
Our goal in the next three lectures will be to study the notion of Volume Respecting
Embeddings. In this lecture we develop the basic framework and see how this idea is used to
obtain a non-trivial approximation algorithm for problem of finding the minimum bandwidth
layout of a graph.

18 Minimum Bandwidth Problem

Definition 18.1 Given an unweighted graph G = (V,E) on n vertices, consider a 1-1 map f
of the vertices V into [1, n]. The bandwidth of the map f is defined as the maximum stretch of
any edge, i.e.,

bw(f) = max
(i,j)∈E

|f(i)− f(j)|.

The bandwidth of a graph is defined as the minimum possible bandwidth achievable by any 1-1
map from V → [1, n]. That is,

bw(G) = min
f :V→[1,n]

bw(f).

The minimum bandwidth problem is quite hard even for very simple graphs. It is known
to be NP-hard for trees, and in fact, even for trees that are caterpillars with hair length 3.
Moreover, Unger (1998) showed that it is NP-Hard to approximate the bandwidth to within
any constant factor for caterpillars as well.

As an aside, the name “bandwidth” comes from matrix algorithms; one can think of a
min-bandwidth algorithm as trying to find a permutation of the vertices, such that looking at
the adjacency matrix under this permutation causes all non-zero entries to lie in a thin “band”
along the diagonal. This is quite a useful operation, since matrix operations on matrices with
small bandwidth requires less space and time; e.g., consider taking a matrix-vector product—if
the n× n matrix has bandwidth B, then we need time O(nB), instead of O(n2). The popular
software package MatLab has an inbuilt beuristic to find a permutation of vertices with good
bandwidth, which is a variation of one due to Cuthill and McKee.

In this lecture we will be interested in approximation algorithms for this problem. A by-now
classic result due to Uri Feige is that

Theorem 18.2 (Feige (1998)) Given an unweighted graph G = (V,E), the minimum band-
width bw(G) can be approximated to within a factor of O(log3.5 n), where |V | = n.

The proof of this result is extremely elegant, but it requires a few conceptual steps and
quite a bit of machinery. The goal of this lecture, as well as the next two lectures, will be to
develop this machinery. We will first begin with the following simpler result for trees.

Theorem 18.3 (Gupta (2000)) For trees, the minimum bandwidth can be approximated to
within a factor of O(log2.5 n).

XV-1

18.1 A Lower Bound on bw(G)

We first give a simple lower bound on the bandwidth, on which all known approximation
guarantees are based. To start off, note that if the maximum degree of a vertex in G is ∆, then
d∆/2e is a lower bound on the bandwidth. This is because at least half its neighbours must be
placed to one side of it, and the edge to the furthest neighbor on this “heavier” side must be
stretched by at least d∆/2e.

This idea can be naturally extended to look at “local density” around a vertex. For a vertex
v and an integer r, let B(v, r) denote the set of vertices within distance r from v. Then,

Lemma 18.4 For all v ∈ V and integers r, |B(v, r)− 1|/2r ≤ OPT

Proof. Consider the layout of the neighbors of v in [1, n]. At least two of these, say u and w,
have a distance of ≥ B(v, r)− 1 on the line. Since the distance of u and w in G is at most 2r,
it follows that some edge on the u-w path is stretched by at least B(v, r)− 1/2r.

Definition 18.5 The local density of a graph G is

D = D(G) = minv minr

⌈
|B(v,r)−1|

2r

⌉
.

By Lemma 18.4, D ≤ bw(G).

19 Min-Bandwidth Algorithms for Trees

To get a feel for the problem we first consider a couple of algorithms that do not work. These
will give us important intuition for why the correct algorithm is defined the way it is.

19.1 Algorithm 1

Let us assume that the tree T = (V,E) is rooted at some vertex r. The first algorithm places
vertics in order of their distance from the root, breaking ties arbitrarily.

Algorithm 1: Perform a breadth first search (BFS) on the tree starting at the root r.
Place the vertices on the line in the order you see them in this BFS traversal (i.e. place them
in any order of distance from the root r).

Lemma 19.6 There are trees for which the above algorithm performs Ω(n1/2) worse than the
local density D.

Proof. Consider the n-vertex tree in Figure 19.1 below, which consists of n1/2/2 “brooms”
hanging off the root. Each broom is a path consisting of n1/2 vertices with a star consisting of
n1/2 vertices at the end of this path. All the brooms in the graph have the same length.

It is easy to verify that the local density of this graph is D = Θ(n1/2). We claim that
Algorithm 1 produces a layout with bandwidth Ω(n). Indeed, if we consider a BFS traversal,
then all the Ω(

√
n) vertices bi will be laid out together, and followed by the Ω(n) leaves. Thus

there is at least one bi-leaf edge that is stretched by Ω(n).

XV-2

b1

n

b b b32 t

Root r

n/2 Brooms

Figure 19.1: The bad example

19.2 Another Attempt: Algorithm 2

The problem with the algorithm above is that if we consider the distances from the root, we
could see too many vertices together; this leads to the high bandwidth. A way to beat this
might be to randomize the distances of the vertices from the root (without changing them by
too much). This motivates us to consider our next natural algorithm.

Algorithm 2: Assign a “length” uniformly at random from the interval [1, 2] to each edge.
Place the vertices on the line in the order of the distance from the root.

However, it turns out that this algorithm is not too good either. We will now show that,

Lemma 19.7 There are graphs on which the output of Algorithm 2 is greater than D by a
factor of Ω̃(n1/4) (ignoring polylog(n) factors).

Proof. The bad example is the same tree in Figure ??. Consider the n/2 leaves of the
tree; their distance from the root is a sum of k =

√
n i.i.d. random variables in [1, 2]. Now,

by a Chernoff bound, the distance of a leaf from r lies in the range 3
2 k ± O(

√
k log k) with

probability 1− 1/n2. Hence, by a union bound, all the n/2 leaves lie in an interval of width
O(
√
k log k) = Õ(n1/4) with constant probability.

Let us condition on that event happening. Now consider the leaf u which is farthest from r
in the random experiment, and let w be an ancestor of u such that there are O(n1/4 log n) edges
between them. Since w will be closer to the root than all the leaves, it will be encountered
before the leaves. But then a path of O(n1/4 log n) edges will span Ω(n) leaves, and hence some
edge will be stretched by at least Ω̃(n3/4), which implies the lemma.

If we see closely, the problem with this algorithm was that there was “too much” indepen-
dence in the randomness used by this algorithm, causing the variance to be reduced and too
many vertices were assigned a distance close to their mean. We will now see how to fix this.

XV-3

19.3 An Algorithm that Works

We will use the following lemma:

Lemma 19.8 It is possible to color the edges of a rooted tree such that

1. Each color class lies within some root to leaf path.

2. Each root to leaf path has most log n colors.

Proof. Let us sketch a proof: Let us start at the root r; if it has χ(r) children, then imagine
χ(r) different painters, each with a different color walking down each edge (away from the root)
painting the edge as they go. When a painter reaches the other end of an edge, which is a
vertex v with χ(v) children, it creates χ(v)− 1 new painters (with new distinct colors). It then
goes down the edge to the subtree with the most leaves, and sends the new painters down the
other χ(v)− 1 edges. It is clear that each color class it contained within a root-leaf path.

How many colors do we see on a root-leaf path; or equivalently, how many new colors were
used? Let us consider a vertex v with child u, and a new painter was sent down the edge (v, u).
But then we claim that the number of leaves in the subtree Tu rooted at u is at most half the
number in the subtree Tv rooted at v. Indeed, if it were not, then Tu would be the subtree with
the most leaves and the same color would be used. Hence, a new color implies that the number
of leaves halves, and hence the number of new colors is at most log(# of leaves) ≤ log n.

It is not hard to see (by considering a complete binary tree) that this lemma is the best
one can hope for.

19.3.1 The Algorithm

We now present the final (and correct) algorithm:
Algorithm 3: Consider the coloring of the tree satisfying the conditions in Lemma 19.8.

For each color class C, assign all the edges in C the same random number independently and
uniformly from the range [1, 2]. Again, output the vertices in the order of their distance from
the root.

Before we begin, let ψ(v) be the random distance from r to the vertex v. Note that since ψ
is 1-1 with probability 1, ψ uniquely defines the layout f that is the output of Algorithm 3:

f(u) < f(v) ⇐⇒ ψ(u) < ψ(v).

19.3.2 The ”‘tree-volume”’ Tvol

Let dG be the shortest path distance on the vertices V , and hence (V, dG) is a metric. Given a
set of vertices S ⊆ V , let dS be the induced metric in S. Then (S, dS) can be viewed as the
complete graph with the edge (s1, s2) having weight dS(s1, s2).

XV-4

Definition 19.9 Let T (S) denote the minimum spanning tree on (S, dS). Define Tvol(S), the
tree-volume of S, to be

Tvol(S) =
∏

e∈T (S)

dS(e).

19.3.3 The Roadmap

In this lecture, we only describe the road map for the proof that the algorithm has a competitive
ratio of O(log2.5 n). There will be four main conceptual steps:

1. We will show that the “chance of a set falling into a unit interval is small”. Formally, for
any set S ⊆ V , |S| = k,

Pr[ψ(S) lies in some interval [i, i+ 1)] ≤ ηk−1

Tvol(S)
(19.1)

The values of the parameter η we can prove will be specified later.

2. Call a set bad if it does not satisfy (19.1) above. By linearity of expectation, (19.1) implies
that the expected number of bad sets can be bounded by

E[number of bad sets] ≤
∑
|S|=k

ηk−1

Tvol(S)
(19.2)

3. Let D denote the local density lower bound. We will show that∑
|S|=k

1
Tvol(S)

≤ n(D log n)k−1 (19.3)

This allows us to relate the expected number of bad sets to the lower bound D.

E[number of bad sets] ≤ n(η log nD)k−1 (19.4)

By Markov’s inequality, we get that with probability 1
2 ,

number of bad sets ≤ 2n(η log nD)k−1 (19.5)

4. Now suppose the bandwidth of the layout produced by Algorithm 3 is B. This implies
that there is some edge (u, v) such that B − 1 vertices x1, x2, . . . , xB−1 have

ψ(u) < ψ(x1) ≤ ψ(x2) ≤ . . . ≤ ψ(xB−1) ≤ ψ(v). (19.6)

Since the length of the edge (u, v) is at most 2 (i.e., ψ(v)− ψ(u) ≤ 2), at least half of the
values ψ(xi) must lie within some unit interval [i, i+ 1).

XV-5

However, this implies that there are at least
(B/2

k

)
bad sets of size k. However, we know

an upper bound (19.5) on the number of bad sets, and hence

2n(η log nD)k−1 ≥
(
B/2
k

)k

(19.7)

Setting k = log n and simplifying, we get that

B/D ≤ n1/kηk log n ≤ η log2 n (19.8)

This same road-map will be used in subsequent classes to prove Theorem 18.2.
Note that, to complete the proof, we need to prove the facts in (19.2) (for some value of η)

and (19.3). We sketch the main idea behind proving (19.2) with η =
√

log n here; the Fact 19.3
is a fact about metrics that is independent of trees, and will be proved in a subsequent class.

19.3.4 Lower Bounds on Concentration of Variables

We now describe the main ingredient which gives an intuition as to why the randomized
Algorithm 3 does not suffer from the drawbacks present in Algorithm 2. Loosely, this is because
the sum of log n “well-spread-out” random variables (which define ψ(v)) is not very closely
concentrated around the mean.

We will be interested in bounding the probability that if I = [i, i + 1) ⊆ R≥0 is a unit
interval, then for any vertex v what is Pr[ψ(v) ∈ I]?

Theorem 19.10 (Leader and Radcliffe (1994)) Suppose d1, . . . , dk ≥ 1, and let Xi be
chosen uniformly at random in [1, 2]. Then

Pr
[∑

diXi ∈ I
]
≤ 1√∑k

i=1 d
2
i

≤
√
k∑
di
.

To see that this implies that

Pr[ψ(v) ∈ I] ≤
√

log n
dT (r, v)

=
η

Tvol({r, v}
,

let the di’s be the lengths of the color classes on the v-root path. Since each length is chosen
independently in [1, 2],

∑
i diXi models the behavior of ψ(v), and shows that it is not too

concentrated around the mean. This idea can be extended to show the Fact 19.2. For details,
read the paper of Gupta (2000).

19.3.5 Littlewood-Offord type problems

We will not prove Theorem 19.10 here as well, but let us prove a simpler bound.

XV-6

Theorem 19.11 Suppose d1, . . . , dk ≥ 1, and let Yi be chosen uniformly at random in [1, 2].
Then

Pr
[∑

diYi ∈ I
]
≤

(
k

k/2

)
2−k ≈ 1

k
.

Proof. Consider the set of all {−1,+1} assignments to Yi such that
∑
Yidi ∈ I. We can view

this as a lattice, where an assignment A1 is below another assignment A2 if all the positions at
which A1 is +1 is a subset of those at which A2 is +1. Note that since di ≥ 1 for all i, the
assignments for which

∑
Yidi ∈ I will form an antichain in this lattice and hence their number

cannot be more than
(

k
k/2

)
. Since each assignment has probability 2−k the claim follows.

References

[Fei00] Uriel Feige. Approximating the bandwidth via volume respecting embeddings. Journal
of Computer and System Sciences, 60(3):510–539, 2000. Also in Proc. 30th STOC,
1998, pp. 90–99.

[Gup00] Anupam Gupta. Improved bandwidth approximation for trees. In Proceedings of the
11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 788–793, 2000.

[LR94] Imre Leader and A. J. Radcliffe. Littlewood-Offord inequalities for random variables.
SIAM Journal on Discrete Mathematics, 7(1):90–101, 1994.

[Ung98] Walter Unger. The complexity of the approximation of the bandwidth problem. In
IEEE Symposium on Foundations of Computer Science (FOCS), pages 82–91, 1998.

XV-7

	Minimum Bandwidth Problem
	A Lower Bound on bw(G)

	Min-Bandwidth Algorithms for Trees
	Algorithm 1
	Another Attempt: Algorithm 2
	An Algorithm that Works
	The Algorithm
	The "`tree-volume"' Tvol
	The Roadmap
	Lower Bounds on Concentration of Variables
	Littlewood-Offord type problems

