
8 Embeddings into Random Trees

8.1 Single Trees

Can any metric be embedded into a single tree with low distortion? Unfortunately, the answer
to this question is “no”. Embedding Cn into a single subtree requires distortion at least n− 1
(deleting a single edge from the cycle yields a tree metric with distortion n− 1). Rabinovich
and Raz (1995) proved that embedding the unit weight n-cycle Cn into a tree (which is not
necessarily a subtree of Cn, and may have vertices and edges not in Cn) still requires a distortion
of Ω(n). We will overcome this lower bound by embedding metrics into distributions of trees.

Definition 8.1 Suppose G is a graph family. Then (X, d) ↪
D−→ G means that there exists a

graph H ∈ G with edge lengths such that (X, d) ↪
D−→ (vH , dH).

Definition 8.2 (X, d) ↪
D−→ distrib(G) means that there exists a distribution π on the graph

family G and an r > 0 such that:

r ≤ EH←π[dH(x, y)]
d(x, y)

≤ Dr

It is easy to see that dπ(x, y) = EH←π[dH(x, y)] is a metric (because of linearity).

8.2 Line Metrics

Assume L is the set of all line metrics. (L is equal to the set of all metrics that isometrically
embed into the real line `1

p.)

Theorem 8.3 Let L be the set of all line metrics. For any metric (X, d),

(X, d) ↪
log n−−−→ distrib(L)

This follows from the following (simple) result:

Lemma 8.4 Let L be the set of all line metrics. Given a metric µ,

µ ∈ `1 ⇐⇒ µ ∈ distrib(L).

Proof. For one direction, assume µ ∈ `1. Then µ =
∑

S ySδS , where δS are all elementary cut
metrics. But elementary cut metrics are line metrics with two points, so µ is equivalent to a
distribution over line metrics, each one having probability mass ySiP

S yS
. For the other direction,

note that line metrics are in `1, and hence distributions over them, which are the same as
convex combinations of them, are in `1 as well.
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Figure 8.1: The metric dC4 on the left can be thought of as a distribution over the two line
metrics on the right, each having probability 1/2.

8.3 Distributions Over Trees and Dominating Trees

Through an argument similar to the one above we can see that distributions over tree metrics
are equivalent to `1. Therefore, any metric embeds into a distribution over tree metrics
with distortion O(log n). We will prove a stronger result due to Fakchapoenphol, Rao and
Talwar (2003): any metric embeds into distributions of dominating trees with distortion
O(log n).

A metric (X, d′) dominates another metric (X, d) if d′(x, y) ≥ d(x, y) for all x, y ∈ X; hence,
given a metric d, a dominating tree is merely a tree T such that dT dominates d. Dominating
trees are very useful in approximation and online algorithms.

We will present a series of results. The first one, due to Karp (1989), states that the n-cycle
Cn embeds into a distribution of dominating trees with distortion 2(1− 1

n). The next one, due
to Bartal, shows that any metric embeds into distributions of dominating trees with distortion
O(log2 n). We will finish with the recent result of Fakcharoenphol et al. (2003), which shows
that any metric embeds into a distribution of dominating trees with distortion O(log n).

We start with Karp’s theorem:

Theorem 8.5 Let Cn be the n-cycle with unit edge lengths. Then dCn can be embedded into a
distribution of dominating trees with distortion 2(1− 1

n).

The embedding is simple: starting from Cn, delete a single edge at random to produce
a tree. It is easy to see that dπ(x, y) ≥ dCn(x, y) for any x, y. If x, y are adjacent in Cn,
dπ(x, y) = 2(1 − 1

n)dCn(x, y). For non-adjacent vertices, look at the shortest path between
x and y, say x = x0, x1, ..., xt = y. Then dπ(xi, xi+1) ≥ 2(1 − 1

n)dCn(xi, xi+1). The theorem
follows by linearity of expectation.

Remark 8.6 The above observation holds in general, and implies that the expansion is worst
for adjacent vertices; hence we will only worry about adjacent vertices from now on.

8.3.1 Applications

Embeddings of metrics into a distribution over dominating trees have many important ap-
plication due to the fact that many problems that appear difficult on general graphs often
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have nice and simple solutions on tree networks. The general framework for applying the
embedding-technique is, as follows. Suppose we are given a graph G and a problem for which
the cost of an optimum solution can be expresses as a conic combination of pairwise distances in
the graph. Examples for such problems are the Traveling Salesman Problem, Metric Labeling,
Steiner Tree, Buy-at-Bulk Network Design, etc.

Further, suppose that we have an embedding with distortion D into a distribution over
dominating trees, and that we can solve the problem on a tree with some approximation
guarantee c, i.e., for a tree T we can output a solution ST such that

cost(ST , T ) ≤ cost(S∗T , T ) ,

where S∗T denotes the optimum solution in T and for a solution S, and a graph H with
V (G) ⊂ V (H), cost(S, H) denotes the cost of the solution when distances are measured in H.

The algorithm for the graph G is as follows. We sample a random tre T according to the
distribution defined by the embedding. Then we compute the approximate optimum solution on
T and interpret this solution as a solution in G. Since distances in T are larger than distances
in G the solution will have smaller cost in G. This means we have

E[cost(ST , G)] ≤ E[cost(ST , T )] ≤ c ·E[cost(S∗T , T )] .

Let S∗G denote the optimum solution for G. Since the distances in the tree T are (in expectation)
only a factor D larger we get

E[cost(S∗T , T )] ≤ E[cost(S∗G, T )] ≤ D · cost(S∗G, G) .

Altogether this means that the solution ST has an expected cost that is at most a c ·D factor
larger than the cost of the optimum solution S∗G. Note that the above technique does not only
work for approximation algorithms but can also be applied in the same way for the analysis of
online algorithms when the adversary does not know the random choices (i.e., the random tree
T ) of the algorithm (i.e., the adversary is oblivious).

8.4 Bartal’s Theorem

In this section, we will prove a result due to Bartal (1996):

Theorem 8.7 Given a metric (X, d) with diameter ∆, let DT be the set of all tree metrics
that dominate d. Then

(X, d) ↪
O(log n log ∆)−−−−−−−−→ distrib(DT ).

Before we start with proving Bartal’s theorem, let us recall the definition of diameter, and
define the “weak” diameter:

Definition 8.8 (Diameter) The diameter of a graph G (denoted by diam(G)) is the least δ
such that for all pairs of vertices x, y ∈ V (G), we have dG(x, y) ≤ δ.
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Figure 8.2: Bartal’s construction: (1) decompose the graph into pieces Gi with weak diam-
eter weakGdiam(Gi) ≤ ∆/2, (2) recusively obtain trees Ti for each of the Gi, and (3) attach
them to a new vertex vG by edges of length ∆ (dashed lines).

Definition 8.9 (Weak diameter) Given a graph G and a subgraph G′ ⊆ G, the weak
diameter of G′ with respect to G (denoted by weakGdiam(G′)) is the least δ such that dG(x, y) ≤ δ
for all x, y ∈ V (G′).

Given a graph H and a subgraph H ′, it follows that weakHdiam(H ′) ≤ diam(H ′); however,
these two parameters could be very far apart. (Can you give an example?)

8.5 The Embedding

Assume G = (X, E) generates the metric (X, d). In Bartal’s construction, we will partition G
(the level 0 graph) into “smaller” subgraphs G1, ..., Gn (called the level 1 graphs), recursively
build a tree for each of the Gi’s, and then join these trees to get a tree for G.

Formally, let ∆ be the diameter of G. Our construction will guarantee that the weak
diameter of each of the Gi’s (i.e., of the level 1 components) is smaller than ∆/2. We will
recursively build rooted trees (called the level 1 trees) Ti for each of the Gi’s, where the root of
Ti will be a vertex vGi . We will then take a fresh vertex vG, and attach each of the vGi ’s to vG

with edges of length ∆. (See Figure 8.2 for an illustration.) In the base case for the recursion,
the graph has one vertex and there is nothing to be done.

Let us follow the recursion one more level: the tree for the level 1 component Gi is built
in exactly the same way: Gi will be divided into level 2 components Gi1 , Gi2 , ..., Gik , and the
corresponding rooted level 2 trees Ti1 , Ti2 , ..., Tik will be built recursively, with Tij having a
root vertex vGij

. We will then create the new vertex vGi and connect each of the rooted trees
to vGi with edges of length ∆/2 to yield the tree Ti with root vGi .
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8.6 The Analysis

Let us prove that the above embedding has the properties claimed in Theorem 8.7. To begin, let
us note certain properties that can be proved by simple inductions: consider a level i component
H, and a level i+1 component H ′ formed by partitioning H. Then the above algorithm ensures
that the weak diameter of the level i + 1 component H ′ is weakHdiam(H ′) ≤ ∆/2i+1.

Furthermore, let T ′ be the level (i + 1) tree corresponding to H ′ (with root r′), and let T
be the level i tree corresponding to H (with root r). Then the length of the edge (r, r′) in T is
∆/2i. Furthermore, the distance of any leaf in T from the root r is at most 2∆/2i; hence, the
diameter of T is at most 4∆/2i.

Lemma 8.10 Any tree T generated as above dominates d, i.e., dT (x, y) ≥ d(x, y).

Proof. Let x, y be such that ∆/2j < dG(x, y) ≤ ∆/2j−1. Since x and y are at distance greater
than ∆/2j , they cannot lie in the same level j component. Hence they were separated at some
level j′ < j, and the edges of length ∆/2j′

added at this level to connect their subtrees ensure
that x and y are at distance at least 2∆/2j′

> d(x, y) in the tree.

We will use the following graph decomposition theorem, which will be proved in the next
lecture:

Theorem 8.11 Given a graph G = (V,E) with edge lengths, and a parameter δ, there exists a
procedure that deletes edges E′ such that:

1. Each connected component C in (V,E − E′) has (weak) diameter smaller than δ.

2. Pr[edge e is cut] ≤ 4 log n× (de/δ).

We can now use the properties promised in Theorem 8.11 to prove Theorem 8.7.

Proof of Theorem 8.7. Fix an edge e = (x, y) and consider the expected distance between
x and y in the random tree created by our procedure. It is merely

ER[dT (x, y)]

= 4∆ · Pr[x and y are cut in level 0]

+ 2∆ · Pr[x and y are cut in level 1 | they are in the same level 1 graph]

+ . . . · . . .

+ 4∆
2j · Pr[x and y are cut in level j | they are in same level j graph ]

+ . . . · . . . ,

where the sum has log ∆ terms. However, since we invoke the procedure in Theorem 8.11 with
the parameter δ = ∆/2j+1 in level j, we get that

Pr[x and y are cut in level j| they are in same level j graph ] ≤ 4 log n · d(e)
∆/2j+1

,
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and hence each of the terms in the summation above can be upper bounded by

4∆
2j

· 4 log n · d(e)
∆/2j+1

= 32 log n · d(x, y) .

The fact that there are log ∆ terms now implies that

ER[dT (x, y)] ≤ (32 log n log ∆)d(x, y) ,

which proves the theorem.
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