Multi-target Voice Conversion without Parallel Data by Adversarially Learning Disentangled Audio Representations

Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee, Lin-shan Lee

Best student paper award nominated in Interspeech 2018.

Speech Processing Laboratory, National Taiwan University
Outline

- Introduction
 - Convertional: supervised with paired data
 - This work: unsupervised with non-parallel data
 - This work: multi-target with non-parallel data

- Multi-target scenario (our contribution)
 - Model
 - Experiments
Outline

- **Introduction**
 - Convertional: supervised with paired data
 - This work: unsupervised with non-parallel data
 - This work: multi-target with non-parallel data

- **Multi-target scenario (our contribution)**
 - Model
 - Experiments
Voice conversion

- Change the **characteristic** of an utterance while maintaining the linguistic content the same.
- Characteristic: accent, speaker identity, emotion...
- This work: focus on speaker identity conversion.
Conventional: supervised with paired data

- Same sentences, different signal from 2 speakers.
- Problem: require paired data, which is hard to collect.
This work: unsupervised with non-parallel data

- Trained on non-parallel corpus, which is more attainable.
- Actively investigated.
- Prior work: utilize deep generative model, ex. VAE, GAN, cycleGAN [1].

This work: multi-target unsupervised with non-parallel data

3 models are needed for 3 target speakers.

Only one model is needed.

N^2 models for N speakers.
Outline

- Introduction
 - Convertional: supervised with paired data
 - This: unsupervised with non-parallel data
 - This: multi-target with non-parallel data

- Multi-target scenario (our contribution)
 - Model
 - Experiments
Multi-target Scenario (main contribution)

- Intuition: speech signals inherently carry both phonetic and speaker information.
- Learn the phonetic/speaker representation separately.
- Synthesize the target voice by combining the source phonetic representation and target speaker representation.

Diagram:*

Encoder

Source speaker representation

phonetic representation: “How are you”

Decoder

Target speaker representation

How are you
Stage 1: disentanglement between phonetic and speaker representation
- Goal of classifier-1: maximize the likelihood being the speaker.
Stage 1: disentanglement between phonetic and speaker representation

- Goal of classifier-1: maximize the likelihood being the speaker.
- Goal of encoder: minimize the likelihood being the speaker.
Problem of stage 1: over-smoothed spectra

- Stage 1 alone can synthesis target voice to some extent.
- **Reconstruction loss** encourages the model to generate average value of the target. Leads to **over-smoothed spectra**, and result in buzzy synthesized speech.

Training

![Diagram of the training process](image_url)
Stage 2: patch the output with a residual signal

- Train another generator to produce residual signal, making the output more natural.
Stage 2: patch the output with a residual signal

- **Discriminator** is to discriminate whether synthesized or real data.
- **Generator** is to fool the discriminator.

Diagram:
- Encoder: $\text{enc}(x)$
- Decoder
- Speaker representation from stage 1, fixed
- Discriminator: distinguish real or generated data
- Real data
- Residual signal
Stage 2: patch the output with a residual signal

- **Classifier-2** is to identify the speaker.
- The **generator** will also try to make the **classifier-2** predict the correct speaker.
Stage 2: patch the output with a residual signal

- **Generator** and **discriminator/classifier-2** are trained iteratively.

![Diagram](image-url)
Experiments - setting

- Feature: Short-time Fourier Transform (STFT) spectrograms.
- Corpus: 20 speakers from CSTR VCTK Corpus (for TTS). 90% training, 10% testing.
- Vocoder: Griffin-Lim (non-parametric method).
Experiments – spectrogram visualization

- Is stage 2 helpful?
- Sharpness of the spectrogram is improved by stage 2.
Experiments – subjective preference

- Ask users to choose their preference in terms of naturalness and similarity.
- Stage 2 improved.
- Comparable to baseline approach.

Is stage 2 helpful?

Comparison to baseline [1].

Demo

Male to Female
Source:
Target:
Converted:

Female to Female
Source:
Target:
Converted:

Advisor (male, never seen in training data) to Female
Source:
Target:
Converted:

https://jjery2243542.github.io/voice_conversion_demo/
Conclusion

- A multi-target unsupervised approach for VC is proposed.
- Stage 1: disentanglement between phonetic and speaker representation.
- Stage 2: patch the output with residual signal to generate more natural speech.
Thanks for listening
Experiments – sharpness evaluation

- Speech signals have diversified distribution => high variance.
- Model with stage 2 training have highest variance.
Network architecture

- CNN + DNN + RNN
- Recurrent layer to generate varied length output.
- Dropout after each layer to provide noise for GAN-training.
Problem - training-testing mismatch

Training
- Same speaker
- Encoder
- dec(x)
- Decoder
- Predict speaker y

Testing
- Different speaker
- Encoder
- dec(x)
- Decoder
- Predict speaker y'