
April 11, 2003 1:34 WSPC/185-JBCB 00018

Journal of Bioinformatics and Computational Biology
Vol. 1, No. 1 (2003) 95–117
c© Imperial College Press

RAPTOR: OPTIMAL PROTEIN THREADING BY

LINEAR PROGRAMMING

JINBO XU∗ and MING LI†

Department of Computer Science, University of Waterloo,

Waterloo, Ont. N2L 3G1, Canada
∗j3xu@math.uwaterloo.ca
†mli@math.uwaterloo.ca

DONGSUP KIM‡ and YING XU§

Protein Informatics Group,

Life Science Division and Computer Sciences and Mathematics Division,

Oak Ridge National Lab, Oak Ridge, TN 37831, USA
‡afg@ornl.gov
§xyn@ornl.gov

Received 22 January 2003
Revised 7 March 2003
Accepted 7 March 2003

This paper presents a novel linear programming approach to do protein 3-dimensional
(3D) structure prediction via threading. Based on the contact map graph of the protein
3D structure template, the protein threading problem is formulated as a large scale inte-
ger programming (IP) problem. The IP formulation is then relaxed to a linear program-
ming (LP) problem, and then solved by the canonical branch-and-bound method. The
final solution is globally optimal with respect to energy functions. In particular, our en-
ergy function includes pairwise interaction preferences and allowing variable gaps which
are two key factors in making the protein threading problem NP-hard. A surprising result
is that, most of the time, the relaxed linear programs generate integral solutions directly.
Our algorithm has been implemented as a software package RAPTOR–RApid Protein
Threading by Operation Research technique. Large scale benchmark test for fold recogni-
tion shows that RAPTOR significantly outperforms other programs at the fold similarity
level. The CAFASP3 evaluation, a blind and public test by the protein structure predic-
tion community, ranks RAPTOR as top 1, among individual prediction servers, in terms
of the recognition capability and alignment accuracy for Fold Recognition (FR) family
targets. RAPTOR also performs very well in recognizing the hard Homology Modeling
(HM) targets. RAPTOR was implemented at the University of Waterloo and it can be
accessed at http://www.cs.uwaterloo.ca/∼j3xu/RAPTOR form.htm.

Keywords: Protein threading; contact map graph; linear programming; integer program-
ming; CAFASP.

95

April 11, 2003 1:34 WSPC/185-JBCB 00018

96 J. Xu et al.

1. Introduction

The Human Genome Project has led to the identification of over 30 000 genes in the

human genome, which might encode, by some estimation, about 100 000 proteins

as a result of alternative splicing. To fully understand the biological functions and

functional mechanisms of these proteins, the knowledge of their three-dimensional

structures is essential. The ambitious Structural Genomics Initiatives, launched by

NIH in 1999, intends to solve these protein structures within the next ten years,

through the development and application of significantly improved experimental

and computational technologies.

A protein structure is typically solved using x-ray crystallography or nuclear

magnetic resonance spectroscopy (NMR), which are costly and very time-consuming

(ranging from months to years per structure) and is quite difficult for high-

throughput production. The overall strategy of the NIH Structural Genomics

Initiatives is to solve protein structures using experimental techniques like x-ray

crystallography or NMR only for a small fraction of all proteins and to employ

computational techniques to model the structures for the rest of the proteins. The

basic premise used here is that though there could be millions of proteins in na-

ture, the number of unique structural folds is most likely 2–3 (or even more) orders

of magnitude smaller. Hence by strategically selecting the proteins with unique

structural folds for experimental solutions, we can put the vast majority of other

proteins “within the modeling distance” of these proteins. Model-based structure

prediction techniques could play a significant role in helping to achieve the goal of

the Structural Genomics Initiatives. Protein threading represents one of the most

promising such techniques.

Protein structure prediction through threading approach mainly involves the

following four steps:

• Construction of structure template database: select protein structures from pro-

tein structure databases as structural templates. This generally involves selecting

proteins, from databases like FSSP,1 SCOP,2 or CATH,3,4 removing proteins with

high sequence similarities, in order to save computational time.

• Threading energy function: develop a statistics-based energy function which can

be used to assess the quality of a predicted structure.

• Threading alignment: align a query sequence with each of the structure templates

which optimizes a specified scoring (energy) function.

• Threading prediction: select the threading alignment that is statistically most

probable, as the threading prediction; and make a structure prediction by placing

the backbone atoms of the query protein to their aligned backbone positions of

the selected structural template.

Protein threading can be used for both structure prediction and protein fold

recognition, i.e. detection of homologous proteins. Numerous computer algorithms

have been proposed for protein structure prediction, based on the threading

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 97

approach. Based on the energy function models and computational methods, they

can be grouped into three classes:

(1) The energy function does not include the pairwise interaction preferences

explicitly. For this kind of models, a simple dynamic programming algorithm can

be employed to optimize the energy function by aligning the template sequence

(profile or Hidden Markov Model) to the target sequence (profile). Currently most

threading servers belong to this category, including FUGUE,5 3DPSSM,6 and

GenTHREADER.7 These methods are usually fast and achieve reasonable accu-

racy for HM targets, but they are generally not adequate for FR targets.

(2) The energy function includes the pairwise interaction preferences. It has

been proved that this problem is NP-hard when variable gaps and pairwise inter-

actions are considered simultaneously.8 Various types of approximation algorithms

have been used to optimize the energy function. These methods include double dy-

namic programming,9 interaction-frozen approximation,10 and Monte Carlo sam-

pling algorithm.11 Unfortunately, T. Akutsu and S. Miyano have proved that this

problem is MAX-SNP-hard,12 which implies that no polynomial time algorithm can

achieve arbitrarily close approximation unless NP = P. We must point out that

all NP-hardness proofs are based on the unrealistic assumptions that all residue-

residue contacts should be considered. Therefore, these intractability proofs may

have nothing to do with the complexity of real life protein threading problem af-

terall, as partially demonstrated in this paper.

(3) The energy function includes the pairwise interaction preferences and an

exact algorithm is designed to optimize the energy function. Xu et al. have proposed

a divide-and-conquer method employed by PROSPECT-I.13 PROSPECT-I runs

fast on simple protein template (interaction) topology but could take a long time

or run out of memory (in a 32 bit platform) for protein templates with dense

residue-residue interactions and long target sequences. Lathrop and Smith have

proposed a practical branch-and-bound algorithm for protein threading. But for

some data set, their algorithms could not converge within two hours for about 10

percent threading pairs.14

The main focus of this paper is to develop a globally optimal and practically

efficient threading algorithm by formulating the protein threading problem as a

large scale integer/linear programming problem. The formulation is based on the

alignment model treating the pairwise interaction preferences strictly and allowing

variable gaps. The integer program solver could automatically select the optimiza-

tion pathway by exploiting the relationships of various kinds of scores involved in

the energy function. It also allows us to utilize the existing powerful linear pro-

gramming packages to rapidly reach the optimal alignment. To our knowledge, this

is the first time that the integer/linear programming approach is applied to protein

threading.

This paper is organized as follows. Section 2 presents some assumptions and

the alignment model employed by our algorithm. Section 3 gives three differ-

ent integer program formulations of the protein threading problem and briefly

April 11, 2003 1:34 WSPC/185-JBCB 00018

98 J. Xu et al.

analyzes their strengths and relationship. Section 4 presents some implementation

details of RAPTOR. These include scoring systems, weight training, and Support

Vector Machine fold recognition approach. Section 5 compares RAPTOR’s perfor-

mance with some popular servers using several standard large scale experimental

benchmark data and the recently released CAFASP3 evaluation. In Sec. 5, we also

present several predicted structures generated by RAPTOR. Section 6 analyzes

the computational efficiency issues such as CPU time and memory consumption.

Finally Sec. 7 discusses future extensions to RAPTOR.

2. Alignment Model

We represent the amino acid sequence, of length m, of a protein template by

t1t2 · · · tm and a query sequence, of length n, by s1s2 · · · sn.

Definition 1. An alignment between the template and the sequence is a set of

pairs (t̂1, ŝ1), (t̂2, ŝ2), . . . , (t̂L, ŝL), where L ≤ m + n, t̂1 t̂2 · · · t̂L is an expansion of

t1t2 · · · tm by inserting some gaps and ŝ1ŝ2 · · · ŝL is an expansion of s1s2 · · · sn by

inserting some gaps and for any pair (t̂i, ŝi), at most one of t̂i and ŝi is a gap, for

1 ≤ i ≤ L.

Definition 1 is a very general definition of alignment, which could lead to a

huge search space of feasible alignments. Some biological observations could be

employed to give a more specific definition. In formulating the protein threading

problem, we follow a few basic assumptions widely adopted by the protein threading

community.13 We assume that:

(1) Each template sequence is parsed as a linear series of cores with the con-

necting loops between the adjacent cores. Each core is a conserved segment of an

α-helix or β-sheet secondary structure. Although the secondary structure is often

conserved, insertion or deletion may occur at the two ends of a secondary struc-

ture. So we only keep the most conserved part. Let ci = core(headi, taili) denote

all cores of one template, where i = 1, 2, . . . , M , M is the number of the cores, and

1 ≤ head1 ≤ tail1 < head2 ≤ tail2 < · · · < headM ≤ tailM ≤ m. The region be-

tween taili and headi+1 is a loop, for each i. The length of ci is leni = taili−headi+1.

Let loci denote the sum of the length of all cores before ci, i.e. loci =
∑i−1

j=1 lenj .

(2) When aligning a query protein sequence to a template, alignment gaps are

confined to loops, that is, the regions between cores or the two ends of the tem-

plate. The biological justification is that cores are conserved so that the chance of

insertions or deletions within them is very little.

(3) We consider only interactions between residues in the cores. It is generally

believed that interactions involving loop residues can be ignored as their contri-

bution to fold recognition is relatively insignificant. We say that an interaction

exists between two residues if the spatial distance between their Cβ atoms is within

7A and they are at least 4 positions apart in the template sequence. We say that

an interaction exists between two cores if there exists at least one residue-residue

interaction between the two cores.

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 99

Our threading energy function consists of environment fitness score Es, mutation

score Em, secondary structure compatibility score Ess, gap penalty Eg and pairwise

interaction score Ep. The overall energy function E has the following form:

E = WmEm + WsEs + WpEp + WgEg + WssEss,

where Wm, Ws, Wp, Wg , Wss are weight factors to be determined by training.

Global alignment and global-local alignment methods are employed to align one

template to one sequence. For the detailed description, we refer the reader to the

paper by Fischer et al.15 In the case that the template size is smaller than the

sequence size, the whole template structure is aligned to the sequence. Head gap

penalty and tail gap penalty are harnessed. In the case that the template size is

larger than the query sequence size, it is possible that some cores at the two ends

of the template cannot be aligned to the sequence. But we can always extend the

sequence by adding some “artificial” amino acids to the two ends of the sequence to

make all cores align to the (extended) sequence. All scores involving those extended

positions are set to be 0.

3. Formulation

Definition 2. We use an undirected graph CMG = (V , E) to denote the

(simplified) contact map graph of a protein template structure. Here, V = {c1,

c2, ..., cM} where ci represents ith core in the protein template, and E = {(ci, cj)|

there is an interaction between ci and cj , or |i − j| = 1}.

See Fig. 1 for an example of contact map graph. For simplicity, when we say

core ci is aligned to position sj , we always mean that core ci = (headi, taili) is

aligned to segment (sj , sj+leni−1).

Definition 3. Let B denote the alignment bipartite graph of one threading

pair. Each core of the template corresponds to one vertex in B, labeled as ci,

i = 1, 2, . . . , M , each residue in the query sequence corresponds to one vertex in B,

labeled as sj , j = 1, 2, . . . , n. The edges of B consist of all valid alignments between

each core and each sequence position. The edges of B are also called the alignment

edges.

Intuitively, if the alignment edges do not cross, we say they are not in conflict.

Formally, this fact is stated in the next definition.

Definition 4. For any two different edges e1 = (ci1 , sj1) and e2 = (ci2 , sj2) in an

alignment bipartite graph B, if (loci1 − loci2)× (sj1 + loci2 − loci1 − sj2) ≤ 0, then

we say e1 and e2 are in conflict.

The following three lemmas give some properties of conflict and non-conflict.

They are useful in understanding the correctness of our LP/IP formulation.

Lemma 1 describes the transitivity of conflict while Lemma 2 says that non-conflict

is also transitive.

April 11, 2003 1:34 WSPC/185-JBCB 00018

100 J. Xu et al.

March 9, 2003 15:21 WSPC/INSTRUCTION FILE JBCBr

5

Sequence

core1 core2 core3

Original Contact Graph

core4

core1 core2 core3 core4

No gap allowed within cores

(Simplified) Contact Graph

Fig. 1. Template contact graph and an example of alignment between a template and a sequence. A small circle
represents a residue. A solid arc in the original contact graph represents an interaction between the two connected
residues. A dashed arc means that if two query sequence residues are aligned to two interacting template residues,
then the interaction score of these two query sequence residues must be counted in the energy function. The
interaction score between two segments of the query sequence is the sum of the interaction scores of two query
sequence residues which are aligned by two interacted template residues.

Definition 3. Let denote the alignment bipartite graph of one threading pair. Each core
of the template corresponds to one vertex in , labeled as , , each residue
in the query sequence corresponds to one vertex in , labeled as , . The
edges of consist of all valid alignments between each core and each sequence position.
The edges of are also called the alignment edges.

Intuitively, if the alignment edges do not cross, we say they are not in conflict. Formally,
this fact is stated in the next definition.

Definition 4. For any two different edges and in an align-
ment bipartite graph , if , then we say

and are in conflict.

The following three lemmas give some properties of conflict and non-conflict. They are
useful in understanding the correctness of our LP/IP formulation. Lemma describes the
transitivity of conflict while Lemma says that non-conflict is also transitive.

Lemma 1. For any three different edges , and
, if conflicts with and conflicts with , then conflicts with .

Proof. For simplicity of notation, we will use for .

Fig. 1. Template contact graph and an example of alignment between a template and a sequence. A
small circle represents a residue. A solid arc in the original contact graph represents an interaction
between the two connected residues. A dashed arc means that if two query sequence residues are
aligned to two interacting template residues, then the interaction score of these two query sequence
residues must be counted in the energy function. The interaction score between two segments of
the query sequence is the sum of the interaction scores of two query sequence residues which are
aligned by two interacted template residues.

Lemma 1. For any three different edges er = (cir
, sjr

), r = 1, 2, 3 and loci1 <

loci2 < loci3 , if e1 conflicts with e2 and e2 conflicts with e3, then e1 conflicts with

e3.

Proof. For simplicity of notation, we will use li for loci.

(li1 − li3)(sj1 + li3 − li1 − sj3)

= (li1 − li2 + li2 − li3)(sj1 + li2 − li1 − sj2 + sj2 + li3 − li2 − sj3)

= (li1 − li2)(sj1 + li2 − li1 − sj2) + (li2 − li3)(sj2 + li3 − li2 − sj3)

+ (li1 − li2)(sj2 + li3 − li2 − sj3) + (li2 − li3)(sj1 + li2 − li1 − sj2)

≤ 0 + 0 + (li1 − li2)(sj2 + li3 − li2 − sj3) + (li2 − li3)(sj1 + li2 − li1 − sj2)

= (li1 − li2)(li2 − li3)((sj2 + li3 − li2 − sj3)/(li2 − li3)

+ (sj1 + li2 − li1 − sj2)/(li1 − li2))

≤ 0 .

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 101

Lemma 2. For any three different edges er = (cir
, sjr

), r = 1, 2, 3 and loci1 <

loci2 < loci3 , if e1 does not conflict with e2 and e2 does not conflict with e3, then

e1 does not conflict with e3.

Proof. As before, we will use li for loci.

(li1 − li3)(sj1 + li3 − li1 − sj3)

= (li1 − li2 + li2 − li3)(sj1 + li2 − li1 − sj2 + sj2 + li3 − li2 − sj3)

= (li1 − li2)(sj1 + li2 − li1 − sj2) + (li2 − li3)(sj2 + li3 − li2 − sj3)

+ (li1 − li2)(sj2 + li3 − li2 − sj3) + (li2 − li3)(sj1 + li2 − li1 − sj2)

≥ 0 + 0 + (li1 − li2)(sj2 + li3 − li2 − sj3) + (li2 − li3)(sj1 + li2 − li1 − sj2)

= (li1 − li2)(li2 − li3)((sj2 + li3 − li2 − sj3)/(li2 − li3)

+ (sj1 + li2 − li1 − sj2)/(li1 − li2))

> 0 .

Lemma 3. For any three different edges er = (cir
, sjr

), r = 1, 2, 3 and loci1 <

loci2 < loci3 , if e1 conflicts with e3, then e2 conflicts with e3 or e2 conflicts with e1.

Proof. This lemma follows from Lemma 2 directly.

Lemma 3 says that if one alignment edge e2 is sandwiched by two alignment

edges e1, e3 which are in conflict, then the sandwiched edge e2 must be in conflict

with at least one of the two conflicted edges e1, e3.

Let D[i] denote all valid query sequence positions that ci could be aligned to.

Let R[i, j, l] denote all valid alignment positions of cj given ci is aligned to sl.

∀k ∈ R[i, j, l], the two edges (ci, sl) and (cj , sk) do not conflict. See Fig. 2 for an

example of D[i] and R[i, j, l].

Definition 5. An alignment between the template and the sequence is valid if:

(1) it satisfies Definition 1 (2) each core of the template is aligned to some position

of the (extended) sequencea; and (3) For any two different cores ci1 and ci2 , their

two alignment edges do not conflict in the alignment graph, i.e. if cij
is aligned to

slj , j = 1, 2, then sl1 ∈ R[i2, i1, sl2] and sl2 ∈ R[i1, i2, sl1].

Figure 1 contains an example of an alignment.

Let xi,l be a boolean variable such that xi,l = 1 if and only if core ci is aligned

to position sl. Similarly, for any (ci1 , ci2) ∈ E(CMG), let y(i1,l1),(i2,l2) indicate the

pairwise interactions between xi1,l1 and xi2 ,l2 if the two edges (ci1 , sl1), (ci2 , sl2)

do not conflict. y(i1,l1),(i2,l2) = 1 if and only if xi1,l1 = 1 and xi2 ,l2 = 1. We say

aAs mentioned before, global and global-local alignment are employed.

April 11, 2003 1:34 WSPC/185-JBCB 00018

102 J. Xu et al.

March 9, 2003 15:21 WSPC/INSTRUCTION FILE JBCBr

7

core1 core2 core3 core4

D[1]: D[2]: D[4]:D[3]:

Sequence

k
R[1,2,k]

(Simplified) Contact Graph

x

y

Fig. 2. Example of and .

Figure 1 contains an example of an alignment.
Let be a boolean variable such that if and only if core is aligned to

position . Similarly, for any , let indicate the pairwise
interactions between and if the two edges do not conflict.

if and only if and . We say is generated
by and . The variables are called the alignment variables and variables are
called the interaction variables.

Now the objective function of the protein threading problem can be formulated as an
integer program as follows.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where if there is an interaction between residues at positions and in the
template, otherwise 0. is the gap penalty between and when they are

Fig. 2. Example of D[i] and R[i, j, l].

y(i1,l1),(i2,l2) is generated by xi1 ,l1 and xi2 ,l2 . The x variables are called the alignment

variables and y variables are called the interaction variables.

Now the objective function of the protein threading problem can be formulated

as an integer program as follows:

min WmEm + WsEs + WpEp + WgEg + WssEss , (1)

Em =

M
∑

i=1

∑

l∈D[i]

[

xi,l ×

leni−1
∑

r=0

Mutation(headi + r, l + r)

]

, (2)

Es =
M
∑

i=1

∑

l∈D[i]

[

xi,l ×

leni−1
∑

r=0

Fitness(headi + r, j + r)

]

, (3)

Ess =

M
∑

i=1

∑

l∈D[i]

[

xi,l ×

leni−1
∑

r=0

SS(headi + r, j + r)

]

, (4)

Ep =
∑

1≤i<j≤M,(ci,cj)∈E(CMG)

∑

l∈D[i]

∑

k∈R[i,j,l]

y(i,l),(j,k)P (i, j, l, k) , (5)

P (i, j, l, k) =

leni−1
∑

u=0

lenj−1
∑

v=0

δ(headi + u, headj + v)Pair(l + u, k + v) , (6)

Eg =

M
∑

i=1

∑

l∈D[i]

∑

k∈R[i,i+1,l]

y(i,l),(i+1,k)G(i, l, k) , (7)

where δ(u, v) = 1 if there is an interaction between residues at positions u and v

in the template, otherwise 0. G(i, l, k) is the gap penalty between ci and ci+1 when

they are aligned to query sequence positions l and k respectively. G(i, l, k) could be

computed by dynamic programming in advance given i, l, k.

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 103

The constraint set is as follows:
∑

j∈D[i]

xi,j = 1, i = 1, 2, . . . , M ; (8)

∑

l≥l0,l∈D[i]

xi,l +
∑

k∈D[i+1]−R[i,i+1,l0]

xi+1,k ≤ 1,

l0 ∈ D[i], i = 1, 2, . . . , M − 1 ;

(9)

∑

k∈R[i,j,l]

y(i,l),(j,k) ≤ xi,l, ∀l ∈ D[i], i, j = 1, 2, . . . , M ; (10)

∑

l∈R[j,i,k]

y(i,l),(j,k) ≤ xj,k, ∀k ∈ D[j], i, j = 1, 2, . . . , M ; (11)

∑

k∈R[i,j,l]

y(i,l),(j,k) ≥ xi,l +
∑

k∈R[i,j,l]

xj,k − 1, l ∈ D[i], i, j = 1, 2, . . . , M ; (12)

∑

l∈R[j,i,k]

y(i,l),(j,k) ≥ xj,k +
∑

l∈R[j,i,k]

xi,l − 1, k ∈ D[j], i, j = 1, 2, . . . , M ; (13)

xi,j ∈ {0, 1}, j ∈ D[i], i = 1, 2, . . . , M ; (14)

y(i,l)(j,k) ∈ {0, 1}, ∀l ∈ D[i], k ∈ D[j], i, j = 1, 2, . . . , M . (15)

Constraint 8 says that one core can be aligned to a unique sequence position,

i.e. given core i, only one of the xi,j ’s is 1, for j ∈ D[i]. Constraint 9 forbids the

conflicts between the adjacent two cores. Based on the transitivity of non-conflict

(see Lemma 2), this constraint guarantees that there are no conflicts between any

two cores if variable x and y are integral. Therefore, it guarantees that the integral

solution corresponds to a valid alignment. Constraints 10 and 11 say that at most

one interaction variable can be 1 between any two cores that have interactions

between them. Constraints 12 and 13 enforce that if two cores have their alignments

to the sequence respectively and also have interactions between them, then at least

one interaction variable should be 1. Constraints 14 and 15 guarantee x and y

variables to be either 0 or 1. The integer program as formulated above does not

have a computationally feasible solver. Hence we relax the integral Constraints 14

and 15 to the following real value constraints.

xi,j ≥ 0, j ∈ D[i], i = 1, 2, . . . , M ; (16)

y(i,l)(j,k) ≥ 0, ∀l ∈ D[i], k ∈ D[j], i, j = 1, 2, . . . , M . (17)

Constraints 8, 16 and 17 guarantee x and y to be between 0 and 1. They will be

used to replace Constraints 14 and 15.

There is another set of more obvious constraints which can replace Constraints

9–13. They are:

xi,l + xi+1,k ≤ 1, ∀k ∈ D[i + 1] − R[i, i + 1, l] ; (18)

April 11, 2003 1:34 WSPC/185-JBCB 00018

104 J. Xu et al.

y(i,l)(j,k) ≤ xi,l, k ∈ R[i, j, l], (ci, cj) ∈ E(CMG) ; (19)

y(i,l)(j,k) ≤ xj,k , l ∈ R[j, i, k], (ci, cj) ∈ E(CMG) ; (20)

y(i,l)(j,k) ≥ xi,l + xj,k − 1, (ci, cj) ∈ E(CMG) . (21)

Constraint 18 forbids the conflict between the alignments of two neighboring

cores. It guarantees that there is no conflict between the alignments of any two cores

based on Lemma 2. Constraints 19–21 guarantee that one interaction variable is 1

if and only if its two generating x variables are 1 simultaneously. Constraint 18–21

can be inferred from Constraints 9–13. Conversely, the above inference relationship

is not true. Therefore, Constraints 18–21 are weaker than Constraints 9–13.

In order to improve running time, we found yet another set of Constraints 22

and 23 from which both 9–13 and 18–21 can be inferred.

∑

k∈R[i,j,l]

y(i,l)(j,k) = xi,l, (ci, cj) ∈ E(CMG) ; (22)

∑

l∈R[j,i,k]

y(i,l)(j,k) = xj,k, (ci, cj) ∈ E(CMG) ; (23)

Constraints 22 and 23 imply that one x variable is 1 is equivalent to that one of

the y variables generated by it is 1. It means that if two interacted cores i and j are

aligned to two sequence positions l and k respectively, then the interaction score

between these two sequence segments (starting from l and k respectively) should

be counted in the energy function value. These two are the strongest constraints.

Experimental results show that our algorithm with Constraints 22 and 23 (com-

bining with Constraints 8, 16 and 17) runs significantly faster. The correctness of

this formulation is not so obvious, we will prove it at the end of this section (see

Lemma 6).

Let CS1 denote the constraint set formed by Constraints 8–13, 16 and 17; CS2

the constraint set formed by Constraints 8, 16, 17 and 18–21; CS3 the constraint set

formed by Constraints 8, 16, 17 and 22–23. Then we have the following relationships.

Lemma 4. Constraint set CS1 is implied by CS3.

Proof. From the fact that ∀i, R[i, j, l] ⊆ D[i], it is easily seen that Constraints

10–13 are implied by Constraints 22 and 23. According to the following equation,

Constraint 9 is also implied by CS3.

∑

l≥l0,l∈D[i]

xi,l +
∑

k∈D[i+1]−R[i,i+1,l0]

xi+1,k

=
∑

l≥l0,l∈D[i]

xi,l +
∑

k∈D[i+1]−R[i,i+1,l0]





∑

l∈R[i+1,i,k]

y(i,l)(i+1,k)





April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 105

≤
∑

l≥l0,l∈D[i]

xi,l +
∑

l∈D[i],l<l0





∑

k∈R[i,i+1,l]

y(i,l)(i+1,k)





≤
∑

l≥l0,l∈D[i]

xi,l +
∑

l∈D[i],l<l0

xi,l

=
∑

l∈D[i]

xi,l

= 1 .

Lemma 5. Constraint set CS2 is implied by CS1.

Proof. Constraint 18 is implied by Constraints 9 and 16. Constraints 19–20 are

implied by Constraints 10–11 and 17. Constraint 21 is implied by Constraints 12–13

and 19–20.

We also have the following lemma about the correctness of our IP formulation.

Lemma 6. Each integral solution of CS1, CS2, CS3 corresponds to a valid align-

ment between a template and a sequence.

Proof. First, we prove that any integral solution of CS2 corresponds to a valid

alignment. According to Constraint 18, for any two adjacent cores i, i + 1, if they

are aligned to sequence positions l, k respectively, then these two alignment edges

(ci, sl) and (ci+1, sk) do not conflict. Based on the transitivity of nonconflict (see

Lemma 2), the two alignment edges of any two cores would not conflict, i.e. any

integral solution of CS2 corresponds to a valid alignment.

Based on Lemmas 5 and 4, Constraint 18 is implied by CS1 and CS3, therefore,

each integral solution of CS2 and CS3 corresponds to a valid alignment.

So far we have presented three kinds of linear (integer) program formulations

(the objective function combining with each of CS1, CS2 and CS3) to formulate the

target sequence-template alignment problem. We have also proved that constraint

set CS3 is the strongest when x and y variables are relaxed to be real between 0

and 1. Another advantage of constraint set CS3 is that the number of non-zero

elements in the constraint matrix employed by the linear program solver is also the

smallest. RAPTOR uses CS3 by default.

4. RAPTOR — Implementation

4.1. Scoring system

We calculated the averaged energy over a set of homologous sequences, as used in

PROSPECT-II.16 Given a query sequence of length n, an n× 20 frequency matrix

April 11, 2003 1:34 WSPC/185-JBCB 00018

106 J. Xu et al.

PSFM is calculated by using PSI-BLAST17 with maximum iteration number being

set to 5. Each column of this matrix describes the occurring frequency of 20 amino

acids at this position. Assume a template position i is aligned to the sequence

position j. Then the mutation score and fitness score are calculated as follows.

Mutation(i, j) =
∑

a

pj,aM(ti, a) ,

Fitness(i, j) =
∑

a

pj,aF (envi, a) ,

where pj,a represents the occurring frequency of amino acid a at sequence position

j, M(a, b) represents the mutation potential as in PAM250 matrix18 between two

amino acids a and b, and F (env, a) denotes the fitness potential when amino acid

a is placed into environment env.

Two groups of structural features have been selected to describe the local envi-

ronment env of a position in the template: (a) Secondary structure. Three classes

were defined: α-helix, β-strand and irregular structure (coil). (b) Solvent accessibil-

ity (sa). Three levels were defined: buried (inaccessible), intermediate, and acces-

sible. The boundary between different solvent accessibility levels were determined

by Equal-Frequency discretization method, i.e. residues in the database are equally

distributed within each level. The boundaries between three solvent accessibility

levels are at 7 percent and 37 percent. Secondary structure and solvent accessibil-

ity assignments are generated by DSSP package19. The combination of these two

features gives nine local structural environments in total.

The gap penalty function is assumed to be an affine function, i.e. a gap open

penalty plus a length-dependent gap extension penalty. Gap open penalty is set at

10.6 and gap extension penalty is 0.8 per single gap.20

SS(i, j) is defined to be the difference between the template secondary structure

at position i and the predicted sequence secondary structure at position j. Any of

the good secondary structures prediction programs, for example PSIPRED,21 can

be used to predict the secondary structure of the query sequence.

If the two ends of an interaction are aligned to jth1 and jth2 positions of the

query sequence respectively, then the pair score for this interaction is given by:

Pair(j1, j2) =
∑

a

pj1,a

∑

b

pj2,bP (a, b) ,

where P (a, b) denotes the pairwise interaction potential between two amino acids

a and b. F and P are taken from PROSPECT-II.16

4.2. Branch-and-bound method

We use a branch-and-bound algorithm to solve the integer programming problem,

defined in Sec. 3. In Sec. 3, we have relaxed the original integer program Constraints

14 and 15 to the linear program Constraints 16 and 17, allowing x and y to be

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 107

real values between 0 and 1. We first solve the resulting linear program, using for

example the powerful IBM OSL (Optimization and Solution Library) package. If

the solution (x∗, y∗) of the linear program is integral, then that is the optimal

solution for the corresponding integer program problem. Otherwise, we select one

non-integral variable and generate two subproblems by setting the variable to 0 and

1, respectively. These two subproblems are solved recursively.

A general introduction to solving integer programming problems can be found

in Wolsey’s book.22

4.3. Weight training

The weight factors Wm, Ws, Wss, Wg , Wp are chosen by optimizing the over-

all alignment accuracy on our training set. The optimal alignment accuracy does

not necessarily imply the best fold recognition capability though. In the following

subsection, an SVM (Support Vector Machine) method is used to rank structural

folds for fold recognition. A set of 95 structurally-aligned protein pairs are chosen

from Holm and Sander’s test set23 as the training samples, each of which has only

fold-level similarity. The alignments generated by RAPTOR is compared with the

structural alignments generated by SARF.24 An alignment for a residue is regarded

as correct if it is within four residue shift away from the structure-structure align-

ment by SARF. The overall alignment accuracy is defined as the ratio between

the number of the correctly-aligned positions of all threading pairs and the num-

ber of the maximum alignable positions. Our objective is to maximize the overall

alignment accuracy. A genetic algorithm plus a local pattern search method imple-

mented in DAKOTA25 is used to search for the optimal weight factors. We attained

56 percent alignment accuracy over this set of training pairs. A set of 1100 protein

pairs which are in the fold-level similarity is also generated from Holm and Sander’s

test set23 to test the weight factors and 50 percent alignment accuracy is attained.

We have also selected 95 structurally-aligned protein pairs from Holm and Sander’s

test set, each of which is in superfamily-level or family-level similarity, 80 percent

alignment accuracy is achieved when the same set of weight factors is used.

4.4. z-score and fold recognition

After threading a sequence onto a template, a z-score is calculated according to the

method proposed in paper by Bryant and Altschul26 to cancel out the composition

bias. Let zraw denote this kind of z-score. Since the accurate zraw is expensive

to compute, we just approximate it by (i) fixing the optimal sequence-template

alignment generated by our IP approach; (ii) shuffling the amino acids in the query

sequence randomly; (iii) calculating the shuffled alignment scores based on the given

alignment positions for 1000 times rather than doing optimal alignments again and

again; (iv) calculating the mean scoremean and standard deviation scoresd of the

scores generated in (iii); (v) zraw is defined to be
scoremean−scoreopt

scoresd
where scoreopt is

April 11, 2003 1:34 WSPC/185-JBCB 00018

108 J. Xu et al.

the optimal alignment score generated by our IP approach. All templates are sorted

according to the zraw in descending order.

An SVM with RBF kernel is employed to adjust the approximate z-score.

Vapnik’s book27 contains a comprehensive tutorial of SVM. There are several

free SVM software such as SVM light.28 A set of 60 000 training pairs formed by

all-against-all threading between 300 templates (randomly chosen from the FSSP

database) and 200 sequences (randomly chosen from Holm and Sander’s test set23)

is used as the training samples of our SVM model. The relationship between two

proteins is judged based on SCOP database.2 If one pair is in at least fold-level sim-

ilarity, then it is treated as a positive example, otherwise a negative example. Each

of the training samples consists of the following features: (1) zraw; (2) the sequence

size; (3) the template size; (4) the number of cores in the template; (5) the sum of

the core sizes in the template; (6) the number of aligned cores; (7) the number of

aligned positions; (8) the number of identical residues; (9) the number of contacts

with both ends on the aligned cores; (10) the number of cut contacts with one end

on the aligned cores and the other on the unaligned cores; (11) the total score; (12)

mutation score; (13) singleton fitness score; (14) gap score; (15) secondary score;

and (16) pair score. Given one threading result, SVM outputs a real value. The

value greater than 0 means this threading pair is in at least fold-level similarity. We

do not use this directly due the abundance of the false negatives. We calculate the

final z-score for each query sequence. For all threading pairs of one given sequence,

let o1, o2, . . . , oq denote the outputs from SVM model. The final z-score is calculate

by oi−u(o)
std(o) , where u(o) is the mean value of oi and std(o) is the standard deviation

of oi. Daniel Fischer et al benchmark15 is used to fix the parameters of the SVM

model. Again, the template with the biggest z-score is chosen as the best-fit one

for the target sequence. Experimental results show that after using SVM approach

the fold recognition capability is improved by about five percent.

5. Experimental Results

In this section, we present some experimental results on RAPTOR in terms of fold

recognition and alignment accuracy. Two classes of results are presented here. One

is the large scale benchmark test by the authors, and the other one is a blind test

organized by the structure prediction community, called CAFASP. We also present

the experimental structures and the prediction structures of several specific targets

from CAFASP3 and LiveBench-6.29

5.1. Benchmark tests

Fischer et al.’s benchmark consists of 68 target sequences and 301 templates.

RAPTOR ranks 56 pairs out of 68 pairs as top 1, achieving about 82 percent

prediction rate.

The fold recognition performance of RAPTOR was further tested on Lindahl’s

benchmark set consisting of 976 protein sequences.30 By threading them all against

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 109

Table 1. The performance of RAPTOR at three different similarity levels.

Family Superfamily Fold
Method Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

RAPTOR 84.8 87.1 47.0 60.0 31.3 54.2

FUGUE 82.2 85.8 41.9 53.2 12.5 26.8
PSI-BLAST 71.2 72.3 27.4 27.9 4.0 4.7

HMMER-PSIBLAST 67.7 73.5 20.7 31.3 4.4 14.6
SAMT98-PSIBLAST 70.1 75.4 28.3 38.9 3.4 18.7

BLASTLINK 74.6 78.9 29.3 40.6 6.9 16.5
SSEARCH 68.6 75.7 20.7 32.5 5.6 15.6

THREADER 49.2 58.9 10.8 24.7 14.6 37.7

all, there are total 976×975 threading pairs. We measured RAPTOR’s performance

in three different similarity levels: fold, superfamily and family. The results are

shown in Table 1. The results of other methods are taken from Shi et al. paper.5

The correctness of the prediction is assessed based on the SCOP classification.

As shown in Table 1, the performance of RAPTOR at all similarity levels is

better than the others, and much better at the fold level. At the family level,

RAPTOR’s recognition performance is comparable to that of FUGUE,5 the best

method for family and superfamily level except RAPTOR. Thus, we may conclude

that a strict treatment of the pairwise interactions is necessary for fold level and

superfamily level recognition. For family level recognition, sequence (or profile)

alignment could attain satisfactory results.

5.2. CAFASP3 evaluation

We now present RAPTOR’s performance in CAFASP331 (The Third Critical As-

sessment of Fully Automated Structure Prediction). The goal of CAFASP is to

evaluate the state-of-the-art of protein structure prediction servers available to the

community. Since its inception in 1998, CAFASP has been held for three times,

jointly with CASP (Critical Assessment of Structure Prediction) conferences every

other year. CAFASP3 was jointly held with CASP5.32 The difference of CAFASP

and CASP is that CAFAST allows only authomatic prediction and while CASP

allows manual improvements and also with all the CAFASP predictions available

from all servers. CAFASP evaluation is a blind test, administrated by the CAFASP

committee. CAFASP is also the largest scale blind test of structure prediction

servers in the community. The experimental structures of the test sequences were

unknown to the predictors before the end of the test. CAFASP3 makes use of

MaxSub33 to evaluate the alignment accuracy. The recognition is considered cor-

rect only if the alignment accuracy is above some level. For detailed evaluation

rules, see CAFASP3 website. Table 2 shows the ranking of all servers in term of

fold recognition sensitivity of FR targets. Table 3 shows the ranking of all servers in

terms of hard HM target recognition sensitivity. In these two tables, those servers

April 11, 2003 1:34 WSPC/185-JBCB 00018

110 J. Xu et al.

Table 2. CAFASP3 evaluation: RAPTOR performance on 30 fold recognition targets.

Rank Servers Sum MaxSub Score Number of Correct Recognitions

1 3ds5 robetta 5.17–5.25 15–17
3 pmod 3ds3 pmode3 4.21–4.36 13–14
4 raptor 3.98 13

5 shgu 3.93 13
6 3dsn orfeus 3.64–3.90 12–13
7 pcons3 3.75 12
8 fugu3 orf c 3.39–3.67 11–12
10 fugsa orf b 3.44–3.63 10–12
· · · · · · · · · · · ·

48 pdbblast 0.00 0
· · · · · · · · · · · ·

54 blast 0.00 0

Table 3. CAFASP3 Evaluation: RAPTOR performance on 12 Hard
HM Targets.

Rank Servers Score

1 3ds5 5.13
2 3ds3 shgu 4.93–5.02
4 pmod pmod3 4.60–4.68
6 orfeus orfb 3dpsm raptor fugu3 pco3 robetta 4.33–4.43
8 samt02 4.18
· · · · · · · · ·

55 cmap 0

whose names are printed in italic are meta-servers,b as classified by the CAFASP3

organizers. As shown Table 2, RAPTOR ranks top 1 among all individual servers in

terms of both alignment accuracy and fold recognition capability for the FR targets.

RAPTOR also ranks top in hard homology modeling target recognition. FR targets

and hard homology modeling targets are the main focuses of the research commu-

nity because the easy family homology targets are relatively easily recognized by

almost all programs.

In addition to the sensitivity of servers, the specificity is also very important

for high-throughput automatic structure prediction programs. Table 4 shows the

specificity of all CAFASP3 servers on 33 targets. These 33 targets consist of all FR

targets and Hard HM targets, but a multidomain FR target is treated as one target

here while it is regarded as multiple targets in sensitivity evaluation. From this

table, we can see the specificity of RAPTOR is good but not very good. Actually,

RAPTOR’s specificity is underestimated because the scale of the reliability score

of RAPTOR changed dramatically during the competition. In the first month of

CAFASP3, the reliability score generated by RAPTOR is the original output of

bMeta-servers refer to those servers which do consensus predictions based on the outputs of other
servers.

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 111

Table 4. CAFASP3 Evaluation: RAPTOR’s

specificity on 33 Targets consisting of FR
targets and Hard HM targets. But a mul-
tidomain FR target is counted only once.

Servers specificity

3ds5 24.8
pmodel 3ds3 3dsn pmode3 22.0–22.6

pcons shgu 21.4–21.6
inbgu fugu3 19.0–19.8

ffas03 fugsa orfeus 18.2–18.4
raptor 3dpsm orf c 17.4–17.8

· · · · · ·

pdbblast 13.0

· · · · · ·

blast 4

SVM model, but in the following months, the reliability score is the standardized

output of SVM model.

5.3. Specific examples

Here, we present some beautiful structure prediction examples generated by

RAPTOR in CAFASP3 evaluation and LiveBench-6 test.29 Most of experimental

structures of the CAFASP3 targets are not allowed to be published so far, therefore

we choose some targets from LiveBench.

Figure 3 presents the superimposition between the experimental structure (grey

color) and the RAPTOR’s predicted structure (black color) of T0136 1. This figure

is taken from CAFASP3 website. It is generated by RasMol and MaxSub. According

to the evaluation of MaxSub, 17 of 54 servers generated correct fold recognitions

for this target. RAPTOR produced the best alignment among all. MaxSub could

superimpose a segment of 118 residues (the sequence size is 144) of the predicted

structure to the experimental structure and the RMSD is just 1.9A.

The following two figures are generated by RasMol based on the evaluation

results of LiveBench-6. Figure 4 shows almost a perfect structure prediction for

target 1ll8A. The alignment accuracy score measured by MaxSub is more than

9 (scale 10). Figure 5 presents a good structure prediction for target 1j53A. The

alignment accuracy score measured by MaxSub is more than 6. Considering the

length of the target sequence, this prediction is also quite successful.

6. Computing Efficiency Issues

A key advantage of our algorithm is that the memory requirement is just about

O(|E|n2) (there are O(|E|n2) active elements in the sparse matrix of the linear

program), where E is the edge set of the contact graph of a protein template

structure and n query sequence length. The observed memory usage of RAPTOR

April 11, 2003 1:34 WSPC/185-JBCB 00018

112 J. Xu et al.

March 9, 2003 15:21 WSPC/INSTRUCTION FILE JBCBr

16

Table 4. CAFASP3 Evaluation: RAPTOR’s specificity on 33 Targets consisting of FR targets and Hard HM
targets. But a multidomain FR target is counted only once.

Servers specificity
3ds5 24.8

pmodel 3ds3 3dsn pmode3 22.0-22.6
pcons shgu 21.4-21.6
inbgu fugu3 19.0-19.8

ffas03 fugsa orfeus 18.2-18.4
raptor 3dpsm orf c 17.4-17.8

... ...
pdbblast 13.0

... ...
blast 4

Fig. 3. The superimposition of experimental structure (grey color) and prediction structure (black color) of
CAFASP3 target T0136 1.

Fig. 3. The superimposition of experimental structure (grey color) and prediction structure (black
color) of CAFASP3 target T0136 1.

March 9, 2003 15:21 WSPC/INSTRUCTION FILE JBCBr

17

The following two figures are generated by RasMol based on the evaluation results
of LiveBench-6. Figure 4 shows almost a perfect structure prediction for target 1ll8A. The
alignment accuracy score measured by MaxSub is more than 9 (scale 10). Figure 5 presents
a good structure prediction for target 1j53A. The alignment accuracy score measured by
MaxSub is more than 6. Considering the length of the target sequence, this prediction is
also quite successful.

Fig. 4. The experimental structure (left) and the predicted structure (right) of 1kvzA.

Fig. 5. The experimental structure (left) and the predicted structure (right) of 1j53A.

Fig. 4. The experimental structure (left) and the predicted structure (right) of 1kvzA.

is 100 ∼ 200M for most of threading pairs. Furthermore, in practice, the com-

puting time does not increase exponentially with respect to the target sequence

size. Figure 6 shows the CPU time of threading 100 sequences (chosen randomly

from Lindahl’s benchmark) with size ranging from 25 to 572 to a typical template

119l of length 162 (and 12 cores).c It shows that the computational time of our

cIn this section, the CPU time is measured in a single CPU of a Silicon Graphics Origin 3800
system, which has 40 400 MHz MIPS R12000 CPUs and 20 GB of RAM.

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 113

March 9, 2003 15:21 WSPC/INSTRUCTION FILE JBCBr

17

The following two figures are generated by RasMol based on the evaluation results
of LiveBench-6. Figure 4 shows almost a perfect structure prediction for target 1ll8A. The
alignment accuracy score measured by MaxSub is more than 9 (scale 10). Figure 5 presents
a good structure prediction for target 1j53A. The alignment accuracy score measured by
MaxSub is more than 6. Considering the length of the target sequence, this prediction is
also quite successful.

Fig. 4. The experimental structure (left) and the predicted structure (right) of 1kvzA.

Fig. 5. The experimental structure (left) and the predicted structure (right) of 1j53A.Fig. 5. The experimental structure (left) and the predicted structure (right) of 1j53A.

March 9, 2003 15:21 WSPC/INSTRUCTION FILE JBCBr

19

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

sequence size (AAs)

co
m

pu
tin

g
tim

e
(u

s)

Fig. 6. CPU time of threading 100 sequences to template 119l (1us=0.01s).

50 100 150 200 250 300 350 400 450 500 550
0

5

10

15

20

25

30

35

40

45

50

Sequence Size

CPU Time vs. Sequence Size of CASP5/CAFASP3 targets

C
P

U
 T

im
e

(h
rs

)

Fig. 7. CPU time of threading 62 CAFASP3 target sequences to 3236 templates.

Fig. 6. CPU time of threading 100 sequences to template 119l (1 us = 0.01 s).

algorithm increases very slowly with respect to the sequence size. In fact, we found

out that for the real protein data, our relaxed linear programs directly outputted

the integral solutions 99 percent of the times and generated only a few branch nodes

when the solution was fractional34.

Figure 7 shows the CPU time used for the prediction of each CAFASP3/CASP5

target sequence. There are totally 62 targets and totally 3236 protein templates

in our template database. As shown in this figure, the CPU time increases very

April 11, 2003 1:34 WSPC/185-JBCB 00018

114 J. Xu et al.

March 9, 2003 15:21 WSPC/INSTRUCTION FILE JBCBr

19

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

sequence size (AAs)

co
m

pu
tin

g
tim

e
(u

s)

Fig. 6. CPU time of threading 100 sequences to template 119l (1us=0.01s).

50 100 150 200 250 300 350 400 450 500 550
0

5

10

15

20

25

30

35

40

45

50

Sequence Size

CPU Time vs. Sequence Size of CASP5/CAFASP3 targets

C
P

U
 T

im
e

(h
rs

)

Fig. 7. CPU time of threading 62 CAFASP3 target sequences to 3236 templates.Fig. 7. CPU time of threading 62 CAFASP3 target sequences to 3236 templates.

slowly with respect to the sequence size except that it takes about 45 hours for

one target(t0174). After carefully examining the running time of threading t0174

to each template, we find out that there are 30 templates, for which it takes about

15 hours to thread t0174 to them. We plan to investigate these templates further.

7. Conclusions

In this paper, we have presented a novel integer programming approach to treat

pairwise interactions rigorously in protein threading and some implementation de-

tails of our software package RAPTOR. Experimental results show that RAPTOR

performs very well in terms of both alignment accuracy and fold recognition for

FR targets. After carefully examining the performance of RAPTOR, we found out

that if the best of the top 5 or top 10 predictions is evaluated, RAPTOR could

recognize many more fold-level targets. A big challenge would be to design a better

energy function or a better machine learning algorithm to boost the correct tem-

plates from top 5 or 10 to top 1. In terms of computational resource consumption,

RAPTOR is also much better than those algorithms which treat the pairwise poten-

tials strictly when dealing with the templates with complex interaction topology

and long sequences. As mentioned before, the divide-and-conquer algorithm em-

ployed by PROSPECT-I could deal well with the templates with simple interaction

topology. A future work would be to incorporate the divide-and-conquer idea into

our IP approach to take advantage of the partial sparseness of the complex template

interaction topology such that the computational time could be improved further.

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 115

Acknowledgments

The authors would like to thank Professor Guohui Lin and Dr. Dong Xu for their col-

laboration on related projects. Jinbo Xu was partially supported by NSERC grant

OGP0046506. Ming Li was partially supported by NSERC grant OGP0046506, the

Killam Fellowship, and the NSERC research chair program.

References

1. L. Holm and C. Sander, “Mapping the protein universe,” Science 273, 595–602
(1996).

2. A. G. Muzrin, S. E. Brenner, T. Hubbard and C. Chothia, “SCOP: A structural
classification of proteins database for the investigation of sequences and structures,”
J. Mol. Biol. 247, 536–540 (1995).

3. C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells and J. M.
Thornton, “CATH-a hierarchic classification of protein domain structures,” Structure

5, 1093–1108 (1997).
4. F. M. G. Pearl, D. Lee, J. E. Bray, I. Sillitoe, A. E. Todd, A. P. Harrison, J. M.

Thornton and C. A. Orengo, “Assigning genomic sequences to CATH,” Nucleic Acids

Res. 28, 277–282 (2000).
5. J. Shi, L. B. Tom and M. Kenji, “FUGUE: Sequence-structure homology recognition

using environment-specific substitution tables and structure-dependent gap penal-
ties,” J. Mol. Biol. 310, 243–257 (2001).

6. L. A. Kelley, R. M. MacCallum and M. J. E. Sternberg, “Enhanced genome annotation
using structural profiles in the program 3D-PSSM,” J. Mol. Biol. 299(2), 499–520
(2000).

7. D. T. Jones, “GenTHREADER: An efficient and reliable protein fold recognition
method for genomic sequences,” J. Mol. Biol. 287, 797–815 (1999).

8. R. H. Lathrop, “The protein threading problem with sequence amino acid interaction
preferences is NP-complete,” Protein Eng. 7, 1059–1068, 1994.

9. D. T. Jones, W. R. Taylor and J. M. Thornton, “A new approach to protein fold
recognition,” Nature 358, 86–98 (1992).

10. A. Godzik, A. Kolinski and J. Skolnick, “A topology fingerprint approach to inverse
protein folding problem,” J. Mol. Biol. 227, 227–238 (1992).

11. S. Bryant, “Evaluation of threading specitity and accuracy,” Proteins: Struct. Funct.

Genet. 26, 172–185 (1996).
12. T. Akutsu and S. Miyano, “On the approximation of protein threading,” Theor. Com-

put. Sci. 210, 261–275 (1999).
13. Y. Xu, D. Xu and E. C. Uberbacher, “An efficient computational method for globally

optimal threadings,” J. Comput. Biol. 5(3), 597–614 (1998).
14. R. H. Lathrop and T. F. Smith, “Global optimum protein threading with gapped

alignment and empirical pair score functions,” J. Mol. Biol. 255, 641–655 (1996).
15. D. Fischer, A. Elofsson, J. U. Bowie and D. Eisenberg, “Assessing the performance

of fold recognition methods by means of a comprehensive benchmark,” pp. 300–318,
Singapore, 1996. Biocomputing: Proceedings of the 1996 Pacific Symposium, World
Scientific Publishing Co.

16. D. Kim, D. Xu, J. Guo, K. Ellrott and Y. Xu, “Prospect ii: Protein structure predic-
tion method for genome-scale applications,” 2002, submitted.

17. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Madden, A. A. Schaffer, J. Zhang,
Z. Zhang, W. Miller and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A new

April 11, 2003 1:34 WSPC/185-JBCB 00018

116 J. Xu et al.

generation of protein database search programs,” Nucleic Acids Res. 25, 3389–3402
(1997).

18. R. M. Schwartz and M. O. Dayhoff, “Matrices for detecting distant relationships,”
pp. 353–358, Natl. Biomed. Res. Found. (1978).

19. W. Kabsch and C. Sander, “Dictionary of protein secondary structure: Protein recog-
nition of hydrogen-bonded and geometrical features,” Biopolymers 22, 2577–2637
(1983).

20. G. H. Gonnet, M. A. Cohen and S. A. Benner, “Exhaustive matching of the entire
protein sequence database,” Science 256, 1443–1445 (1992).

21. D. T. Jones, “Protein secondary structure prediction based on position-specific scoring
matrices,” J. Mol. Biol. 292, 195–202 (1999).

22. L. A. Wolsey, Integer Programming (John Wiley & Sons Inc., 1998).
23. L. Holm and C. Sander, “Decision support system for the evolutionary classification

of protein structures,” ISMB 5, 140–146 (1997).
24. N. N. Alexandrov, “SARFing the PDB,” Protein Eng. 9, 727–732 (1996).
25. M. S. Eldred, A. A. Giunta, B. G. van Bloemen Waanders, S. F. Wojtkiewicz, W. E.

Hart and M. P. Alleva, “DAKOTA, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis. Version 3.0 user manual,” Technical Report SAND2001-3796, Sandia, 2002.

26. S. H. Bryant and S. F. Altschul, “Statistics of sequence-structure threading,” Curr.

Opin. Struc. Biol. 5, 236–244 (1995).
27. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 1995).
28. T. Joachims, Making Large-Scale SVM Learning Practical (MIT Press, 1999).
29. L. Rychlewski, http://www.bioinfo.pl/livebench/6, 2002.
30. E. Lindahl and A. Elofsson, “Identification of related proteins on family, superfamily

and fold level,” J. Mol. Biol. 295, 613–625 (2000).
31. D. Fischer, http://www.cs.bgu.ac.il/∼dfischer/CAFASP3, December 2002.
32. CASP5, http://predictioncenter.llnl.gov/casp5/Casp5.html, December 2002.
33. N. Siew, A. Elofsson, L. Rychlewski and D. Fischer, “Maxsub: An automated measure

for the assessment of protein structure prediction quality,” Bioinformatics 16(9), 776–
785 (2000).

34. J. Xu, M. Li and Y. Xu “Protein threading by linear programming: Part 2, theoretical
analysis,” 2003, submitted.

Jinbo Xu is currently a Ph.D. candidate at the Department

of Computer Science, University of Waterloo. He received his

B.S. degree from the University of Science and Technology of

China in 1996 and his M.Sc. degree from the Institute of Com-

puting Technology of Chinese Academy of Sciences in 1999.

April 11, 2003 1:34 WSPC/185-JBCB 00018

RAPTOR: Optimal Protein Threading by Linear Programming 117

Ming Li is a CRC Chair Professor in Bioinformatics, of Com-

puter Science at the University of Waterloo (and a Professor at

UCSB). He is a recipient of Canada’s E.W.R. Steacie Followship

Award in 1996, and the 2001 Killam Fellowship. He is a coauthor

of the book “An Introduction to Kolmogorov Complexity and Its

Applications” (Springer-Verlag, 1993, 2nd Edition, 1997). He is

co-managing editor of Journal of Bioinformatics and Computa-

tional Biology. He currently also serves on the editorial boards

of Journal of Computer and System Sciences, Information and Computation, SIAM

Journal on Computing, Journal of Combinatorial Optimization, International Jour-

nal of Foundation of Computer Science, Journal of Software (Chinese), and Journal

of Computer Science and Technology.

Dongsup Kim is currently an assistant professor of Department

of Biosystems at Korea Advanced Institute of Science and Tech-

nology (KAIST), S.Korea. He received his Ph.D. degree in com-

putational chemistry at Brown University in 1998. He came to

KAIST in 2003 after spending two and half years in University of

Pennsylvania and two years in Oak Ridge National Laboratory as

a postdoctoral researcher. His current research interests include

protein structure prediction, protein-protein/protein-ligand in-

teraction, and biomolecular simulations.

Ying Xu is currently a senior staff scientist and group leader

of the Protein Informatics Group at Oak Ridge National Labo-

ratory; he also holds a research professor position at the Bio-

chemistry and Molecular Biology Department, University of

Tennessee at Knoxville. He received his Ph.D. degree in theoreti-

cal computer science from the University of Colorado at Boulder

in 1991. He joined ORNL in 1993 after spending two years as

a visiting assistant professor in the Mathematics and Computer

Science Department of Colorado School of Mines. He has ∼90 peer-reviewed pub-

lications and two books, one by MIT Press and one by John Wiley and Sons

(in press). His current research interests include development of computational

methods/software for solving a wide range of molecular biology problems and ap-

plications of these computational tools to study various aspects of biological sys-

tems, including structure-function relationship at the molecular level and regulatory

mechanisms in microbes.

