
Online Scheduling for Sorting Buffers?

Harald Räcke1, Christian Sohler1, and Matthias Westermann2

1 Heinz Nixdorf Institute and
Department of Mathematics and Computer Science

Paderborn University, D-33102 Paderborn, Germany
{harry,csohler}@uni-paderborn.de

2 International Computer Science Institute
Berkeley, CA 94704, USA

marsu@icsi.berkeley.edu

Abstract. We introduce the online scheduling problem for sorting buffers. A
service station and a sorting buffer are given. An input sequence of items which
are only characterized by a specific attribute has to be processed by the service
station which benefits from consecutive items with the same attribute value. The
sorting buffer which is a random access buffer with storage capacity for k items
can be used to rearrange the input sequence. The goal is to minimize the cost of the
service station, i.e., the number of maximal subsequences in its sequence of items
containing only items with the same attribute value. This problem is motivated by
many applications in computer science and economics.
The strategies are evaluated in a competitive analysis in which the cost of the
online strategy is compared with the cost of an optimal offline strategy. Our main
result is a deterministic strategy that achieves a competitive ratio of O(log2 k). In
addition, we show that several standard strategies are unsuitable for this problem,
i.e., we prove a lower bound of Ω(

√
k) on the competitive ratio of the First In

First Out (FIFO) and Least Recently Used (LRU) strategy and of Ω(k) on the
competitive ratio of the Largest Color First (LCF) strategy.

1 Introduction

In the online scheduling problem for sorting buffers, we are given a service station and a
sorting buffer. An input sequence of items which are only characterized by a specific
attribute has to be processed by the service station which benefits from consecutive
items with the same attribute value. The sorting buffer which is a random access buffer
with limited storage capacity can be used to rearrange the input sequence. Whenever a
new item arrives it has to be stored in the sorting buffer. Accordingly, items can also
be removed from the sorting buffer and then assigned to the service station. Hence, the
service station has to process a sequence of items that is a partial rearrangement of the
input sequence. The goal is to minimize the cost of the service station, i.e., the number of

? The first two authors are partially supported by the DFG-Sonderforschungsbereich 376, DFG
grant 872/8-1, and the Future and Emerging Technologies program of the EU under contract
number IST-1999-14186 (ALCOM-FT). The third author is supported by a fellowship within
the ICSI-Postdoc-Program of the German Academic Exchange Service (DAAD).

maximal subsequences of items with the same attribute value in the rearranged sequence.
This problem is motivated by many applications in computer science and economics. In
the following we give some examples.

In computer graphics, the process of displaying a representation of 3D objects, i.e.,
polygons, is denoted as rendering. Each polygon is characterized by several attributes,
e.g., color and texture. In the rendering process, a sequence of polygons is transmitted to
the graphic hardware. A change of attributes for consecutive polygons in this sequence
is denoted as state change. One of the determining factors for the performance of a
rendering system is the number of state changes in the sequence of polygons. Of course,
unless you want to model a black ninja during night, there have to be some state changes.
However, the number of state changes can be reduced by preceding a rendering system
with a sorting buffer.

Communication in computer systems connected by a network is usually realized
by the transfer of data streams. The sending of a data stream by a computer is denoted
as startup. The overhead induced by the startup process (inclusive the overhead of the
receiving computer) is denoted as startup cost. Sending many small data streams has a
negative impact on the performance of the network, since in this case the startup cost
dominates the total cost. The startup cost can be reduced by combining several data
streams that are directed to the same destination. Hence, with the assistance of sorting
buffers at the computers on the network the performance of the network can be improved.

File server are computer and high-capacity storage devices which each computer
on a network can access to retrieve files. Hence, a file server receives a sequence of
read and write accesses to files from the computers on the network. A file is denoted
as open, if it is ready to be accessed. Otherwise, it is denoted as closed. By technical
reasons, the number of open files on a file server is limited. Since the overhead induced
by the opening and closing process takes a lot of time for a file server, it is preferable
if as many as possible accesses to an open file can be processed before closing it. The
number of opening and closing procedures can be minimized by preceding a file server
with a multi service sorting buffer which is a generalization of our sorting buffer. A multi
service sorting buffer has m identical service stations and each item can be processed
by any of these stations. In this example, m is the maximum number of open files on a
file server. Note that the multi service sorting buffer problem in which the sorting buffer
has storage capacity for only one item is equivalent to the classical paging problem (see,
e.g., [2,10]).

In the painting center of a car plant, a sequence of cars traverses the final layer
painting where each car is painted with its own top coat. If two consecutive cars have to
be painted in different colors then a color change is required. Such a color change causes
cost due to the wastage of paint and the use of cleaning chemicals. These costs can be
minimized by rearranging the sequence of cars in such a way that cars of the same color
preferably appear in consecutive positions. For this purpose, the final layer painting
is preceded by a queue sorting buffer which is a generalization of our sorting buffer.
A queue sorting buffer consists of several queues each with limited storage capacity.
Whenever a new car arrives, it has to be transferred to the tail of any of the queues.
Accordingly, cars at the head of any queue can also be removed and then assigned to the
final layer painting.

1.1 The model

We are given a service station and a sorting buffer. An input sequence σ = σ1σ2 · · ·σn

of items which are only characterized by a specific attribute has to be processed by the
service station which benefits from consecutive items with the same attribute value. To
simplify matters, we suppose that the items are characterized by their color. The sorting
buffer which is a random access buffer with storage capacity for k items can be used to
rearrange the input sequence in the following way.

The current input item σi, i.e., the first item of σ that is not handled yet, can be
stored in the sorting buffer, or items currently in the sorting buffer can be removed and
then assigned to the service station. These removed items result in an output sequence
ρ = ρ1ρ2 · · · ρn which is a partial rearrangement of σ. We suppose that the sorting buffer
is initially empty and, after processing the whole input sequence, the buffer has to be
empty again. In addition, we use the following notations. Let the current input color
denote the color of the current input item. Further, let the current output item denote the
item that was last assigned to the service station and let the current output color denote
the color of this item.

The goal is to rearrange the input sequence in such a way that items with the same
color preferably appear in consecutive positions in the output sequence. Let each maximal
subsequence of the output sequence containing only items with the same color denote as
color block. Between two different color blocks there is a color change at the service
station. Let the cost C(σ) of the scheduling strategy denote the number of color blocks
in the output sequence. Then, the goal is to minimize the cost C(σ).

The notion of an online strategy is intended to formalize the realistic scenario, where
the scheduling strategy does not have knowledge about the whole input sequence in
advance. Instead, it learns the input piece by piece, and has to react with only partial
knowledge of the input. Online strategies are typically evaluated in a competitive analysis.
In this kind of analysis which was introduced by Sleator and Tarjan [10] the cost of the
online strategy is compared with the cost of an optimal offline strategy.

In order to obtain a simple, unambiguous model, we assume that an adversary
initiates the input sequence σ = σ1σ2 · · ·σn of items. The online strategy has to serve
these items one after the other, that is, it is assumed that σi+1 is not issued before σi is not
stored in the sorting buffer. For a given sequence σ, let Cop(σ) denote the minimum cost
produced by an optimal offline strategy. An online strategy is said to be c-competitive if
it produces cost at most c ·Cop(σ) + a, for each sequence σ, where a is a term that does
not depend on σ. The value c is also called the competitive ratio of the online strategy.

W.l.o.g., we only consider lazy scheduling strategies, i.e., strategies that fulfill the
following two properties:

– If an item whose color is equal to the current output color is stored in the sorting
buffer, a lazy strategy does not make a color change.

– If there are items in the input sequence that can be stored in the sorting buffer, a lazy
strategy does not remove an item from the sorting buffer.

Note that an optimal offline strategy can be transformed into a lazy strategy without
increasing the cost.

1.2 Our contribution

We introduce the online scheduling problem for sorting buffers and present deterministic
scheduling strategies for this problem. The strategies aim to rearrange an input sequence
in such a way that items of the same color preferably appear in consecutive positions in
the output sequence. They are evaluated in a competitive analysis.

At first, we show in Section 2 that several standard strategies are unsuitable for
this problem, i.e., we prove a lower bound of Ω(

√
k) on the competitive ratio of the

First In First Out (FIFO) and Least Recently Used (LRU) strategy and of Ω(k) on
the competitive ratio of the Largest Color First (LCF) strategy. Our main result which
we present in Section 3 is the deterministic Bounded Waste strategy which achieves a
competitive ratio of O(log2 k). We believe that the Bounded Waste strategy is well suited
for the application in practice because the strategy is simple and has a provably good
performance. The main part of the proof concerning the upper bound of the Bounded
Waste strategy is given in Section 4.

1.3 Previous work

Scheduling is continuously an active research area, reflecting the changes in theoretical
computer science. When the theory of NP-completeness was developed, many scheduling
problems have been shown to be NP-complete (see, e.g., [4]). After the NP-completeness
results, the focus shifted to the design of approximation algorithms (see, e.g., [6,8]).
Many natural heuristics for scheduling are in fact online strategies. Hence, when the
study of online strategies using competitive analysis became usual, this approach was
naturally and quite successfully applied to scheduling (see, e.g., [9]).

The online bin-coloring problem is related to our scheduling problem. The goal in the
bin-coloring problem is to pack unit size colored items into bins, such that the maximum
number of different colors per bin is minimized. The packing process is subject to the
constraint that at any moment at most k bins are partially filled. Moreover, bins may
only be closed if they are filled completely. Krumke et al. [7] present a deterministic
strategy that achieves a competitive ratio of (2k + 1). In addition, they give an Ω(k)
lower bound on the competitive ratio of any deterministic strategy.

Feder et al. [1] study an online caching problem that is similar to our scheduling
problem. In their r-reordering problem, a caching strategy can reorder the sequence of
requests σ = σ1σ2 · · · as long as no request is delayed inordinately, i.e., in the new
ordering a request σi has to be served before a request σj , if i + r ≤ j. For cache size
one, they present a deterministic greedy strategy that achieves competitive ratio two and
a lower bound of 1.5 on the competitive ratio of any deterministic strategy. For the case
that lookahead l is in addition possible, they give a deterministic strategy that achieves
competitive ratio 1 + O(r/l) and a lower bound of 1 + Ω(r/l) on the competitive ratio
of any strategy.

The following variant of an offline problem for queue sorting buffers is well studied.
Suppose we are given a sorting buffer with k queues of infinite storage capacity and
all items of the input sequence are already stored in the queues. Now, it remains only
to determine a sequence of remove operations to empty the queues. This problem is
equivalent to the shortest common super-sequence problem. Fraser and Irving [3] present

a polynomial time algorithm for this problem that calculates a (4k + 12)-approximation.
Further, Jiang and Li [5] show that this problem is not in APX, i.e., for this problem
exists no polynomial time algorithm with constant approximation ratio, unless P = NP.

In several practical work, heuristic scheduling strategies are used for the sorting
buffer problem (see, e.g., [11]). This work is almost always motivated by the demand for
efficient strategies for sorting buffers in manufacturing control. Spieckermann and Voss
[11] evaluate some simple heuristic strategies by simulation and come to the conclusion
that there is a lack of efficient strategies.

2 Lower bounds

In this section, we give lower bounds on the competitive ratio of several strategies that
have previously been applied to other scheduling problems.

First In First Out (FIFO). Each time an item σi is stored in the sorting buffer the FIFO
strategy checks whether there is another item of the same color stored in the sorting
buffer. If there is no such item, the color of σi gets a time stamp. If there is no item of
the current output color in the sorting buffer, FIFO selects the color with the “oldest”
time stamp.

Theorem 1. The competitive ratio of the FIFO strategy is at least Ω(
√

k).

Proof. W.l.o.g., we assume that ` =
√

k − 1 is integral and even. We consider the colors
c1, . . . c`, x, y and the sequence σ = (c1 · · · c`x

kc1 · · · c`y
k)`/2.

At first, we show that σ can be processed with 2` color changes. Consider the
sequence (xy)`/2c1 · · · c` of 2` color changes. During the first ` color changes of this
sequence the items of colors c1, . . . c` are accumulated in the sorting buffer. Note that
the total number of these items is 2` · `/2 = k − 1.

Now it remains to count the color changes if σ is processed by the FIFO strategy.
Whenever a block of xk or yk appears FIFO empties the whole sorting buffer, since
all other colors stored in it are “older”. For each block, this produces ` color changes.
Hence, if σ is processed by FIFO, at least 2` · `/2 = k − 1 color changes occur. ut

Least Recently Used (LRU). Similar to FIFO the LRU strategy assigns to each color a
time stamp. LRU updates the time stamp of a color each time a new item of that color is
stored in the sorting buffer. Thus the time stamp of a color is the time when the most
recent item of that color was stored. If there is no item of the current output color in the
sorting buffer, LRU selects the color with the “oldest” time stamp.

Theorem 2. The competitive ratio of the LRU strategy is at least Ω(
√

k).

Proof. It is easy to see that for the sequence defined in the proof of Theorem 1 the LRU
strategy produces the same output sequence as FIFO. ut

Largest Color First (LCF). Another fairly natural strategy for the sorting buffer prob-
lem is to free as many locations in the sorting buffer as possible, if the strategy has to
make a color change. If there is no item of the current output color in the sorting buffer,
the LCF strategy selects a color that has the most items in the sorting buffer.

Theorem 3. The competitive ratio of the LCF strategy is at least Ω(k).

Proof. W.l.o.g., we assume that k ≥ 4 is even. We consider the colors c1, . . . ck−2, x, y
and the sequence σ = c1 · · · ck−2(xxyy)n·k, for some integer n.

At first, we show that σ can be processed with k − 2 + 8n color changes. Consider
the sequence c1 · · · ck−2(xy)4n of k − 2 + 8n color changes. After the items of colors
c1, . . . ck−2 have been removed from the sorting buffer every further color change
removes at least k/2 items.

Now it remains to count the color changes if σ is processed by the LCF strategy.
LCF does not remove the items of colors c1, . . . ck−2 from the sorting buffer before the
items of colors x and y are processed. Hence, if σ is processed by LCF, 2n · k + k − 2
color changes occur. ut

3 Bounded Waste strategy

How should a good scheduling strategy for sorting buffers look like? On the one hand, no
item should be kept in the sorting buffer for a too long, possibly infinite, period of time.
This would waste valuable storage capacity that could be used for efficient scheduling
otherwise. For example the LCF strategy from the previous section fails to achieve a
good competitive ratio because some items are kept in the sorting buffer for nearly the
whole sequence.

On the other hand, there is a benefit from keeping an item in the sorting buffer if
items of the same color arrive in the near future. Thus, a strategy may fail as well if it
removes items too early. Good examples for this phenomenon are the LRU and FIFO
strategy from the previous section. These strategies tend to remove items too early from
the sorting buffer and, hence, cannot build large color blocks if additional items of the
same color arrive.

We need a trade-off between the space wasted by items of a color and the chance to
benefit from future items of the same color. Such a trade-off is provided by the Bounded
Waste strategy. This strategy continues to remove items of the current output color from
the sorting buffer as long as this is possible, i.e., until all items in the sorting buffer have
a color different from the current output color. Then the strategy has to decide which
color is removed next from the sorting buffer. For this purpose we introduce, for each
color c, the penalty Pc. The penalty Pc for color c is a measure of the space that has been
wasted by all items of color c that are currently in the sorting buffer. Initially, the penalty
for each color is zero. At each color change, the penalty for each color c is increased by
the number of items of color c currently stored in the sorting buffer. Then a color c′ with
maximal penalty Pc′ is chosen, an item of color c′ is removed from the sorting buffer,
and Pc′ is reset to zero.

For the competitive analysis, we have to compare the Bounded Waste strategy with
an optimal offline strategy, for each input sequence σ. In the following we assume that

an optimal offline strategy and an arbitrary input sequence σ is fixed. Then the sequence
of color changes of the Bounded Waste and optimal offline strategy are fixed as well.

In order to compare both strategies, we introduce the notation of waste. At first, a
color change of the Bounded Waste or optimal offline strategy is called online or offline
color change, respectively. We say that an (online or optimal offline) strategy produces
waste w for color c at an online color change if it has w item of color c in its sorting
buffer at this color change. Note that the waste of the optimal offline strategy is also
produced at online color changes. Further, we define the (total) online and optimal offline
waste for color c as the total waste produced for color c at all online color changes by
the online and optimal offline strategy, respectively. The waste for color c is strongly
related to the penalty for c: The penalty for c is equivalent to the waste produced for c by
the online strategy since the most recent online color change to c.

In the following we describe how the notion of waste can be used to derive an upper
bound on the competitive ratio of the Bounded Waste strategy. Let W c

on and W c
op denote

the online and optimal offline waste for color c, respectively, and let Con and Cop denote
the number of color blocks in the output sequence of the Bounded Waste strategy and
the optimal offline strategy, respectively. Then∑

color c

W c
op ≤ k · Con and

∑
color c

W c
on ≥ k · Con − k2 ,

since at all but the last k color changes the online as well as the optimal offline strategy
have k items in the sorting buffer, because both strategies are lazy, i.e., they do not make
a color change if they have free space in their sorting buffer and remaining items in the
input sequence. Let ∆c = W c

op −W c
on denote the difference between online and optimal

offline waste for color c. Then ∑
color c

∆c ≤ k2 .

The main technical contribution of this paper is to show the following lemma. Its
proof is postponed to the next section.

Lemma 1 (Main Lemma). For each color c,

∆c ≥ W c
on − Cc

op ·O(k · log2 k) ,

with Cc
op denoting the number of blocks with color c in the output sequence of an optimal

offline strategy.

The following theorem gives an upper bound of the competitive ratio of the Bounded
Waste strategy.

Theorem 4. The Bounded Waste strategy achieves a competitive ratio of O(log2 k).

Proof. With the Main Lemma, we can conclude

k2 ≥
∑

color c

∆c

≥
∑

color c

(
W c

on − Cc
op ·O(k · log2 k)

)
≥ k · Con − k2 − Cop ·O(k · log2 k) .

Hence, Cop ·O(log2 k) + 2k ≥ Con, which implies the theorem. ut

4 Proof of the Main Lemma

In this section, we present the postponed proof of Lemma 1 (Main Lemma).

Proof (of Lemma 1 (Main Lemma)). At first, we show that, for each color c, the penalty
Pc is at most O(k · log k). By the relationship between waste and penalty, this means that
the waste produced by the Bounded Waste strategy for color c between two consecutive
online color changes to c is at most O(k · log k). Let Pc(i) denote the penalty for color c
directly after the i-th online color change and define Pc(0) = 0.

Lemma 2 (Bounded Waste). For each color c and each online color change i, Pc(i) =
O(k · log k).

Proof. For the analysis, we use a potential function Φ(i) that depends on the penalties
currently assigned to all colors. The intuition behind this potential function is as follows.
We assume that we have Pc(i) units of waste for color c. These units are put on a stack
(one stack for all units of the same color). If a unit is at position j on the stack then it
contributes with the value φ(j) to the potential function. The function φ is monotonously
increasing. Hence, the higher the stack the more expensive become the units of waste.

We define the potential function as follows:

Φ(i) =
∑

color c

Pc(i)∑
j=1

φ(j) , with φ(j) = 2b
j
k c +

j

k
.

Our goal is to show that Φ(i) = O(k2). This immediately implies that, for each color
c, Pc(i) = O(k · log k). For this purpose, we need the following two propositions.

Proposition 1. If, for each colors c, Pc(i) ≤ 5k, then Φ(i) = O(k2).

Proof. It is easy to verify that φ(5k) is a constant. Hence, it remains to prove that∑
color c Pc(i) = O(k2). This follows from the fact that there are at most k colors c with

Pc(i) > 0. ut

Proposition 2. If there exists a color c, with Pc(i) ≥ 4k, then Φ(i + 1) < Φ(i).

Proof. Let ∆Φ(i+1) = Φ(i+1)−Φ(i), i.e., the change in the potential at the (i+1)-th
online color change. Recall that the Bounded Waste strategy first increases the penalty
for each color. Then it chooses a color c′ with maximal penalty Pc′ , removes an item of
color c′ from the sorting buffer, and resets Pc′ to zero.

Let m be the maximal penalty Pc′ after it has been increased and before it is reset to
zero. Then

∆Φ(i + 1) ≤ k · φ(m)−
m∑

j=1

φ(j)

= k · 2bm
k c + m−

m∑
j=1

2b
j
k c −

m∑
j=1

j

k

≤ k · 2bm
k c − k ·

bm
k c−1∑
j=1

2j + m− m · (m + 1)
2k

= k − m · (m− 2k + 1)
2k

.

Hence, ∆Φ(i + 1) < 0 for m ≥ 4k which implies the proposition. ut

We prove by induction on i that Φ(i) = O(k2). Obviously Φ(0) = 0. For the
induction step suppose Φ(i) = O(k2). We distinguish between two cases according to
the maximal penalty. First, suppose that there exists a color c with Pc(i) ≥ 4k. Then,
we can conclude with Proposition 2 that Φ(i + 1) < Φ(i) = O(k2). Now, suppose that,
for each colors c, Pc(i) < 4k. Then, after increasing the penalties, Pc(i + 1) < 5k, for
each color c. Hence, Proposition 1 yields that Φ(i + 1) = O(k2). This completes the
proof of Lemma 2 (Bounded Waste). ut

Now, we introduce the notion of online and offline intervals. Consider the sequence
of all online color changes. The offline color changes to color c induce a partition of this
sequence into offline c-intervals. In addition, the online color changes to color c induce a
partition of this sequence into online c-intervals. Obviously, there are Cc

op + 1 offline
c-intervals and Cc

on + 1 online c-intervals, with Cc
op and Cc

on denoting the total number
of color changes to color c made by the optimal offline and Bounded Waste strategy,
respectively.

Fix a color c. We show for each offline c-interval I that

∆c(I) = W c
op(I)−W c

on(I) ≥ W c
on(I)−O(k · log2 k) , (1)

with W c
op(I) and W c

on(I) denoting the optimal offline and online waste for color c,
respectively, produced in the offline c-interval I . Then the Main Lemma follows imme-
diately, since

∑
off. interval I W c

op(I) = W c
op,

∑
off. interval I W c

on(I) = W c
on, and there are

Cc
op + 1 offline intervals.

In the following, we fix an offline c-interval I . We partition this interval into two
phases as follows: The first phase lasts from the beginning of I until the first offline
color change to a color different from c. The second phase contains the remaining part
of the interval I .

In the remaining part of the proof, we show that an inequality being analogous to
Inequality 1 holds for each phase. We will denote the waste produced for color c in a
phase of the interval with W c

on and W c
op, if there is no ambiguity.

Lemma 3 (Phase 1). Let W c
on and W c

op denote the waste produced for color c in the
first phase of an offline c-interval. Then

∆c = W c
op −W c

on ≥ W c
on −O(k · log2 k) .

Proof. In the following, the numeration of online intervals and online color changes
is with respect to the first phase of the offline c-interval, e.g., if we mention the i-th
online color change to color c, we refer to the i-th online color change to color c within
this phase. Then let W c

on(i) and W c
op(i) denote the waste for color c produced by the

Bounded Waste and optimal offline strategy, respectively, in the i-th online interval.
Further, let nc

on(i) and nc
op(i) the number of items of color c in the sorting buffer of

the Bounded Waste and optimal offline strategy, respectively, at the i-th online color
change to color c. Note that nc

op(i) is monotonously decreasing, since the optimal offline
strategy always removes items of color c in the first phase.

In the following proposition, we prove that either an online c-interval satisfies the
inequality in Lemma 3 or nc

op(i) decreases by at least a factor of 1/2.

Proposition 3. Let i denote the number of an online c-interval that is completely con-
tained in the first phase of an offline c-interval. Then

∆c(i) = W c
op(i)−W c

on(i) ≥ W c
on(i) or nc

op(i + 1) ≥ 2 · nc
op(i + 2) .

Proof. We distinguish between the two cases nc
op(i+1) ≥ 2·nc

on(i+1) and nc
op(i+1) <

2 · nc
on(i + 1). In the first case, we immediately get W c

op(i) ≥ 2 ·W c
on(i). In the second

case, we get nop(i + 1) ≥ 2 · nc
op(i + 2), since in the (i + 1)-th online c-interval at least

nc
on(i + 1) items with a color different from c have to be stored in the sorting buffer. ut

Since the sorting buffer has capacity k, there exists at most O(log k) online c-
intervals that do not satisfy the first inequality in Proposition 3 (including the at most
two online c-intervals that are not completely contained within the phase). By Lemma 2
(Bounded Waste) we know that in each online c-interval at most O(k · log k) waste is
produced. Hence, Lemma 3 (Phase 1) follows. ut

Lemma 4 (Phase 2). Let W c
on and W c

op denote the waste produced for color c in the
second phase of an offline c-interval. Then

∆c = W c
op −W c

on ≥ W c
on −O(k · log2 k) .

Proof. Let Cc
on denote the number of online color changes to color c within the second

phase of the offline c-interval. We consider the online c-intervals that are completely
contained within the phase. There are at most Cc

on − 1 such intervals. We define the
length `i of the i-th online c-interval in the phase as the total number of online color
changes within this interval. Furthermore, we define the distance di of the i-th online
c-interval to the end of the phase as the number of online color changes in the phase that
take place after the end of the i-th online c-interval.

In the following, we compare the waste that is produced by items appearing during
a certain interval. Let N c

i denote the set of items of color c that appear in the input
sequence during the i-th online c-interval of the phase. Note, that these items are all

removed from the sorting buffer of the Bounded Waste strategy at the end of the online
c-interval while they remain in the sorting buffer of the optimal offline strategy until the
end of the phase. This holds, because the phase starts with an offline color change to a
color different from c and the next offline color change to c is at the end of the phase.

Now, we study the additional waste that is produced by the optimal offline strategy
for items in N c

i during the phase. Let W c
on(N c

i) and W c
op(N c

i) denote the online and
optimal offline waste for color c, respectively, produced for items in N c

i . Then

W c
op(N c

i)−W c
on(N c

i) = |N c
i | · di ,

since after the i-th online c-interval is finished, there follow di further color changes in
the phase, and at each of these color changes the optimal offline strategy produces waste
|N c

i | for items in N c
i while the online strategy produces waste zero for items in N c

i .
Obviously, W c

on(N c
i) = W c

on(i), i.e., the online waste for color c produced for items
in N c

i is the same as the online waste for color c produced during the i-th online c-interval.
Unfortunately, this equality does not hold for the optimal offline waste W c

op(N c
i) and

W c
op(i). However, the total optimal offline waste for color c produced during the phase

is
∑

i W c
op(N c

i) =
∑

i W c
op(i).

We call an online c-interval problematic if

∆c(N c
i) = W c

op(N c
i)−W c

on(N c
i) < W c

on(N c
i) ,

i.e., the additional waste produced by the optimal offline strategy is less than the online
waste for the respective items. The following proposition gives an upper bound on the
total number of problematic intervals in the phase.

Proposition 4. There are at most O(log k) problematic online c-intervals in the second
phase of an offline c-interval.

Proof. In order to proof the proposition we make the following observation. Suppose all
problematic online c-intervals are numbered according to their appearance. Let s and t,
with s < t, denote the numbers of two problematic online c-intervals. Then ds > 2 · dt.

Assume for contradiction that dt ≥ ds/2. Then the length `t of the t-th online c-
interval is at most ds/2. Hence, for the the online waste for color c in this interval holds
W c

on(Nt) ≤ `t · |Nt| ≤ ds/2 · |Nt|. But, since the t-th online c-interval is problematic,
it follows that W c

on(Nt) > |Nt| · dt. This is a contradiction.
It remains to give an upper bound on the distance of an problematic online c-interval.

Let i denote the number of a problematic online c-interval. According to Lemma 2
(Bounded Waste), W c

on(N c
i) = O(k · log k). In addition, W c

on(Ni) > di · |Ni|, since the
i-th online c-interval is problematic. Then di = O(k · log k).

Because the distance of two consecutive problematic online c-intervals increase
by a factor of two and the distance is bounded by O(k · log k), there can only be
O(log(k · log k)) = O(log k) such intervals. This yields the proposition. ut

Now, we can show the lemma as follows. We first sum up the waste produced by
items of problematic online c-intervals∑

probl. interval i

(W c
op(N c

i)−W c
on(N c

i)) ≥
∑

probl. interval i

W c
on(N c

i)−O(k · log2 k) .

The above inequality holds, since there are at most O(log k) problematic intervals and
for each problematic interval i holds W c

on(N c
i) = O(k · log k), according to Lemma 2

(Bounded Waste). For each non-problematic online c-interval i that is completely con-
tained in the phase, W c

op(N c
i) −W c

on(N c
i) ≥ W c

on(N c
i), by definition of problematic

interval.
It only remains to consider the waste produced by items of the at most two online

c-intervals that are not completely contained within the phase. According to Lemma 2
(Bounded Waste), the online waste for color c produced in these intervals is at most
O(k ·log k). Hence, W c

op(N c)−W c
on(N c) ≥ W c

on(N c)−O(k ·log k), with N c denoting
the set of items of color c that occur in these intervals.

Finally, we can sum up the waste produced by items of all online c-intervals, which
yields Lemma 4 (Phase 2). ut

This completes the proof of Lemma 1 (Main Lemma). ut

References
1. T. Feder, R. Motwani, R. Panigrahy, and A. Zhu. Web caching with request reordering.

In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
104–105, 2002.

2. A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Competitive
paging algorithms. Journal of Algorithms, 12(2):685–699, 1991.

3. C. B. Fraser and R. W. Irving. Approximation algorithms for the shortest common superse-
quence. Nordic Journal on Computing, 2(3):303–325, 1995.

4. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Co., San Francisco, CA, USA, 1979.

5. T. Jiang and M. Li. On the approximation of shortest common supersequences and longest
common subsequences. In Proceedings of the 21st International Colloquium on Automata,
Languages and Programming (ICALP), pages 191–202, 1994.

6. D. R. Karger, C. Stein, and J. Wein. Scheduling algorithms. In M. J. Atallah, editor, Handbook
of Algorithms and Theory of Computation, chapter 4. CRC Press, 1997.

7. S. O. Krumke, W. de Paepe, J. Rambau, and L. Stougie. Online bin coloring. In Proceedings
of the 9th European Symposium on Algorithms (ESA), pages 74–85, 2001.

8. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and
scheduling: Algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan, and P. H.
Zipkin, editors, Handbooks in Operations Research and Management Science, Vol. 4: Logistics
of Production and Inventory, chapter 9, pages 44–552. North-Holland, 1993.

9. J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online Algorithms: The
State of the Art, volume 1442, pages 298–231. Springer LNCS, 1998.

10. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commu-
nications of the ACM, 28(2):202–208, 1985.

11. S. Spieckermann and S. Voß. Paint shop simulation in the sutomotive industry. In Proceedings
of the Workshop for Simulation and Animation in Planning, Education, and Presentation,
pages 367–380, 1996.

	Online Scheduling for Sorting Buffers

