Setting - 2 Multi-target Voice Conversion without Parallel Data by Adversarially Learning Disentangled Audio Representations Method

Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee, Lin-shan Lee Best student paper award nominated in Interspeech 2018.

Speech Processing Laboratory, National Taiwan University

Outline

- Introduction
 - Convertional: supervised with paired data
 - This work: unsupervised with non-parallel data
 - This work: multi-target with non-parallel data
- Multi-target scenario (our contribution)
 - o Model
 - Experiments

Outline

- Introduction
 - Convertional: supervised with paired data
 - This work: unsupervised with non-parallel data
 - This work: multi-target with non-parallel data
- Multi-target scenario (our contribution)
 - o Model
 - Experiments

Voice conversion

- Change the **characteristic** of an utterance while maintaining the linguistic content the same.
- Characteristic: accent, speaker identity, emotion...
- This work: focus on speaker identity conversion.

Conventional: supervised with paired data

- Same sentences, different signal from 2 speakers.
- Problem: require paired data, which is hard to collect.

This work: unsupervised with non-parallel data

- Trained on non-parallel corpus, which is more attainable.
- Actively investigated.
- Prior work: utilize deep generative model, ex. VAE, GAN, cycleGAN [1].

CycleGAN-VC: Non-parallel Voice Conversion Using Cycle-Consistent Adversarial Networks. Kaneko et.al. EUSIPCO 2018 [1]

This work: multi-target unsupervised with non-parallel data

Speaker 1

3 models are needed for 3 target speakers.

 N^2 models for N speakers.

Only one model is needed.

Model

Speaker A

Speaker B

Speaker C

Outline

- Introduction
 - Convertional: supervised with paired data
 - This: unsupervised with non-parallel data
 - This: multi-target with non-parallel data
- Multi-target scenario (our contribution)
 - Model
 - Experiments

Multi-target Scenario (main contribution)

- Intuition: speech signals inherently carry both phonetic and speaker information.
- Learn the phonetic/speaker representation separately.
- Synthesize the target voice by combining the source phonetic representation and target speaker representation.

Stage 1: disentanglement between phonetic and speaker representation

• Goal of classifier-1: maximize the likelihood being the speaker.

Stage 1: disentanglement between phonetic and speaker representation

- Goal of classifier-1: maximize the likelihood being the speaker.
- Goal of encoder: minimize the likelihood being the speaker.

Problem of stage 1: over-smoothed spectra

- Stage 1 alone can synthesis target voice to some extent.
- Reconstruction loss encourages the model to generate average value of the target. Leads to over-smoothed spectra, and result in buzzy synthesized speech.

• Train another generator to produce residual signal, making the output more natural.

- Discriminator is to discriminate whether synthesized or real data.
- Generator is to fool the discriminator.

Real data

- Classifier-2 is to identify the speaker.
- The generator will also try to make the classifier-2 predict correct speaker.

Real data

• Generator and discriminator/classifier-2 are trained iteratively.

Experiments - setting

- Feature: Short-time Fourier Transform (STFT) spectrograms.
- Corpus: 20 speakers from CSTR VCTK Corpus (for TTS). 90% training, 10% testing.
- Vocoder: Griffin-Lim (non-parametric method).

Experiments – spectrogram visualization

- Is stage 2 helpful?
- Sharpness of the spectrogram is improved by stage 2.

150

175 200

Experiments – subjective preference

- Ask users to choose their preference in terms of naturalness and similarity.
- Stage 2 improved.
- Comparable to baseline approach.

Comparison to baseline [1].

CycleGAN-VC: Non-parallel Voice Conversion Using Cycle-Consistent Adversarial Networks. Kaneko et.al. EUSIPCO 2018 [1]

Demo

Conclusion

- A multi-target unsupervised approach for VC is proposed.
- Stage 1: disentanglement between phonetic and speaker representation.
- Stage 2: patch the output with residual signal to generate more natural speech.

Thanks for listening

Experiments – sharpness evaluation

- Speech signals have diversified distribution => high variance.
- Model with stage 2 training have highest variance.

Network architecture

- CNN + DNN + RNN
- Recurrent layer to generate varied length output.
- Dropout after each layer to provide noise for GAN-training.

Encoder		
conv-bank block	Conv1d-bank-8, LReLU, IN	
conv block \times 3	C-512-5, LReLU	
	C-512-5, stride=2, LReLU, IN, Res	
dense block \times 4	FC-512, IN, Res	
recurrent layer	bi-directional GRU-512	
combine layer	recurrent output + dense output	

	Decoder/Generator		
	conv block \times 3	$\operatorname{emb}_{l}(y)$, C-1024-3, LReLU, PS C-512-3, LReLU, IN, Res	
	dense block $\times 4$	$\operatorname{emb}_l(y)$, FC-512, IN, Res	
<u> </u>	recurrent layer	$emb_l(y)$, bi-directional GRU-256	
	combine layer	recurrent output + dense output	

Classifier-1		
conv block $\times 4$	C-512-5, LReLU C-512-5, IN, Res	
softmax layer	FC-N _{speaker}	

Discriminator		
conv block \times 5	C-K-5, stride=2, LReLU, IN	
conv layer	C-32-1, LReLU, IN	
output layer	scalar output, FC- $N_{speaker}$ (classifier-2)	

Problem - training-testing mismatch

