Optimal Oblivious Routing in Polynomial Time

Yossi Azar* Edith Cohen Amos Fiat* Haim Kaplan* Harald Récke?

December 4, 2006

Abstract

A recent seminal result of Récke is that for any undirected network there is an oblivious routing
algorithm with a polylogarithmic competitive ratio with respect to congestion. Unfortunately,
Raécke’s construction is not polynomial time. We give a polynomial time construction that
guarantees Récke’s bounds, and more generally gives the true optimal ratio for any (undirected
or directed) network.

1 Introduction

Routing on communication networks is obviously one of the key technological issues today. The
literature includes hundreds of papers and literally dozens of problem variants on this issue. Problem
variants are characterized by parameters such as packet routing vs. virtual circuit routing, fixed
vs. infinite buffers, specific vs. general networks, probabilistic input distribution models vs. worst
case input distributions, deterministic vs. randomized routing algorithms, online vs. offline routing
algorithms, distributed vs. centralized algorithms, etc. Examples of some surveys on this vast body
of literature are [10, 11].

In this paper we focus on the problem of online virtual circuit routing on general networks with
the goal of minimizing the congestion.

Two fundamental approaches towards routing in networks are to route adaptively depending on
the current loads in the network, or to route obliviously, without any knowledge of the current state
of the network. Obviously, adaptive protocols may achieve reduced congestion but are harder to
implement.

Raghavan and Thompson [13] designed an offline routing algorithm for routing virtual circuits
on general networks and any set of demands that well approximates the lowest possible congestion.
The set of routes is chosen according to the specific demands and thus their algorithm may be
considered adaptive.

In the online setting, [2] design a routing algorithm that is O(logn) competitive with respect
to congestion (where n is the number of nodes in the graph). This algorithm routes calls based
on the current congestion on the various links in the network, this can be achieved via centralized

*School of computer science, Tel Aviv University, Tel Aviv 69978. E-mail: {azar,fiat,haimk}@cs.tau.ac.il.
Research supported in part by the Israel Science Foundation and by the IST Program of the EU.

TAT&T research labs, 180 park ave. Florham park, NJ, USA. Email: edith@research.att.com.

tHeinz Nixdorf Institute and Department of Mathematics and Computer Science, Paderborn University, 33102
Paderborn, Germany. Email: harry@uni-paderborn.de.

control and serializing the routing requests. [3] gave a distributed algorithm that repeatedly scans
the network so as to choose the routes. This algorithm requires shared variables on the edges of the
network and hence is hard to implement. Note that both the online algorithms above depend on
the demands and are therefore adaptive.

The first paper to perform a worst case theoretical analysis on oblivious routing is the paper
of Valiant and Brebner [15] who considered routing on specific network topologies such as the
hypercube. They give an efficient randomized oblivious routing algorithm. Borodin and Hopcroft
[6] and subsequently [9] have shown that deterministic oblivious routing algorithms cannot well
approximate the minimal load on any non-trivial network. While the results were given in terms of
packet routing, it follows from their proof that it also holds for virtual circuit routing.

In a recent paper, Réacke [12] gives the very surprising construction of a polylog competitive
oblivious routing algorithm for general undirected networks. It seems truly astonishing that one can
come close to minimal congestion without any information on the current load in the network. As
Racke’s algorithm is oblivious, it can be trivially implemented in a distributed fashion. Récke’s
algorithm is randomized, and, consequent to the work of [6], randomization is required.

Although Récke’s algorithm is randomized, it can also be viewed as the randomized rounding
of a deterministic multi commodity flow. We call this multi commodity flow a routing. Réacke’s
oblivious routing algorithm finds a unit flow between every pair of nodes i, j. Such a flow can
be translated into a set of at most |E| paths, each of which carries some fraction of the unit flow.
Récke chooses the route between ¢ and j by choosing one of these paths with a probability equal to
the flow through the path.

Racke’s main result is that for any network, there exists a routing such that for any set
of demands, the maximum edge congestion using this routing, is at most polylog(n) times the
optimal congestion for this specific set of demands. Unfortunately, his algorithm for producing this
routing requires solving N P-hard problems, and is therefore non-polynomial. Moreover, Racke’s
construction provides a uniform bound on all graphs. Hence, for any specific graph, a better routing
may potentially exist, i.e., one that guarantees a smaller competitive ratio with respect to congestion.

In this paper we give a polynomial time algorithm that produces the optimal routing for any
network. In particular, this means that Réacke’s construction is performed in polynomial time. In
addition, we compute the optimal routing for any given network. Our construction computes the
optimal routing for both directed and undirected networks. However, we also show that Récke’s
polylog(n) upper bound is false for general directed graphs by providing a \/n lower bound.

Our techniques are based on linear programming with an infinite number of constraints. Thus, we
use the Ellipsoid algorithm with a separation oracle [7]. Our separating oracle is itself implemented
in polynomial time using a different set of linear programs.

2 Preliminaries

Consider a graph G(V, E), directed or undirected, with capacities c¢(e) > 0 for e € E.

We use a well known reduction from undirected graphs to directed graphs that replaces each
undirected edge e = (u,v), with capacity c¢(e), with the directed gadget u, z,y,v which consists of
five directed edges: four directed edges e; = (u,x),ea = (v,x),e3 = (y,u),eqs = (y,v), all of which
have infinite capacity, and the directed edge e; = (x,y) with capacity c¢(e). This transformation
preserves the property that a multi commodity flow is feasible on the undirected graph if and only
if it is feasible on the directed graph.

Thus, as of this point on we only consider directed graphs.!
A multi-commodity flow g in G is defined as a solution to the system

Ve € E ViVj # i:

AV
o

VkVi # kVj # k,i:
>ecouT(k) 9ii(€) = Xccrnr) %ii(€) = 0
where each set of values for g;j(e) for e € E defines a single-commodity flow from i to j. The
demand (of commodity ij) delivered from i to j is

D= Y giyle)= D gile).
ecOUT(3) e€IN(i)

The total flow induced by g on the edge ¢ € F is

rrowie)= a0

We now define the congestion incurred on an edge e € E by the flow g as the ratio of the flow on
the edge to the capacity of the edge

FLOW (e, g)
c(e)

Since we are interested in routing many different sets of demands in the same way, we use the
notion of a routing from i to j as a flow of value 1 from ¢ to j. We denote such a flow by f;;, and
denote its value on an edge e € E by f;;j(e). We can use a routing to deliver demand of D;; from i
to j simply by scaling f;; by a factor of D;;. We shall refer to a set f of n(n — 1) routings from i to
j # 1 for every pair (i,) as a routing. Routings are specified by the set of linear constraints

EDGE-CONG(e, g) =

Ve € E ViVj # i

v
o

fij(e)
ViVj # i)
Yecour(fij(€) = Zean fis(e) = 1 (
VkVi # kVj # /~c i
ZeeOUT(k) fij(e) — Zeem(k) fijle) = 0

A demand matriz is an n X n nonnegative matrix where the diagonal entries are 0. Instead of
talking directly about multi commodity flows, we will often find it convenient to talk about a pair
of a demand matrix and a routing. The flow on an edge e € EF when routing the demand matrix D
using the routing f is

FLOW e, f, D) ZD” % fij(e

'Récke’s result showing that there exists a routing with oblivious ratio that is at most polylogarithmic does
not hold for digraphs, only for undirected graphs. What we do is find the best oblivious routing for any directed
graph. In particular, for digraphs that are equivalent to undirected graphs we know that this optimal ratio is at most
polylogarithmic.

Similarly, the congestion incurred on an edge e € F when routing the demand matrix D using the
routing f is
FLOW (e, f, D)

c(e)

The congestion of routing D using f is the maximum edge congestion, that is,

EDGE-CONG(e, f,D) =

CONGESTION(f, D) = max EDGE-CONG(e, f, D) .
ec
For a demand matrix D we denote by opT(D), the minimum congestion possible for any routing.
opT(D) is the solution of the LP
minimize Z such that

f is a routing
Ve € E, EDGE-CONG(e, f,D) < Z.

The variables of this LP are the mn(n — 1) variables f;;(e) which specify the routing and the
minimization variable Z. Its solution constitutes the optimal routing for the particular set of
demands D. The performance ratio of a routing f on demands D is the ratio of CONGESTION(f, D)
and opT(D).

We also define the oblivious performance ratio of a routing f, which is the maximum performance
ratio it can obtain, over all demand matrices, that is,

fD
OBLIV-PERF-RATIO(f) = sup CONGESTION(f, D) . (3)
D oprT(D)

We are interested in obtaining an optimal oblivious routing for a network GG. An optimal oblivious
routing minimizes the oblivious performance ratio (Equation 3), that is

arg mfin OBLIV-PERF-RATIO(f) ,

the performance ratio of an optimal oblivious routing is denote by

OBLIV-OPT(G) = mtin OBLIV-PERF-RATIO(f) .

For any graph G, an upper bound of n? on the value of OBLIV-OPT((G) is immediate.? Ricke proved
that for undirected graphs this value is at most polylog(n).

3 LP formulation

We are now ready to state our main theorem.

Theorem 3.1 There is a polynomial time algorithm that for any input network G (directed or
undirected) outputs a routing £ such that OBLIV-PERF-RATIO(f) = OBLIV-OPT(G).

2The optimal flow with respect to congestion is at least as bad as the worst congestion obtained by routing a single
pair of source/destination. Hence, if we use the optimal flow (wrt congestion) for each pair then the total congestion
is at most n? times the congestion of the worst case pair which results in an n? approximation. To find the optimal
flow with respect to congestion, we solve the max flow problem for the source/destination pair, and use this routing.

The running time of our algorithm is polynomial in the number of nodes n, and in REP(C), the
size of the bit representation of the edge capacities. If the input network is undirected we apply
the transformation discussed earlier. We first observe that the problem of computing an optimal
oblivious routing can be stated as an LP with mn(n — 1) + 1 variables, but infinite (continuous)
number of constraints. The variables in this LP are the routing variables f and the minimization
parameter z. The constraints of this LP are the routing constraints (Equation 2) which specify that
the variables f constitute a routing, and for every demand matrix D, and an edge e € E, we have
the constraint

EDGE-CONG(e, f, D) < zorT(D) 4)

Note that the demand matrices D and the respective optimal congestion values OPT(D) are constants
in this LP. We refer to this LP as BLP.

Our solution essentially solves BLP using the Ellipsoid method with a separation oracle. The sep-
aration oracle algorithm either confirms that a candidate routing f has a small OBLIV-PERF-RATIO(f),
or returns a “violated constraint” from (4) (namely, a demand matrix D and an edge e € E, which
maximizes EDGE-CONG(e, f, D)/opT(D)).

In order to establish, however, that the optimal value itself and the running time of the algorithm
are polynomial, we need some additional arguments. In Section 5 we will show that the constraints
in (4) can be pruned as follows.

Lemma 3.2 There exists an (exponential size) set V(H;) of demand matrices such that

e Fach D € V(H;) has opT(D) = 1 and coefficients of size polynomial in n and REP(C), and
o [t is sufficient to include in the representation of BLP only the constraints
Ve € E, VD € V(H;) EDGE-CONG(e,f,D) < z (5)
(all other constraints in (4) are redundant).

An important corollary of Lemma 3.2 is that the optimal solution of BLP has a polynomial time
representation, since every constraint has polynomial size and the number of variables is polynomial.

The Lemma 3.2 will also allow us to establish the polynomial time bound. First, the polynomial
size of the optimal value allow us to argue that the Ellipsoid algorithm can terminate within a
polynomial number of iterations. Second, the separation oracle that we will provide returns as
“violated constraint” a constraint from this restricted set. In particular, the size of the constraint is
polynomial in 7 and REP(C') and does not depend on the input routing f. This implies that the size
of the numbers (representation of the Ellipsoid produced in each iteration) remains polynomial.

In the next Section we show how BLP can be solved in polynomial time assuming Lemma 3.2 and
the existence of an appropriate “separation oracle” (the oracle algorithm is presented in Section 6.)

4 Applying the Ellipsoid to BLP

Standard transformation allows to solve any LP by solving a polynomial number of systems of linear
inequalities. In our case also, instead of working directly with BLP we will work with systems of
linear inequalities LI(7T') specified by a scalar value T'. The variables of LI(T') is the routing f and
the constraints are the routing constraints (Equations 2) and the constraints

VD € V(H;) Ve € E EDGE-CONG(e,f,D) < T . (6)

It is easy to see (using the fact that REP(OBLIV-OPT(G)) is polynomial) that a binary search
using a polynomial number of LI(T") instances with different values of T' would allow us to obtain
OBLIV-OPT(G). A binary search on T € [1,7%] can find the smallest value of T for which LI(T) is
feasible. Recall that T ranges over [1,n?] for arbitrary directed graphs and [1, polylogn] for digraphs
derived from undirected graphs.? Using this simple reduction, Theorem 3.1 thus follows from the
following Theorem.

Theorem 4.1 Given a network G, capacities c(e), e € E, and a scalar T > 0, in time polynomial
in n, REP(C), and REP(T)*

e Decide that the system LI(T) is infeasible (that is, T < OBLIV-OPT(G)). Or,

e Find a routing f which solves the system LI(T).

Our proof of Theorem 4.1 is based on applying the Ellipsoid algorithm to LI(7') using the
following separation oracle (the oracle algorithm is provided in Section 6).

Separation Oracle.
e Input: A network G, capacities c(e), and a routing f.
e Output:

— OBLIV-PERF-RATIO(f)
— A demand matrix D € V(H;) and an edge e, such that

EDGE-CONG(e, f, D)
OBLIV-PERF-RATIO(f) = oP1(D)

If OBLIV-PERF-RATIO(f) < T, then f is a feasible point of LI(T") and the algorithm terminates.
Otherwise,
EDGE-CONG(e, £, D) < T

is a constraint of LI(T") violated by f.

Our algorithm terminates if the separation oracle certifies that the current candidate f solves
LI(T). Moreover, if the algorithm does not terminate after poly(n,REP(C),REP(T")) iterations
(where REP(C) is the binary representation size of c(e) e € F), we declare that the system LI(T")
is infeasible. Correctness and polynomiality of this algorithm follow from the following two key
observations. First, the polynomial bound on the number of iterations follows using the standard
bounds on the size of the initial ellipsoid and the smallest “volume” of the feasible set.

The second key observation is that each iteration of the Ellipsoid algorithm can be performed
in polynomial time. To see that it suffices to show that the representation of each new ellipsoid
is polynomially bounded. This follows from the fact that the representation size of the “violated”

3We comment that the Ellipsoid algorithm can be applied directly with BLP, (that is, without performing a
binary search using LI(T)). In each step the oracle returns the pair (e, D) that maximizes congestion for the current
candidate routing. We use the systems LI(T") for convenience of presentation, since they are more compatible with the
standard presentation of the Ellipsoid.

“Since REP(OBLIV-OPT(G)) is polynomial, it suffices to use T values such that REP(T) is polynomial.

constraint returned by the separation oracle is polynomial in (n, REP(C')); since the demand matrix
D is in V(H;). Note that without this bound on the size of the “violated constraint” (demand
matrix) returned, if the size depends on the input routing, we can be in a feedback situation where
the representation of the ellipsoid grows by a polynomial factor in each iteration.

To conclude the proof of Theorem 4.1, it remains to show that the separation oracle can
be implemented in polynomial time in (n, REP(C),REP(f)) and that we can indeed restrict the
constraints to demand matrices in V(Hj).

5 Restricting BLP

Observe that if we scale a demand matrix D, the ratio
EDGE-CONG(e, f, D)
ort(D)

remains fixed. It thus suffices to use as the constraints of BLP only demand matrices that can be
routed with maximum congestion equal to 1, as all other demand matrices are scaled versions of
such a matrix. We denote the demand matrices D with opT(D) < 1 by

H, = {DJorT(D) < 1}.

We thus can now consider the equivalent LP, where the constraints (4) are trimmed to include only:
forall D e H ande € E
EDGE-CONG(e,f,D) < z (7

Recall that every such constraint (7) is

> Dy fije) < zcle) .
ij

We now show that Hj constitutes a polyhedron on n(n — 1) dimensional space, defined by a
polynomial (in n) number of inequalities, with coefficients in the set {£1,c(e)e € E}. We then
argue that we can further trim the constraints (7) to demand matrices that constitute the vertices
of Hl.

The polyhedron H,

The polyhedron Hj is the projection of the following on the variables D.

1. The conservation constraints that guarantee that for all ¢, j, g constitutes a flow shipping D;;
units from ¢ to j:

Vivj # i

Y
o

Ve € E ViVj # i:

AV
o

gij(e)
ViV # i (8)
>ecout() 9ii(€) = 2eeing) 9is(€) = D
Vi £ kY] 2 k, i:
ZeEOUT(k) 9ij(€) — ZeGIN(k) gij(e) = 0

2. Constraints that say that the flow g has congestion at most 1.

Ve € E FLOW(e, g) < c(e) (9)

It is not hard to verify that the feasible solutions of this system are all demands matrices D such
that the demands can be routed by some flow with congestion of at most 1, that is, opT(D) < 1.

The set V(H;) contains the vertices of the polyhedron Hj. Since the polyhedron has poly(n)
constraints and variables, with coefficients of size REP(C'), each vertex has representation of size
poly(n, REP(C)).

In Section 6 we will see that for any routing f and an edge e, arg maxp [, EDGE-CONG (e, f, D)
always includes a vertex of H;. Thus, we can trim all non-vertex constraints in (7).

6 Separation Oracle Solver

The algorithm works by solving a set of LP’s. For every edge e € F in turn the oracle algorithm
solves the LP OLI(e, G, f) defined as follows. The LP OLI(e, G, f) has variables D;;, gi;j(a) for every
edge a € E. The objective of OLI(e, G, f) is

Maximize EDGE-CONG (e, f, D)

subject to the constraints D € H;.
It is not hard to see that

OBLIV-PERF-RATIO(f) = max OLI(e, G, f) .
Our oracle algorithm first solves the |E| instances of LP’s OLI(e, G, f) for e € E, and then selects
an edge e (and the respective D) for which the returned value OLI(e, G, f) is maximized.

It is well known that (at least one) of the maxima of a linear objective function over a polyhedron
are obtained on a vertex of the polyhedron and that polynomial time LP algorithms can obtain such
a vertex maximum. We assume that our poly time LP solver, when applied to each OLI(e, G, f),
returns a demand matrix that is a vertex of Hj.

7 Directed graphs

In this section we show that there are directed graphs in which the value of OBLIV-OPT(G) is large
(i.e. much more than polylog(n)). Specifically, we show the following theorem.

Theorem 7.1 There is a directed graph G of n vertices such that OBLIV-OPT(G) is at least Q(\/n).

Proof: Consider a graph G with n = (g) + k + 1 vertices denoted by a;; for all 1 <7 < j <k and
b; for 1 < i < k and a vertex t. The edges of the directed graph are all of unit capacity and are
as follows: (a;j,b;) and (a;;,b;) for all 1 <i < j <k and (b;,t) for 1 <i < k. Clearly, there are
exactly two paths between a;; to t. One is a;j,b;,t and the other is a; ;,b;,t. Assume that the

oblivious routing routes p; ; for ¢ < j on the route a; ;, b;,t and ¢; ; = 1 — p; ; on the route a; ;,b;,t.
i—1
Let [; =" qji + Zfﬂ pi,j. Clearly

k koi—1 ko k
Zli = ZZQj,i+ZZPi,j = Z(Qi,j + pij)
i=1 i=1 j=1 i=1 i+1 i<j

_ <§>~1:k(k—1)/2.

Hence there exists [, such that [, > (k — 1)/2. Consider the following demands. A demand of
one from a;j, tot for all 1 < j <z —1 and a demand of one from a, ; tot forallz +1 <75 < k.
Clearly by using the oblivious routing the load on the edge (b;,t) is I, > (k — 1)/2. However, the
optimal load is at most one since we can route the demand from a;, by the route a;,.,b;,t and the
demand from a, ; by the route a, j,b;,t. Since k = Q(y/n) this completes the proof. O

8 Undirected graphs

A notion relevant to undirected networks is symmetry of a routing. Undirected networks have the
property that flow can go on both directions of an edge. The total flow is the sum of flows on
the two directions, and the capacity constraint applies to this sum. For this discussion, view each
undirected edge e as two directed edges ¢’ and €”. A routing f is symmetric if for all e € E and
nodes ¢ and j we have f;;(e') = fji(e”).

Lemma 8.1 When G is undirected, there is always a symmetric optimal oblivious routing.

Proof: Consider a lower triangular matrix L with L;; = 0 for j > i and L;; > 0 otherwise. We refer
to all demand matrices such that D;; + Dj; = L;; as being in the same equivalence class. We first
claim that all demand matrices D in the same equivalence class have the same opT(D). To see the
claim, consider a demand D and a routing f. Consider now the symmetric routing f constructed as

follows D (&) + Dos (e
Py — f (o — Hidlig €) + Djifjile

It is not hard to verify that the congestion of routing D according to f is the same as when routing
it according to f. Moreover, all demand matrices in the equivalence class of D incur the same
congestion when routed according to f'. The claim follows.

Consider an optimal oblivious routing f which is not symmetric, and consider the symmetric
routing where f;;(e’) = (fii(€") + fii(€"))/2. First note that the symmetric routing f incurs the same
congestion (and thus the same performance ratio, using the claim above) on all demand matrices
that are in the same equivalence class. We next show that f is at least as good as f, that is, its worst
performance ratio is equal or better. To do that it is sufficient to show that for any demand matrix
D, there is a matrix D’ in D’s equivalence class such that

coNGESTION(f, D) < cONGESTION(f, D) .

(Recall that cONGESTION(f, D) is the same for all matrices in the equivalence class.) To see that,
consider an edge e. We construct the matrix D¢ in the equivalence class that maximizes the

congestion on e: that is, if fi;(e/) > fji(e") we set Df; = L;j and Dj; = 0, and set the reverse
otherwise. The congestion incurred by routing D according to f on the arcs e’ and e’ is at most
that of routing D¢ according to f. We now consider all edges e € F in turn and choose D’ to be D®
with maximum congestion. O

The lemma shows that when the input network is undirected, it is sufficient to search for a
symmetric optimal routing (which are specified by mn(n — 1) rather than 2mn(n — 1) variables).
Moreover, since a symmetric routing performs the same on all matrices in an equivalent case, in the
separation oracle solver it is sufficient to consider symmetric demand matrices (that is, for all pairs
a,b Dy, = Dpg. Alternatively, it also suffices to consider only demand matrices with Dy, = 0 when
a>b.

9 Extensions

The metric we considered was minimizing edge congestion, but a closer look at our method reveals
that the methodology is able to perform many different optimizations, some of them may be relevant
in practice. One example is minimizing node congestion (this corresponds to router load on IP
networks) which is the ratio of the total traffic traversing a node to its capacity. It is also possible
to consider edge and node congestion simultaneously; to consider linear combinations of edges or
nodes; to add additive factor to the congestion formula; and to limit the class of demand matrices
in some ways (for example limit the sum of demands or partial sums of certain demands, require 0
demand between certain pairs), limiting dilation, and so forth. The limiting factor in the selection
of the optimization function is preserving the ability to express the problem and the separation
oracle using linear constraints.

A natural question is whether there exists a more efficient polynomial time algorithm for
computing the optimal oblivious ratio of networks. Another interesting question is what is the
optimal oblivious ratio of current AS (Autonomous System) topologies. These questions are
addressed in subsequent work [1]. First, it is shown that the problem of computing the optimal
oblivious routing can be solved using a single polynomial-size LP; this formulation allows for a
considerably faster running times, both asymptotically and in practice. An implementation applied
on ISP network topologies available from the Rocketfuel [14] project reveals that the optimal
oblivious ratio for these topologies ranges between 1.4-2, a perhaps surprisingly low ratio.

Our algorithms obtain optimal routings, but Récke’s original construction defines the routing
through a hierarchical decomposition of the graph which has other applications. Recent work
by Harrelson, Hildrim and Rao [8] and by Bienkowski, Korzeniowski, and Récke [5] developed
polynomial-time algorithms of obtaining a decomposition and a corresponding routing. This routing
has performance ratio of polylog(n), that is not necessarily optimal, but has the desired hierarchical
form. The work of Harrelson et al made an additional contribution of tightening Récke’s original
bound to O(log?® nloglogn).

Bansal, Blum, Chawla, and Meyerson [4] formulated and considered an interesting online learning
version of the problems, where new demand matrices arrive over time, the routing is allowed the
change, and the goal is to be competitive with respect to the best fixed routing applied to the entire
sequence.

10

References

1]

[10]

[11]

[12]

David Applegate and Edith Cohen. Making intra-domain routing robust to changing and uncer-
tain traffic demands: Understanding fundamental tradeoffs. In Proceedings of the Proceedings
of the ACM Symposium on Communications Architectures & Protocols (SIGCOMM), pages
313-324, 2003.

James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line routing of
virtual circuits with applications to load balancing and machine scheduling. Journal of the
ACM, 44(3):486-504, 1997. Also in Proc. 25th STOC, 1993, pp. 623-631.

Baruch Awerbuch and Yossi Azar. Local optimization of global objectives: Competitive
distributed deadlock resolution and resource allocation. In Proceedings of the 35th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 240-249, 1994.

Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Online oblivious routing.
In Proceedings of the 15th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 44-49, 2003.

Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Réacke. A practical algorithm for
constructing oblivious routing schemes. In Proceedings of the 15th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 24-33, 2003.

Allan Borodin and John E. Hopcroft. Routing, merging and sorting on parallel models of
computation. Journal of Computer and System Sciences, 30(1):130-145, 1985.

Martin Grotschel, Lészl6 Lovasz, and Alexander Schrijver. Geometric Algorithms and Combi-
natorial Optimization. Springer, New York, NY, USA, 1988.

Chris Harrelson, Kirsten Hildrum, and Satish B. Rao. A polynomial-time tree decomposition to
minimize congestion. In Proceedings of the 15th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 34-43, 2003.

Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for oblivious
routing in the hypercube. In Proceedings of the 2nd ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 31-36, 1990.

Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays e
Trees o Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

Stefano Leonardi. On-line network routing. In Amos Fiat and Gerhard J. Woeginger, editors,
Online Algorithms: The State of the Art, volume 1442 of LNCS, pages 242-267. Springer, 1998.

Harald Récke. Minimizing congestion in general networks. In Proceedings of the 43rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 43-52, 2002.

Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365-374, 1987.

11

[14] Neil T. Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies with rocket-
fuel. In Proceedings of the ACM Symposium on Communications Architectures & Protocols

(SIGCOMM), pages 133-145, 2002.

[15] Leslie G. Valiant and Gordon J. Brebner. Universal schemes for parallel communication. In
Proceedings of the 13th ACM Symposium on Theory of Computing (STOC), pages 263-277,
1981.

12

	Introduction
	Preliminaries
	LP formulation
	Applying the Ellipsoid to BLP
	Restricting BLP
	Separation Oracle Solver
	Directed graphs
	Undirected graphs
	Extensions

