) ≜ sup
z

Eε sup
θ∈Θ

[
n

∑
t=1

εt`(θ,zt(ε))] (8)

where the supremum is over Z-valued trees z of depth n and
expectation is over a sequence of n independent Rademacher
random variables ε = (ε1, . . . , εn). The definition of a Z-valued
tree is as follows: it is a complete binary tree of depth n
with nodes labeled by elements of Z . For level t, the labeling
function zt ∶ {±1}t−1 ↦ Z specifies the label given the path
from the root, with −1 denoting “left” and +1 denoting “right”.
We write z for the collection (z1, . . . ,zn) and also zt(ε) for
zt(ε

t−1). It is proved in [4] that

V(Θ) ≤ 2 R(Θ),

and the analogous bound for V(zt) is twice

R(zt) ≜ sup
z

Eε sup
θ∈Θ

[
n

∑
s=t+1

εs`(θ,zs(ε)) −
t

∑
s=1

`(θ, zs)] (9)

This conditional version of sequential Rademacher complexity
can be shown to be admissible, and provides a starting point
for the development of computationally feasible algorithms.
In particular, this complexity facilitates the development of
randomized prediction methods that roll out randomly into the
future, yielding a solid footing for the Smoothed Fictitious
Play method from Game Theory and the Follow the Perturbed
Leader method studied by the Online Learning community.
The Exponential Weights (or, Weighted Majority) algorithm
[9], [10] follows from a relaxation that is an immediate upper
bound on R(zt), and so do many other methods studied within
Online Learning. We refer to [5] for more details, and to [11]
for an extension to adaptive data-driven methods.

Example 1 (Binary Prediction with Absolute Loss). Let Z =

{−1,1} and F = [−1,1]. The learner observes a sequence of
bits and predicts an ft ∈ F , where (ft+1)/2 can be interpreted
as the probability the next bit is 1. The incurred loss is

`(ft, zt) = ∣ft − zt∣ = 1 − ztft .

Let Θ = {−1,1}; that is, the learner competes with the set of



two constant strategies (see e.g. Cover [12]). From Eq. (9),

R(zt) = sup
z

Eε max
θ∈{−1,1}

[
n

∑
s=t+1

εs(1 − zs(ε)θ) −
t

∑
s=1

(1 − zsθ)]

= sup
z

Eε ∣
t

∑
s=1

zs −
n

∑
s=t+1

εszs(ε)∣ − t = Eε ∣
t

∑
s=1

zs +
n

∑
s=t+1

εs∣ − t

In other words, the complexity is given by the expected length
of a random walk starting from the observed bits zt. Solving
the recursive problem with this relaxation, we get

argmin
qt

max
zt∈{±1}

{E(1 − ftzt) +R(zt)}

= argmin
qt

max{1 − qt +R((zt−1,+1)),1 + qt +R((zt−1,−1))}

=
1

2
[R((zt−1,+1)) −R((zt−1,−1))]

This recovers a well-known solution [8], [13]. Furthermore,
one may simulate the random walk, resulting in an efficient
randomized algorithm. A similar argument yields a prediction
method for any class of static experts with a regret bound of
classical Rademacher complexity [14]. However, when the ex-
perts are not static, the sequential Rademacher generalization
is the correct notion.

Further upper bounds on sequential Rademacher complex-
ity can be obtained in terms of sequential covering numbers,
combinatorial parameters (a generalization of the Vapnik-
Chervonenkis dimension), etc. These complexity measures of
the set of decisions (later – strategies) can be used to derive
further relaxations and, hence, prediction methods [5].

D. Arbitrary Strategies, Deterministic Setting

The notion of sequential Rademacher complexity has been
extended in [6] to the case of non-constant strategies Π:

R(Π,∆(Z)1∶n) ≜

sup
w,z

Eε sup
π∈Π

[
T

∑
t=1

εt`(πt(w1(ε), . . . ,wt−1(ε)),zt(ε))]

and the value of prediction problem with a set Π of strate-
gies and no restrictions on the sequences (see definition of
V(Π,P1∶n) on page 2) is shown to be upper bounded as

VT (Π,∆(Z)1∶n) ≤ 2 R(Π,∆(Z)1∶n) .

Similarly to (9), we obtain a version of conditional se-
quential Rademacher complexity, and this can be used as a
starting point for the development of computationally feasible
methods. We refer to [6] for examples of this approach.

E. Arbitrary Strategies, Semi-Stochastic Setting

We first consider the case when restrictions P1∶n on the
set of allowed distributions come in the form of an allowed
supports of the distributions pt. For instance, such restrictions
can model sequences with a bound ∥zt − zt−1∥ ≤ σt. More
precisely, let Zt(zt−1) ⊆ Z be a data-dependent subset, and
let Pt(zt−1) be the set of all distributions with support on
Zt(z

t−1), that is Pt(zt−1) = ∆(Zt(z
t−1)). Then the infimum

over pt ∈ Pt(zt−1) in the definition of V(Π,P1∶n) is attained
at some zt ∈ Zt(z

t−1). In this setting, the sequences are

deterministically constrained since each element zt is required
to be chosen from a (history dependent) subset Zt(zt−1). We
may then write minimax regret as

⟪inf
qt

sup
zt∈Zt(zt−1)

E
ft∼qt

⟫

n

t=1

{
n

∑
t=1

`(ft, zt) − inf
π∈Π

n

∑
t=1

`(πt(z
t−1

), zt)} .

We may then define the sequential Rademacher complexity
R(Π,P1∶n) as

sup
(w,z)∈C

Eε sup
π∈Π

[
T

∑
t=1

εt`(πt(w0(ε), . . . ,wt−1(ε)),zt(ε))]

where w is a Z-valued tree that starts at level 0 (this modi-
fication is the easiest to keep the indices consistent) and has
depth n + 1, while z is the usual Z-valued tree of depth n.
The above supremum ranges over pairs (w,z) satisfying the
constraints Z1∶n as follows:

∀t ∈ {1, . . . , n}, wt(ε),zt(ε) ∈ Zt(w0(ε), . . . ,wt−1(ε)).

In plain words, sequential Rademacher complexity has a very
similar form to that in Deterministic Setting, but the constraints
we put on the sequences are reflected in the trees. We can prove
the following.

Theorem 1. Let P1∶n be restrictions that take the form of
deterministic constraints on the supports of probability distri-
butions pt. Then the minimax regret is upper bounded as

V(Π,P1∶n) ≤ 2 R(Π,P1∶n)

for any set of strategies Π.

While the above theorem handles the deterministically
constrained scenario, one can also obtain, on similar lines,
bounds for the general stochastic restriction case in Definition
1. However the sequential Rademacher complexity associated
with the general case is more involved, with a complex stochas-
tic tree generating procedure. For both the deterministically
constrained sequences and the case with stochastic restric-
tions, one can use the corresponding sequential Rademacher
complexities as a starting point for deriving relaxations and
algorithms.

The goal of this paper was to pose the problem of studying
regret in the Semi-Probabilistic model. We have started to
explore one direction – through minimax duality and sequential
symmetrization – but a full understanding of how the various
restrictions and sets of strategies interact is yet to be deter-
mined. More specifically, we may ask

● Under which conditions on the “size” of sources {P θ}
is the minimax redundancy of the same order of
magnitude as minimax regret with the corresponding
set of solutions Π?

● How does the gap between the two change as we intro-
duce additional restrictions in the Semi-Probabilistic
setting?

● What are the natural restrictions P1∶n in various ap-
plications of sequential prediction methods?

● When can computationally feasible methods be de-
rived in the Semi-Probabilistic model? Can the relax-
ation approach prove to be as fruitful here as in the
Deterministic Setting?
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