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Voice conversion

Change the characteristic of an utterance while maintaining the
linguistic content the same.
Characteristic: accent, speaker identity, emotion...

This work: focus on speaker identity conversion.
Speaker A
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Conventional: supervised with paired data
Speaker 1 Speaker A

How are you dow are you

I g

Nice to meet you Nlce to meet you

A

| am fine | am fine

Same sentences, different signal from
2 speakers.

Problem: require paired data, which
is hard to collect.

Paired data r




This work: unsupervised with non-parallel data

® Trained on non-parallel corpus, which is more attainable.

e Actively investigated.

® Prior work: utilize deep generative model, ex. VAE, GAN, cycleGAN [1].

Don’t have to speak /

same sentences.

CycleGAN-VC: Non-parallel Voice Conversion Using Cycle-Consistent Adversarial Networks. Kaneko et.al. EUSIPCO 2018 [1]
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This work: multi-target unsupervised with non-parallel data

3 models are needed for 3 target speakers.

Model-A i‘

Speaker A

Model-B

Speaker B
Speaker 1

Model-C

Speaker C

N2 models for N speakers.

Only one model is needed.

LU g

Speaker A

Speaker 1
)

G .

Speaker B

Speaker C



Outline

e Introduction
o Convertional: supervised with paired data
o This: unsupervised with non-parallel data
o This: multi-target with non-parallel data

e Multi-target scenario (our contribution)
O  Model
O Experiments



Multi-target Scenario (main contribution)

® |[ntuition: speech signals inherently carry both phonetic and speaker

information.
® Learn the phonetic/speaker representation separately.
® Synthesize the target voice by combining the source phonetic representation

and target speaker representation.

Target speaker
representation
Source speaker

representation

Encoder phonetic  / Decoder — i

How are you representation: How are you
"How are you”




Stage 1: disentanglement between phonetic and speaker

representation
® Goal of classifier-1: maximize the likelihood being the speaker.

Training
Speaker 1 £3  Speaker : W _____
& ¢+ representation Decoder — <
i
Phonetic
W—' Encoder SHe . Identify the
representation: enc(x) Classifier-1 ——
) Y x speaker
I Remove speaker
: information

Reconstruction loss



Stage 1: disentanglement between phonetic and speaker

representation
® Goal of classifier-1: maximize the likelihood being the speaker.

® Goal of encoder: minimize the likelihood being the speaker.
. Target speaker W
Testing representation
Speaker 1 @51\ w;yye/ _____
Z Co e — Decoder — -

‘ Phonetic
MWW — Encoder - " Identify the
representation: enc(x) Classifier-1 ——
) A 1 speaker
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Problem of stage 1: over-smoothed spectra

® Stage 1 alone can synthesis target voice to some extent.
® Reconstruction loss encourages the model to generate average value of the
target. Leads to over-smoothed spectra, and result in buzzy synthesized

speech.
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Stage 2: patch the output with a residual signal

e Train another generator to produce residual signal, making the
output more natural.

Training Speakef
From stage 1, fixed representation

Phonetic:

W—* Encoder — encl) | Decoder
2 \ |
% N 5

Speaker
. — Generator . .
representation Residual signal




Stage 2: patch the output with a residual signal

e Discriminator is to discriminate whether synthesized or real data.

e Generator is to fool the discriminator.

Training Speaker_
From stage 1, fixed representation
Phonetic:
W—* Encoder — enc(x) -+ Decoder l I—
A = Real or ; ..
) \ D7 generated Discriminator -
Speaker
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representation Residual signal




Stage 2: patch the output with a residual signal

e C(lassifier-2 is to identify the speaker.

e The generator will also try to make the classifier-2

predict correct speaker. Real data
Training Speaker
From stage 1, fixed representation
Phonetic: |
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Stage 2: patch the output with a residual signal

e Generator and discriminator/classifier-2 are trained

iteratively.
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Experiments - setting

® Feature: Short-time Fourier Transform (STFT) spectrograms.
® Corpus: 20 speakers from CSTR VCTK Corpus (for TTS). 90% training,

10% testing.
e Vocoder: Griffin-Lim (non-parametric method).



Experiments — spectrogram visualization
original
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Experiments — subjective preference
® Ask users to choose their preference in terms of naturalness and similarity.
® Stage 2 improved.

® Comparable to baseline approach.
s stage 2 helpful? Comparison to baseline [1].

0.485

0.045 0.05

Naturalness Similarity Naturalness Simii-arity
Bl “Stage 1 + stage 2” is better. Bl “Stage 1 +stage 2” is better.
Bl “Stage 1 alone” is better. Bl “CycleGAN-VC” [1] is better.
[ Indistinguishable. mm Indistinguishable.

CycleGAN-VC: Non-parallel Voice Conversion Using Cycle-Consistent Adversarial Networks. Kaneko et.al. EUSIPCO 2018 [1]
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https://jjery2243542.github.io/voice_conversion_demo/

Conclusion

e A multi-target unsupervised approach for VC is proposed.
e Stage 1: disentanglement between phonetic and speaker
representation.

e Stage 2: patch the output with residual signal to generate more
natural speech.



Thanks for listening



Experiments — sharpness evaluation

e Speech signals have diversified distribution => high variance.
e Model with stage 2 training have highest variance.

——— (a) autoencoder alone —— (b) stage 1 alone —— (c) proposed
M2M M2F F2M F2F
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Network architecture

CNN + DNN + RNN

Recurrent layer to generate varied

length output.

Dropout after each layer to provide

noise for GAN-training.

Encoder

conv-bank block

Convld-bank-8, LRelL.U, IN

conv block x 3

C-512-5, LRelLU
C-512-5, stride=2, LReLU, IN, Res

dense block x 4

FC-512, IN, Res

recurrent layer

bi-directional GRU-512

combine layer

recurrent Dl][pllt + dense 'Dl,l[pllt

Decoder/Generator

conv block x 3

emb;(y), C-1024-3, LRel.U, PS
C-512-3, LReL.U. IN. Res

dense block x 4

emb;(y), FC-512, IN, Res

recurrent layer

emb; (y), bi-directional GRU-256

combine layer

recurrent output + dense output

Classifier-1

conv block x 4

C-512-5, LRelLU
C-512-5,IN, Res

softmax layer

N
FC-] speaker

Discriminator

conv block x 5

C-K-5, stride=2, LReLU, IN

conv layer

C-32-1, LReLU, IN

output layer

scalar output, FC-Ngpeqrer(classifier-2)




Problem - training-testing mismatch

Training same speaker 5
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