
Minimizing Congestion in General Networks

Harald Räcke∗

Heinz Nixdorf Institute and
Department of Mathematics and Computer Science

Paderborn University, Germany
harry@upb.de

Abstract

A principle task in parallel and distributed systems is to re-
duce the communication load in the interconnection network,
as this is usually the major bottleneck for the performance
of distributed applications. In this paper we introduce a
framework for solving on-line problems that aim to minimize
the congestion (i.e. the maximum load of a network link) in
general topology networks.

We apply this framework to the problem of on-line rout-
ing of virtual circuits and to a dynamic data management
problem. For both scenarios we achieve a competitive ratio
of O(log3 n) with respect to the congestion of the network
links.

Our on-line algorithm for the routing problem has the
remarkable property that it is oblivious, i.e., the path chosen
for a virtual circuit is independent of the current network
load. Oblivious routing strategies can easily be implemented
in distributed environments and have therefore been inten-
sively studied for certain network topologies as e.g. meshes,
tori and hypercubic networks. This is the first oblivious
path selection algorithm that achieves a polylogarithmic
competitive ratio in general networks.

1. Introduction

In large parallel and distributed systems, such as networks
of workstations or the Internet, the bandwidth of the inter-
connection network usually is the major bottleneck for the
performance of distributed applications. This is due to the
fact that it is often more expensive or more difficult to in-
crease the bandwidth of the interconnection network than to
increase processor speed and memory capacities at individ-
ual nodes.

∗Partially supported by DFG-Sonderforschungsbereich 376 “Massive
Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen” and by
the IST Programme of the EU under contract number IST-1999-14186
(ALCOM-FT)

Therefore, a principle task for these systems is to design
distributed applications in such a way that they cause as
little communication overhead as possible. However, it may
not be sufficient to simply reduce the total communication
load, i.e., the total traffic in the network, as this can result
in bottlenecks. In addition, the load has to be distributed
evenly among all network resources. This corresponds to
minimizing the congestion, i.e., the maximum taken over all
network links of the amount of data transmitted by the link
divided by the respective bandwidth.

In this paper we introduce a general framework for min-
imizing the congestion produced by applications in dis-
tributed environments. This framework can be applied to
many online problems that aim to minimize the congestion.
If successful it yields a solution to the online problem on
arbitrary networks that is fully distributed, i.e., all decisions
are made using only local knowledge of the network load.
The framework is based on representing all network links
and thus the whole topology of the network as a tree. Since
a tree topology is very simple many online problems can be
solved efficiently for trees. By combining a tree solution of
an online problem and the tree representation of the network,
the framework yields a solution that minimizes the conges-
tion of the network links. The framework is evaluated by
applying it to the following two fundamental problems of
distributed computing.

The first one is the well known online routing problem
(see e.g. [2, 10]). In this problem routing requests consisting
of a source and a destination point, arrive online. For each
request the routing algorithm has to specify a path from
the source to the destination in the network. The goal is to
minimize the congestion of the network links.

The second problem is a data management problem that
was introduced in [11]. Here, the nodes of the network issue
read and write requests to shared data objects. A data man-
agement algorithm for this problem has to decide where to
place copies of shared objects in the network and how to ac-
cess these copies such that the link congestion is minimized.

1.1. Definition of the model

We model the network by a weighted graph G = (V,E)
of |V | = n nodes and |E| edges. The nodes represent the
processors, the edges represent the links and the function
b : E → R+ represents the bandwidth of the links. A se-
quence σ of requests, e.g. read or write requests to shared
objects, are issued at the nodes of the network and have to
be served by an online algorithm. In order to obtain a simple
and unambiguous model we assume that these requests are
issued one after the other, i.e., σi+1 is not issued before σi is
not fully processed by the online algorithm. Note however
that the algorithms that we will develop for this sequential
model can handle parallel and overlapping requests, too.

The performance of an online algorithm A is evaluated
by comparing it to an optimal offline algorithm OPT , which
has full knowledge of the input sequence in advance and
can process it optimally. Given an input sequence σ, let
CA(σ) and COPT(σ) denote the congestion produced by A
and OPT , respectively, when processing σ. Algorithm A is
called c-competitive if there exists a constant a (independent
of σ) such that CA(σ) ≤ c ·COPT(σ)+ a, for any sequence
σ. The algorithm is said to be strictly competitive if a = 0.
In general we assume that the online algorithm may use
randomization. In this case it must fulfill the above bound
with high probability.1

In the framework of competitive analysis the input se-
quence is viewed as chosen by an adversary in order to re-
flect that the above bound has to hold for all input sequences.
In the case of randomized algorithms one has to specify the
exact power that is given to the adversary. Throughout this
paper we assume that the adversary is oblivious, i.e., the
request sequence is not allowed to depend on the random
choices made by the online algorithm.

For a given algorithm and an input sequence σ we define
the (absolute) load of a link e ∈ E to be the amount of
data that must be transferred by this connection when σ is
processed by the algorithm. We define the relative load of a
connection to be its load divided by its bandwidth. Finally,
we define the congestion to be the maximum over the relative
loads of all links in the network. The cost metrics for the
online routing and the data management problem are defined
as follows.

Online routing. In the online routing problem the request
sequence consists of routing requests between pairs of nodes.
For each request a path connecting the corresponding nodes
in the network has to be specified. This increases the load
on each edge of the path by one.

Data management. In the data management problem the
request sequence consists of read and write requests to shared
data objects. A data management strategy is allowed to

1Throughout the paper, congestion C, w.h.p. (with high probability)
means congestion at most C+x, with probability at least 1−2−Ω(x).

migrate, create and invalidate copies at execution time. We
assume that any message, including messages for migrating
copies, messages for locating copies in the network as well
as messages for invalidating copies, increases the load on
every edge of the respective path by one.

Note that the above uniform definition of the load associated
with messages is only chosen for keeping the description
of strategies as simple as possible. All results can easily be
extended to non-uniform definitions, as well.

1.2. Previous work and new results

A centralized, O(logn)-competitive online routing algorithm
was first presented by Aspnes et al. in [2]. This algorithm
is based on the use of an exponential cost function. Each
edge e is assigned a length that is exponential in the current
load of e. If a routing request occurs the algorithm chooses
a shortest path between source and destination with respect
to the length assigned to the edges. The competitive ratio of
this algorithm is optimal due to a lower bound provided in
the same paper. The drawback of this algorithm is that it is
centralized and that the current network load must be known
in order to make a routing decision.

Awerbuch and Azar [4] improve on this result by devel-
oping an algorithm that is not centralized, i.e., there exist
several agents that make routing decisions in the network.
But also in their scenario it is still difficult for a distributed
implementation to realize the up-to-date knowledge of the
state of the network for the agents.

In this paper we show the somehow surprising result that
knowledge of the current load in the network is not needed
in order to achieve a polylogarithmic competitive ratio, w.r.t.
the congestion. We present an oblivious online routing algo-
rithm, i.e., a routing algorithm where the path selected for the
i-th request σi does not depend on routing decisions made for
other requests σ j, j 6= i. Hence, the path may only depend on
the source of the request, its destination and on some random
input. Note that randomization is essential, for the design
of an oblivious routing algorithm with low competitive ra-
tio, since there exist large lower bounds for deterministic
routing protocols (see [5, 7]). Oblivious routing strategies
can easily be implemented in distributed environments and
therefore many oblivious strategies have been designed for
special network topologies (see e.g. [12, 14]). In [1] the
authors provide a lower bound for oblivious routing on the
hypercube.

To our knowledge this work is the first analytical treat-
ment of oblivious routing strategies for general networks.

The online data management problem with the goal of
minimizing the congestion of the network links was inves-
tigated in [11]. There the authors present a 3-competitive
online algorithm for trees. Furthermore, they show how to
achieve an O(logn)-competitive algorithm for meshes via a

bi-simulation between a mesh and a tree network. In [13] it
is claimed that this approach can be extended to other net-
works by providing a suitable, hierarchical decomposition
for the target network. In this paper we define the exact
properties that the hierarchical decomposition has to fulfill
and we prove that such a hierarchical decomposition exists
for any network. This gives an O(log3 n)-competitive data
management strategy for general graphs.

1.3. Outline of the framework

In the following we sketch the general concept for solving
online problems in the congestion based model for arbitrary
networks. The framework is based on a bi-simulation be-
tween a target network G = (V,E) and an associated tree net-
work TG = (Vt ,Et), the so-called decomposition tree which
is suitably constructed out of G. Both networks are weighted
with b : E →R+ and bt : Et →R+ describing the bandwidth
of edges in E and Et , respectively.

In a first simulation step it is shown that the tree TG can
simulate the network G, i.e., any request sequence σ for
an online problem that produces congestion C when it is
processed on G can be processed on TG with congestion C,
too. For this simulation we will present a mapping π1 : V →
Vt from the nodes of G to the nodes of TG. A processor v∈V
of G is then simulated by its counterpart π1(v) in TG. Note
that this first simulation step is completely independent of
the online problem that has to be solved.

In a second simulation step we show for certain online
problems that the network G can simulate the tree TG in such
a way that the congestion is only a small factor c larger than
the congestion on the tree. More concretely, if a request
sequence σ can be processed on the tree with congestion
Ct , then it can be processed on G with congestion c ·Ct +K,
w.h.p., where K is a constant independent of σ. For this
simulation a node v ∈V may have to simulate several nodes
of Vt , since usually |Vt |> |V |. We denote the (randomized)
mapping used for the second simulation step π2 : Vt → V .
Additionally for this simulation step we describe how the
routing between host nodes in G that simulate adjacent tree
nodes is performed. (Note that this is easy for the first
simulation since TG is a tree.) The exact description of the
routing and the definitions of π1 and π2 will be given in
Section 3. For the purpose of this section it is only important
that π2(π1(v)) = v holds for each v ∈V .

How do these simulation results help us in solving
congestion-based online problems on general networks? A
condition for our framework is that the online problem can
be solved efficiently for trees. Thus, suppose that there is a
ct -competitive algorithm for the tree TG (for some value ct).

We get an online strategy for G as follows. Suppose we
are given a sequence σ of requests for the online problem.
Let Copt(G) and Copt(TG) denote the optimal congestion if σ

is processed on G and TG, respectively. (For processing σ on
TG we assume that a request originally issued at a node v∈V
is issued at π1(v) ∈ Vt , instead.) Furthermore, let Conl(TG)
denote the congestion produced by the online tree strategy
when processing σ on TG. The first simulation step and the
ct -competitiveness yield

Copt(G)≥Copt(TG)≥ 1
ct
·Conl(TG)−Kt ,

where Kt is some constant that does not depend on σ.
Now, we can simulate this online tree strategy on the

network G and we get an online strategy for G. Let Conl(G)
denote the congestion of this strategy for request sequence
σ. Note that since π2(π1(v)) = v for every v ∈ V the bi-
simulation does not reorder the nodes of V and in particu-
lar does not change the request sequence σ. (For the first
simulation step requests from a node v ∈ V are mapped to
π1(v) ∈ Vt . For the second simulation such a request is
mapped to π2(π1(v)) = v.)

Let Conl(G) denote the congestion of this strategy for
request sequence σ and let c denote the factor between the
congestion in G and TG for the second simulation step. We
get

Conl(G)≤ ct · c ·Copt(G)+Kt +K .

Hence, the online strategy for G is ct · c-competitive.
The crucial part of the proof is to choose TG in such a way

that the second simulation step can be performed with a small
factor c. The remainder of the paper is organized as follows.
In the following section we will describe the general method
for choosing TG and define certain parameters for TG that
mainly influence the quality of the simulations. In Section 3
we will then show that given a decomposition tree TG with
“good” parameters both simulations can be performed with a
small factor c. Finally we will show in Section 4 that for any
network G there is a tree TG such that all parameters relevant
for the simulations have “good” values.

2. The decomposition tree
In this section we describe the general method for choosing
the decomposition tree TG for a network G = (V,E) in such a
way that both simulations work properly. The decomposition
tree TG corresponds to a decomposition of the node set V
of G into a system of subsets of V . We need the following
notations to characterize certain properties of such a set sys-
tem. Two subsets X and Y are called intersecting if neither
of X \Y , Y \X and X ∩Y are empty. A set system is called
laminar if it contains no intersecting pair. Furthermore, a
laminar set system of subsets of V is complete if it contains
the set V and all sets {v},v ∈V .

Given a complete laminar system S containing subsets
of V we construct a decomposition tree TG = (Vt ,Et) as
follows. For each S ∈ S the set Vt contains a node vt . We

a

b

c
d

e

f
g

h

i

j

3 4

321

1 1

4 2 3

33

5

level 0

level 1

level 2

level 3

a b e h i j

c d

f g

Figure 1. A set system for a graph and the associated decomposition tree. Edge labels in the right
figure indicate the bandwidth of the respective edge. (Edges in the left figure have bandwidth 1.)

call S the set or the cluster corresponding to vt , and vt the
(tree) node corresponding to S. In the following the cluster
corresponding to a node vt ∈ Vt will be denoted with Svt .
Two nodes ut and vt in TG are connected if Sut ⊂ Svt or
Sut ⊃ Svt and if there is no S ∈ S such that Sut ⊂ S ⊂ Svt or
Sut ⊃ S ⊃ Svt , respectively. Note that by this definition TG
is indeed a tree, since S is a laminar system. We assume
TG to be rooted at the node corresponding to the cluster V ,
that contains all nodes in the network. By this definition
the leaves of TG correspond to sets {v},v ∈V , i.e., there is
a one-to-one relation between the nodes of G and the leaf
nodes of TG.

We define the root to be on level 0 of TG and all nodes
whose parents are on level ` are defined to be on level `+
1. It remains to define the bandwidths for the edges in Et .
Therefore, we first define the function cap : 2V ×2V →R+

which for two subsets X ,Y ⊆V describes the total bandwidth
that is available between nodes of X and nodes of Y . It is
defined as follows:

cap(X ,Y) := ∑
x∈X ,y∈Y

b((x,y)) .

Recall that b((x,y)) denotes the bandwidth for edge (x,y) ∈
E. For a set X ⊆V we denote the total bandwidth of edges
leaving set X in G with out(X) = cap(X ,X), where X :=
V \X . Now, we define the bandwidth of an edge (ut ,vt) ∈
Et connecting a level ` node vt and a level `− 1 node ut .
The bandwidth for such an edge is defined as bt((ut ,vt)) =
out(Svt). Figure 1 gives an example of a complete laminar
system and the corresponding decomposition tree.

Now, we describe the parameters of the decomposition
tree that are significant for the quality of the bi-simulation
between G and TG. The first important parameter is simply
the height of TG which will be denoted with h(TG). For spec-
ifying the further parameters we need the following notation.
Let for a decomposition tree TG and ` ∈ {0, . . . ,h(TG)} the
set V `

t ⊂ Vt denote the set of all level ` nodes of TG. The
clusters that correspond to nodes in V `

t form a sub-partition
of V , i.e., a set of pairwise disjoint subsets of V . We define a

weight function w` : 2V →R+ according to this sub-partition
as follows:

w`(X) := cap(X ,V)− ∑
vt∈V `

t

cap(X ∩Svt ,Svt) .

Informally speaking, the weight function w`(X) counts for
a subset X , the bandwidth of all edges that are adjacent to
nodes in X and that do not connect nodes of the same cluster
with respect to the sub-partition corresponding to V `

t . In
order to define w` properly for all ` ∈ {0, . . . ,h(TG)+1} we
add the definition wh(TG)+1(x) := cap(X ,V).

We mention some basic properties of w` that will be used
intensively throughout the remainder of the paper. First
of all w` is additive, i.e., for a set X = X1]X2, w`(X) =
w`(X1)+ w`(X2). Furthermore, for a level ` cluster Svt we
have w`(Svt) = out(Svt). Finally, w`−1(X) ≤ w`(X) holds
for any ` ∈ {1, . . . ,h(TG)+1}.

Based on this weight function, we define for a level `
node vt of the decomposition tree, the bandwidth-ratio λvt

as

λvt := max
U⊂Svt

|U |≤|Svt |/2

{
out(U)

cap(U,Svt \U)

}

and the weight-ratio δvt as

δvt := max
U⊂Svt

|U |≤|Svt |/2

{
w`+1(U)

cap(U,Svt \U)

}
.

For these definitions we use the conventions 0
0 = 0 and x

0 = ∞

for x > 0. Observe that thereby a tree node vt corresponding
to a cluster Svt that contains only a single node has λvt = 0
and δvt = 0. Further, if the graph induced by the nodes of
Svt is disconnected we have λvt = ∞ and δvt = ∞.

These parameters will turn out to be a good measure for
the congestion needed to route messages from the children
of Svt to Svt . The intuition is as follows.

The bandwidth ratio λvt describes the ratio between the
capacity of edges that leave a set U (i.e., out(U)) and the

capacity of edges that connect U with the rest of the cluster
(i.e., cap(U,Svt \U)). The simulation will mainly use edges
of the latter type when leaving the set U . Hence, this ratio
is an important parameter. The weight-ratio describes for a
set U the ratio between w`+1(U) and the capacity of edges
connecting U with the rest of the cluster. In the simulation
w`+1(U) will be proportional to the probability that a mes-
sage has to be routed to the set U . Therefore, the weight-ratio
is an important parameter, as well.

Let δ(TG) = maxvt∈Vt{δvt} and λ(TG) = maxvt∈Vt{λvt}
denote the maximum weight-ratio and maximum bandwidth-
ratio, respectively, taken over all nodes of TG. In the follow-
ing section it is shown that the quality of the bi-simulation
between a network G and an associated decomposition tree
TG can be expressed by the parameters δ(TG), λ(TG) and
h(TG). For convenience we will use the notation λ, δ, and h
to denote λ(TG), δ(TG) and h(TG), respectively, when there
is no ambiguity.

3. Simulation results
In this section we show how the bi-simulation between G
and TG works and present the results on the congestion of
the online routing strategy and the data management strategy
based on this simulation.

3.1. Simulating GGG on TGTGTG

The simulation of the network G on the decomposition tree
TG is straightforward. A node v ∈V is simulated by the leaf
node in TG that corresponds to cluster {v}. A message that
is sent between nodes u and v in G is sent along the unique
shortest path connecting the respective counterparts in TG.
The following theorem states that this simulation does not
increase the congestion.

Theorem 1 For any request sequence σ for an online prob-
lem on network G that can be processed with congestion
C the straightforward simulation on TG yields congestion
Ct ≤C.

Proof. Let et = (ut ,vt) denote an edge of TG that connects a
level ` node vt to a level `−1 node ut and that has relative
load Ct , when processing σ on TG. Then, the absolute load
of et is Ct ·bt(et).

Now, consider how σ is processed on G. Any message
that crosses edge et in TG has either to leave or to enter the
cluster Svt . The total bandwidth of all edges leaving cluster
Svt is out(Svt) = bt(et). Thus, one of those edges must have
relative load Ct ·bt (et)

out(Svt)
= Ct . Hence, C ≥Ct .

3.2. Simulating TGTGTG on GGG

In this section we show that the decomposition tree TG can
be simulated on the network G. In contrast to the above

simulation of G on TG this simulation is not completely in-
dependent of the definition of the online problem. Therefore,
we split the description into two parts. In the first part we
give a general, i.e., problem-independent, simulation result
that relates the expected relative load of any edge of G to the
congestion on the tree TG. In the second part we show for the
data management and the online routing problem that this
simulation can be adopted such that the relative load of any
edge e in G does not deviate too much from its expectation.
This gives the desired simulation of TG on G.

The problem-independent simulation is done as follows.
A level ` node vt of TG is simulated by a random node of the
corresponding cluster Svt , i.e., vt is mapped to node v ∈ Svt

with probability w`+1(v)
w`+1(Svt)

. Note that by this definition a leaf
node corresponding to a cluster {v}, v ∈V , is simulated by
v. It remains to describe the path selection strategy used for
the routing between host nodes of G that simulate adjacent
tree nodes of TG.

Consider a level `− 1 node ut of TG with d children vi,
i ∈ {1, . . . ,d}. In an initialization phase we solve a concur-
rent multicommodity flow problem (CMCF-problem) on the
cluster Sut and afterwards we select the routing paths for the
tree edges (ut ,vi) according to this solution.

The CMCF-problem is defined as follows. We define
|Sut |2 commodities fu,v for u,v ∈ Sut . The source of com-
modity fu,v is u, its sink is v and its demand is

du,v :=
w`+1(v)

w`+1(Svi)
·out(Svi) ·

w`(u)
w`(Sut)

, (1)

where Svi denotes the level ` cluster that contains v. We solve
the CMCF-problem on Sut while respecting the capacities,
i.e., the bandwidth of the edges in Sut . Note that we restrict
the solution in such a way that it only may use edges inside
Sut , i.e., the flow is not allowed to leave the cluster. For a so-
lution of the CMCF-problem define the throughput fraction
q as the minimum over all commodities, of the fraction of
the commodity’s demand that is met. An optimal solution
maximizes the value of q.

Altogether, after solving the CMCF-problem we have
for each commodity fu,v a flow of size q · du,v from u to v.
Furthermore, the total flow that traverses an edge e inside
cluster Sut is smaller than the bandwidth b(e) of e.

We can now choose the routing path according to the
solution of the CMCF-problem. Suppose that ut is simulated
by some node u ∈ Sut and one of its children vi is simulated
by v ∈ Svi . Whenever a message is sent along edge (ut ,vi) in
the tree a path between u and v is chosen randomly in such a
way that the expected load on any edge equals the flow of
commodity fu,v along that edge.

The following theorem states that this simulation achieves
a low expected load on any edge of G.

Theorem 2 The expectation of the relative load L(e) of an

edge e ∈ E due to the simulation of a tree strategy on G is
bounded by

E(L(e))≤ O(logn ·h ·max{δ,λ} ·Ct) ,

where Ct is the congestion on TG. If G is planar or of
constant genus this result improves to E(L(e)) ≤ O(h ·
max{δ,λ} ·Ct).

Proof. Let q denote the minimum throughput fraction that
was achieved when solving the multicommodity flow prob-
lems during the initialization phase. We first relate the ex-
pected load E(L(e)) of an edge e to the value of q and then
we will give a lower bound on q in terms of the parameters
δ(TG) and λ(TG).

Lemma 3 For any edge e of G, E(L(e)) = O(h ·Ct/q).

Proof. Let L`(e) denote the load of an edge e due to the
simulation of edges connecting nodes on level ` to nodes on
level `−1 of TG. We show that E(L`(e)) = O(Ct/q), which
yields the lemma.

Fix a level `. Let (ut ,vt) denote an edge of TG and assume
that ut is on level `−1 and vt is on level `. The simulation
of such a tree edge induces load on e = (x,y) only if both
endpoints x and y of e lie in the cluster Sut . This holds
because the routing paths between the nodes simulating ut
and vt do not leave the cluster Sut . Hence, let ut denote a
level `−1 node such that x,y ∈ Sut . (If no such node exists
E(L`(e)) = 0.) Further, let d denote the degree of ut and let
vi, i ∈ {1, . . . ,d} denote the children of ut .

We have to analyze the number of messages that traverse e
due to the simulation of the tree edges (ut ,vi), i ∈ {1, . . . ,d}.
Assume for a worst case scenario that every edge (ut ,vi)
has relative load Ct . Then the absolute load of this edge is
Ct · bt((ut ,vi)) = Ct ·w`(Svi). We say that this tree edge is
mapped to a pair (u,v) ∈V ×V iff ut is simulated by u and
vi is simulated by v. In this case Ct ·w`(Svi) messages have
to be routed between u and v for the simulation of this edge.
For simulating a tree node vi the node v must be contained
in the corresponding cluster Svi . Therefore, only one edge of
(ut ,vi), i ∈ {1, . . . ,d} comes into question for being mapped
to a fixed pair (u,v). Consequently, the expected number
of messages that have to be routed between u and v for
simulation of level ` edges is(

w`+1(v)
w`+1(Svi)

)
·
(

w`(u)
w`(Sut)

)
· Ct ·out(Svi) ,

because w`+1(v)/w`+1(Svi) is the probability that v simu-
lates vi and w`(u)/w`(Sut) is the probability that u simulates
ut .

This number equals Ct ·du,v, where du,v is the demand for
commodity fu,v in the definition of the CMCF-problem (see
Equation 1). This means that if at most q · du,v messages

would be routed between any pair (u,v) the expected load on
any edge e would be smaller than the capacity b(e), because
the routing paths are chosen in such a way that the expected
load of e equals the flow that passes e in the solution of the
CMCF-problem.

Consequently, if we route Ct ·du,v messages on expecta-
tion between any pair (u,v), then the expected (absolute)
load is at most b(e) ·Ct/q for these messages on any edge e.
Thus, E(L`(e)) = O(Ct/q) holds for any edge e. This yields
the lemma.

Now, we derive a bound on the throughput fraction of the
multicommodity flow problems that are solved during the
initialization phase. Let ut denote a level `−1 node of TG
with d children vi, i ∈ {1, . . . ,d}. We show a bound for the
throughput fraction of the flow problem on cluster Sut .

A cut in Sut is a partition of Sut into two disjoint sets U
and Sut \U . The capacity of the cut is cap(U,Sut \U), i.e.,
the bandwidth of edges between both sets. The sparsity of
the cut is its capacity divided by the total demand that has to
cross the cut, i.e., the sum of the demands of commodities
for which source and destination lie in different portions of
the cut. A cut with minimum sparsity is called sparsest cut.
It is widely known that the value of a sparsest cut, i.e., its
sparsity, and the maximum throughput fraction are strongly
related (see e.g. [9]). Now, we first give a lower bound on
the value of a sparsest cut in Sut , and then we will utilize
this relationship to derive a lower bound on the maximum
throughput fraction of the CMCF-problem.

Lemma 4 The value of the sparsest cut of the CMCF-
problem on cluster Sut is at least 1

5δ+2λ
.

Proof. Fix a non-empty subset X ⊂ Sut and let Y := Sut \X
denote the other part of Sut . Further let Xi := X ∩ Svi and
Yi := Y ∩ Svi denote the part of X and Y , respectively, that
lies in cluster Svi . The sparsity φ(X ,Y) of the cut induced by
X and Y is defined as φ(X ,Y) = cap(X ,Y)

dem(X ,Y) , where dem(X ,Y)
is the demand that has to cross the cut, i.e., the sum of all
demands of commodities for which source and destination
lie in different portions of the cut.

Let abs(U) for a subset U ⊂ Sut denote the total demand
that is absorbed in subset U (i.e., the total demand of com-
modities that have their sink in U). The following technical
claim is proved in a full version of the paper.

Claim 5 For any subset Ui of a level ` cluster Si, abs(Ui)≤
2 ·w`(Ui)+(δ+2λ) · cap(Ui,Si \Ui) .

This claim can be used to estimate dem(X ,Y) as follows:

dem(X ,Y) = ∑
i

abs(Xi) ·
w`(Y)

w`(Sut)
+∑

i
abs(Yi) ·

w`(X)
w`(Sut)

≤ 4 ·
w`(X) ·w`(Y)

w`(Sut)
+(δ+2λ) · cap(X ,Y) .

For this step we utilized ∑i cap(Xi,Yi) ≤ cap(X ,Y) and
∑i w`(Xi) = w`(X).

One of the sets X and Y contains at most |Sut |/2 nodes.
W.l.o.g. we assume |X | ≤ |Sut |/2. By combining the def-
inition of the weight ratio δ with the above inequality we
get

dem(X ,Y)≤ 4δ · cap(X ,Y)+(δ+2λ) · cap(X ,Y)
≤ (5δ+2λ) · cap(X ,Y) ,

which yields the lemma.

In [3] it is shown that any CMCF-problem can be satisfied
up to q = Ω(φ/ logk), where φ is the value of the sparsest cut
and k is the number of commodities. Combining this with
Lemma 3 and 4 yields E(L(e))≤O(logn ·h ·max{δ,λ}·Ct).

For the improved result we utilize that a uniform multi-
commodity flow on graphs of constant genus can be satisfied
up to a factor q = Ω(φ) (see [8]). In order to apply this result
we transform the CMFC-problem into a uniform multicom-
modity flow problem with nearly the same value of a sparsest
cut. Then Lemma 3 and 4 yield the theorem. The details are
omitted due to space limitations.

So far, we have shown that TG can be simulated on G such
that for every edge of the network the expected load remains
small. In order to obtain a result on the congestion of the
simulation we have to show that this simulation technique
can be adopted such that the load of any edge does not
deviate too much from its expectation. This is done in the
proofs of the following theorems.

Theorem 6 Given a graph G and an associated decompo-
sition tree TG there exists an oblivious online routing algo-
rithm that is (strictly) O(logn · h ·max{δ,λ})-competitive
with respect to the congestion.

Remark 7 By utilizing the results of Section 4 on the pa-
rameters of TG this theorem gives an O(log3 n)-competitive
online routing algorithm for general networks.

Proof. In order to apply the framework as sketched in Sec-
tion 1.3 we need an efficient solution for the online routing
problem on trees. This point is easy since in a tree the routing
path between two nodes is unique.

The simulation technique can be adopted as follows. In
the online routing problem the internal nodes of the decom-
position tree do not store any information. They are only
used during the simulation to ensure that appropriate routing
paths are selected. Therefore, for each routing request a new
random embedding of these nodes in the network G can be
used. Let Li(e) denote a 0-1 random variable describing the
load on edge e ∈ E due to the routing of the i-th request
σi. (The routing algorithm can easily ensure that each edge
is traversed at most once for each request. Hence, we can
assume that Li(e) is a 0-1 random variable.)

The variables Li(e) are independent and hence, the load
L(e) of an edge e, is a sum of independent random variables.
By applying a Chernoff bound (see e.g. [6]) to this sum we
get L(e) = O(E(L(e))), w.h.p. As this holds for any edge
e we get the desired result on the congestion. Note that the
independence of different routing requests means that the
routing algorithm is oblivious as stated in the theorem.

Similarly, one can prove the following theorem for the data
management problem. The proof will appear in a full version
of the paper.

Theorem 8 There is an O(log3 n)-competitive online algo-
rithm for the data management problem on general networks.

The above results are obtained by utilizing the results
of Section 4 which hold for general networks. For special
networks these results can be significantly improved. For
example if G is a mesh then there is a decomposition tree
TG with λ(TG) = O(1), δ(TG) = O(1) and h(TG) = O(logn).
This yields a data management strategy and a routing strat-
egy with competitive ratio O(logn). Hence, our framework
achieves the same results for the mesh as shown in [11].

4. The graph decomposition
In this section we show that for any graph G there is a
decomposition tree TG with good parameters λ(TG), δ(TG)
and h(TG). This completes the proof of the competitive ratios
for the data management strategy and the online routing
strategy presented in Section 3. The main theorem is as
follows.

Theorem 9 For any graph G = (V,E) with n = |V | nodes
there exists a decomposition tree TG that has height h(TG) =
O(logn), maximum bandwidth-ratio λ(TG) = O(logn) and
maximum weight-ratio δ(TG) = O(logn).

Proof. For the following proof we define λ := 20 · logn+1
and δ := 24 ·λ. We construct a decomposition tree TG with
λ(TG)≤ λ and δ(TG)≤ δ. We say that a subset S⊂V fulfills
the bandwidth-property and the weight-property iff

λ ≥ max
U⊂S

|U |≤ 3
4 |S|

{
out(U)

cap(U,S\U)

}
and δ ≥ max

U⊂S
|U |≤|S|/2

{
w`+1(U)

cap(U,S\U)

}
,

respectively. Obviously, a tree TG in which any cluster
Svt fulfills both properties has bandwidth-ratio at most λ

and weight-ratio at most δ. Note that the definition of
the bandwidth-property slightly differs from that of the
bandwidth-ratio as the maximum is taken over all sets that
contain at most 3

4 |S| nodes. This will be needed later in the
proof.

We prove the existence of a tree TG with good parameters
by presenting an algorithm for constructing the tree. The

BANDWIDTHPARTITION (R)
PR := {R}
while ∃Ri ∈ PR not fulfilling the bandwidth-property do

find U ⊂ Ri with |U | ≤ 3
4 |Ri|

and λ · cap(U,Ri \U) < out(U)
PR := PR \{Ri}
PR := PR∪{U,Ri \U}

end
return PR

Figure 2. The algorithm BANDWIDTHPARTITION

running time of this algorithm is not polynomial as it solves
several NP-complete problems during the construction. Ob-
serve, however, that the decomposition has to be computed
only once for a network and can then be used by any online
algorithm that aims to minimize the congestion.

A key observation for the construction is that the above
properties are somehow local to a cluster. This means that,
e.g., whether a cluster fulfills the bandwidth-property or
not, only depends on that cluster but not on the rest of the
decomposition tree. Similarly, the weight-property for a level
` cluster Svt only depends on this cluster and on clusters
corresponding to children of vt in TG. This holds since
these child-clusters completely define the weight function
w`+1 for subsets of Svt . Let vi, i ∈ I denote the children
of vt . Then for a subset U ⊂ Svt we can write w`+1(U) =
∑i∈I cap(U ∩Svi ,Svi), which means that w`+1(U) and hence,
the weight-ratio of Svt , only depends on the “child-clusters”
Svi . Because of the observed locality of the desired properties
we can conclude the theorem from the following lemma.

Lemma 10 Given a level ` cluster S ⊂ V that fulfills the
bandwidth property, it is possible to partition S into sub-
clusters Si with the following characteristics.

1. The sets Si are disjoint and form a partitioning of S,
i.e.,

U
i Si = S.

2. Each sub-cluster Si fulfills the bandwidth-property.

3. For each sub-cluster Si we have |Si| ≤ 5
6 · |S|.

4. The cluster S fulfills the weight-property, i.e., for each
subset U ⊂ S with |U | ≤ |S|/2 we have ∑i cap(U ∩
Si,Si)≤ δ · cap(U,S\U).

Now, we first argue that the above lemma yields the theo-
rem. Obviously, the cluster V that contains all nodes in the
network fulfills the bandwidth-property, because out(V) = 0.
This is the set corresponding to the root of TG. By applying
the above lemma to V we get a partitioning of V . The sets of
this partitioning correspond to the level 1 nodes of TG. Since
these sets again fulfill the bandwidth-property we can apply

PARTITION (S)
compute 1

6 -balanced mincut (A,B) of S
PS := {{v} | v ∈ S}
while ∃U violating the sharpened weight condition do

/∗ i.e. |U | ≤ 2
3 |S| and ∃Q ⊂ PS with U =

U
Si∈Q Si ∗/

for each Si ∈ Q do PS := PS \{Si}
PS := PS ∪BANDWIDTHPARTITION(U ∩A)
PS := PS ∪BANDWIDTHPARTITION(U ∩B)

end
return PS

Figure 3. The algorithm PARTITION.

the lemma recursively until the leaf nodes of TG correspond
to singleton sets {v},v ∈V .

It is easy to verify that by this construction every cluster
of TG fulfills both properties. Further, the height of TG is
logarithmic because of Property 3 of the lemma. This yields
the theorem.

Proof of Lemma 10. The algorithm for partitioning S ac-
cording to the requirements of Lemma 10 uses a subroutine
that is described in the proof of the following lemma.

Lemma 11 For any subset R⊂V it is possible to partition
R into disjoint subsets Ri ⊂ R, such that each Ri fulfills the
bandwidth-property and ∑i out(Ri)≤ 2 ·out(R).

Proof. The following straightforward algorithm computes
a partitioning PR of R with the above characteristics. In the
beginning PR contains only the set R. As long as PR contains
a set Ri that does not fulfill the bandwidth-property this set is
removed from PR and replaced by two subsets U and Ri \U
of Ri that are chosen as follows. U is selected as an arbitrary
subset that violates the bandwidth-property, i.e., |U | ≤ 3

4 |Ri|
and λ ·cap(U,Ri \U) < out(U). An outline of the algorithm
is given in Figure 2.

Obviously, after the algorithm has finished the set system
PR contains only sets Ri that fulfill the bandwidth-property
and these sets partition R, i.e.,

U
i Ri = R. It remains to show

that ∑i out(Ri)≤ 2 ·out(R).
For the analysis we introduce the following notion. Con-

sider a set Ri that is partitioned into two sets U and Ri \U
during the algorithm. By the partitioning the term ∑i out(Ri)
increases by 2 · cap(U,Ri \U). For such a step of the algo-
rithm we say that the algorithm “buys” the new bandwidth
2 · cap(U,Ri \U) and that it “pays” with cap(U,Ri), i.e.,
the bandwidth of edges leaving U that do not contribute to
cap(U,Ri \U).

Now, we derive an upper bound on the amount of new
bandwidth the algorithm can buy. For this we need the
following two claims.
Claim 12 If in a step the algorithm buys bandwidth B the
price for this bandwidth (i.e., cap(U,Ri)) is at least λ−1

2 ·B.

Proof. U is selected as a set that violates the band-
width property. Therefore, λ · cap(U,Ri \U) < out(U) =
cap(U,Ri)+ cap(U,Ri \U). The new bandwidth B equals
2 · cap(U,Ri \U). This yields 2

λ−1 · cap(U,Ri) > B.

Claim 13 The bandwidth of an edge e can be used at most
5 · log(n) times for buying new bandwidth.

Proof. Let e = (u,v) denote an edge of G. Suppose that e
is used for buying new bandwidth when the algorithm parti-
tions a set Ri into sets U and Ri \U with |U | ≤ 3

4 |Ri|. Either
u or v must be contained in the set U because otherwise
e would not contribute to cap(U,Ri), i.e., the price for the
new bandwidth. The set U that now contains one end-point
of e has many nodes less than Ri. This observation can be
utilized as follows.

Let for the running time of the algorithm Ru and Rv denote
the set in the partition PR that contain the node u and v,
respectively. Whenever the algorithm uses e for buying new
bandwidth either the set Ru or the set Rv changes, and thereby
|Ru| or |Rv| is reduced by a factor of 3

4 . Obviously, this can
happen only 2 · log4/3(n)≤ 5 · logn times.

We get an upper bound on the amount of new bandwidth as
follows. In the beginning when PR contains only the set R the
only bandwidth that can be used for buying new bandwidth
is the bandwidth of edges leaving cluster R, i.e., out(R). We
denote the value of this bandwidth with B0. Using the above
observations we can estimate the bandwidth B1 the algorithm
can buy for the bandwidth B0. This is at most

B1 ≤ 5log(n) · 2
λ−1

B0 =
B0

2
.

For this bandwidth B1 the algorithm can buy again some
new bandwidth B2 which can be shown to be smaller than
B1
2 . Proceeding in this manner we get that the total new

bandwidth is at most ∑
∞
i=1 Bi ≤ B0.

Altogether, ∑i out(Ri) increases at most by B0 during the
algorithm. Hence, in the end we have ∑i out(Ri)≤ 2 ·out(R)
which yields the lemma.

Now, we describe the algorithm for partitioning S according
to the requirements of Lemma 10. The general idea of the
algorithm is to maintain a partitioning PS of the set S that ful-
fills requirements 1, 2 and 3 of the lemma and then to change
this partitioning successively, until Requirement 4 is fulfilled,
as well. It is relatively easy to maintain Requirement 1 that
PS is a partitioning, i.e.,

U
Si∈PS

Si = S.
For maintaining Requirement 2 the algorithm uses the

algorithm BANDWIDTHPARTITION as a subroutine. Be-
fore a new set is added to PS this set is decomposed
by BANDWIDTHPARTITION into subsets that fulfill the
bandwidth-property. Then these subsets are added to PS,
instead.

Requirement 3 is fulfilled as follows. In the beginning the
algorithm calculates a 1

6 -balanced mincut for the sub-graph

induced by S. This means S is partitioned into two subsets
A and B := S \A, such that the capacity cap(A,B) between
both sets is minimized but each set contains at least |S|/6
nodes. Then the algorithm guarantees that each set Si in the
partitioning is either a subset of A or a subset of B. Hence,
Requirement 3 holds.

In order to fulfill the 4-th requirement the algorithm has
to fulfill the condition ∑i cap(U ∩Si,Si)≤ δ ·out(U) for all
subsets U of S with at most |S|/2 nodes. For doing this
the algorithm uses the following trick. It tries to ensure a
sharpened condition that only must hold for certain subsets
U which are composed from sub-clusters of the current parti-
tioning, i.e., U can be written as U =

U
Si∈Q Si with Q ⊂ PS.

Formally, we say a subset U ⊂ S violates the sharpened
weight condition iff

∑i cap(U ∩Si,Si) > 6 ·out(U) ,

and |U | ≤ 2
3 |S| and ∃Q ⊂ Ps such that U =

U
Si∈Q Si. Later

we will show that if no subset violates this condition then
the cluster S fulfills the weight-property, i.e., Requirement 4
holds.

The partitioning algorithm works as follows. In the begin-
ning PS = {{v}|v∈ S} contains all singleton subsets of v. As
long as there exists a subset U =

U
Si∈Q Si that violates the

sharpened weight condition the algorithm does the following.
Firstly, it removes all sub-clusters Si ∈ Q from PS. Then
it does not directly insert U into PS but first it ensures that
requirements 2 and 3 will be fulfilled afterwards. Therefore,
U is partitioned into U ∩A and U ∩B, and then these sets are
again partitioned with BANDWIDTHPARTITION. Finally, all
subsets resulting from this partitioning are inserted into PS.
A description of the algorithm is shown in Figure 3.

It is clear from the above description that after the algo-
rithm has finished, requirements 1, 2, and 3 are fulfilled and
furthermore, no set violates the sharpened weight condition.
It remains to show that the algorithm fulfills Requirement 4,
as well, and last but not least we have to show that the algo-
rithm terminates.

Lemma 14 The algorithm PARTITION terminates.

Proof. We show that in each iteration of the while loop,
the term ∑Si∈PS

out(Si) decreases. In each iteration the
algorithm first removes all sets Si ∈ Q from PS. Hence,
∑Si∈PS

out(Si) decreases by ∑Si∈Q out(Si) = ∑Si∈Q cap(U ∩
Si,Si) > 6 ·out(U).

Now, we show that the increment of ∑Si∈PS
out(Si), when

inserting the sets resulting from the partitioning of U , is
smaller than this value. Therefore, we need the following
claim which is proved in the full version.

Claim 15 For a subset U with |U | ≤ 2
3 |S|, cap(A∩U,B∩

U)≤ out(U).

From this claim we get

out(A∩U)+out(B∩U)

≤ cap(A∩U,U)+2 · cap(A∩U,B∩U)

+ cap(B∩U,U)≤ 3out(U) .

Hence, when partitioning the sets A∩U and B∩U with
BANDWIDTHPARTITION we get a collection of subsets Ui
with ∑i out(Ui)≤ 6 ·out(U), according to Lemma 11.

Consequently, when inserting these sets into PS the value
of ∑Si∈PS

out(Si) increases by less than 6 ·out(U) and there-
fore it decreases during each iteration of the while loop. This
yields the lemma.

Lemma 16 If no subset of S violates the sharpened weight
condition then S fulfills the weight-property.

Proof. Fix an arbitrary nonempty subset X ⊂ S with |X | ≤
|S|/2 and let Y := S \X denote the other part of S. Further
let Xi := X ∩Si and Yi := Y ∩Si denote the part of X and Y ,
respectively, that lies in cluster Si ∈ PS. We have to show
that ∑i cap(Xi,Si)

cap(X ,Y) ≤ δ.
We partition the sets Xi into so-called small and large sets,

as follows. A set Xi is called large iff |Xi| ≤ 3
4 |Si| and small,

otherwise. Let S and L denote the set of small and large sets,
respectively, and let Is and Il denote the corresponding index
sets, i.e., S = {Xi | i ∈ Is} and L = {Xi | i ∈ Il}. Further,
we introduce a set U :=

U
i∈Il Si, which is the union of all

sub-clusters of the current partitioning that have a large in-
tersection with X . Note that the definition of small and large
and the fact that |X | ≤ |S|/2 ensures that |U | ≤ 2

3 |S|. The
idea of the proof is to find a relation between cap(X ,Y) and
out(U) and then to exploit that U must fulfill the sharpened
weight-property. The following claim is proved in a full
version of the paper.
Claim 17 cap(X ,Y)≥ 1

4λ

(
out(U)+∑i∈Is out(Xi)

)
.

Using this claim, the quotient ∑i cap(Xi,Si)/cap(X ,Y)
can be estimated, as follows.

∑i cap(Xi,Si)
cap(X ,Y)

=
∑i∈Is cap(Xi,Si)+∑i∈Il cap(Xi,Si)

cap(X ,Y)

≤ 4λ ·
∑i∈Is out(Xi)+∑i∈Il cap(Si,Si)

∑i∈Is out(Xi)+out(U)

≤ 4λ ·
∑i∈Il cap(Si,Si)

out(U)

For the last inequality we utilized ∑i∈Il cap(Si,Si)≥ out(U).
Since, U fulfills the sharpened weight-property we have

∑i∈Il cap(Si,Si) ≤ 6 · out(U). Plugging this into the above

inequality yields ∑i cap(Xi,Si)
cap(X ,Y) ≤ 24λ≤ δ. This means that the

cluster S fulfills the weight-property.

This completes the proof of Lemma 10. As previously
claimed Lemma 10 directly implies the theorem.

Acknowledgments
I am very grateful to Baruch Awerbuch and Bruce Maggs
for their helpful comments on a preliminary version of this
paper.

References
[1] W. Aiello, F. T. Leighton, B. M. Maggs, and M. Newman.

Fast algorithms for bit-serial routing on a hypercube. Mathe-
matical Systems Theory, 24(4):253–271, 1991.

[2] J. Aspens, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-
line load balancing with applications to machine scheduling
and virtual circuit routing. In Proceedings of the 25th ACM
Symposium on Theory of Computing (STOC), pages 623–631,
1993.

[3] Y. Aumann and Y. Rabani. An O(logk) approximate min-
cut max-flow theorem and approximation algorithm. SIAM
Journal on Computing, 27(1):291–301, 1998.

[4] B. Awerbuch and Y. Azar. Local optimization of global ob-
jectives: Competitive distributed deadlock resolution and
resource allocation. In Proceedings of the 35th IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages
240–249, 1994.

[5] A. Borodin and J. E. Hopcroft. Routing, merging and sorting
on parallel models of computation. Journal of Computer and
System Sciences, 30(1):130–145, 1985.

[6] T. Hagerup and C. Rüb. A guided tour of Chernoff bounds.
Information Processing Letters, 33(6):305–308, 1990.

[7] C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for
oblivious routing in the hypercube. In Proceedings of the 2nd
ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 31–36, 1990.

[8] P. N. Klein, S. A. Plotkin, and S. B. Rao. Excluded mi-
nors, network decomposition, and multicommodity flow. In
Proceedings of the 25th ACM Symposium on Theory of Com-
puting (STOC), pages 682–690, 1993.

[9] F. T. Leighton and S. B. Rao. An approximate max-flow min-
cut theorem for uniform multicommodity flow problems with
applications to approximation algorithms. In Proceedings
of the 29th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 422–431, 1988.

[10] S. Leonardi. On-line network routing. In A. Fiat and G. J.
Woeginger, editors, Online Algorithms: The State of the Art,
volume 1442 of LNCS, pages 242–267. Springer, 1998.

[11] B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and
M. Westermann. Exploiting locality for networks of limited
bandwidth. In Proceedings of the 38th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 284–293,
1997.

[12] L. G. Valiant and G. J. Brebner. Universal schemes for
parallel communication. In Proceedings of the 13th ACM
Symposium on Theory of Computing (STOC), pages 263–277,
1981.

[13] B. Vöcking. Static and Dynamic Data Management in Net-
works. PhD thesis, Universität Paderborn, Dec. 1998.

[14] B. Vöcking. Almost optimal permutation routing on hy-
percubes. In Proceedings of the 33rd ACM Symposium on
Theory of Computing (STOC), pages 530–539, 2001.

A. Appendix

A.1 Proof of Claim 5

By definition of the multicommodity flow problem we have

abs(Ui) =
w`+1(Ui)
w`+1(Si)

w`(Si) .

In order to estimate abs(Ui) we distinguish two cases accord-
ing to the cardinality of Ui.

• Suppose |Ui| ≤ |Si/2|.

By applying the definition of the weight-ratio we get

abs(Ui)≤ w`+1(Ui)≤ δ · cap(Ui,Si \Ui) .

• Now, suppose |Ui| ≥ |Si/2|.

In this case we distinguish two sub-cases according to
the value of w`(Ui).

– Suppose w`(Ui)≥ w`(Si)/2. Then

abs(Ui)≤ w`(Si)≤ 2 ·w`(Ui) .

– Suppose w`(Si \Ui)≥ w`(Si)/2. Then we get

abs(Ui)≤ w`(Si)≤ 2 ·w`(Si \Ui)
≤ 2 ·out(Si \Ui)≤ 2λ · cap(Ui,Si \Ui) ,

by applying the definition of the bandwidth-ratio
for the set Si \Ui.

Altogether, this yields the claim.

A.2 Proof of Claim 15

Proof. Assume for contradiction that cap(A∩U,B∩U) >
out(U). Then,

cap(A,B)≥ cap(A\U,B\U)+ cap(A∩U,B∩U)
> cap(A\U,B\U)+out(U)
≥ cap(A\U,B\U)+ cap(U,B\U)
= cap(A∪U,B\U)
= cap(A∪U,S\ (A∪U)) .

Analogously, it can be shown that cap(A,B) > cap(B∪U,S\
(B∪U)). This means that the cuts induced by A∪U and
B∪U have smaller capacity than cap(A,B). Since A|B is the
minimum 1

6 -balanced cut we conclude that A\U and B\U
both contain less than |S|/6 nodes. But then U must contain
more than 2

3 |S| nodes. This is a contradiction.

A.3 Proof of Claim 17

The set X fulfills the bandwidth-property since |X | ≤ |S|/2.
Hence,

λ · cap(X ,Y)≥ out(X)≥ cap(U ∩X ,V \S) . (2)

Similarly, we can apply the bandwidth-property for sets Xi,
i ∈ Is and Yi, i ∈ Il . This yields

cap(X ,Y)≥ ∑
i∈Is

cap(Xi,Yi)+ ∑
i∈Il

cap(Xi,Yi)

≥ 1
λ

∑
i∈Is

out(Xi)+
1
λ

∑
i∈Il

out(Yi)

≥ 1
λ

∑
i∈Is

out(Xi)+
1
λ

∑
i∈Il

cap(Yi,V \S)

=
1
λ

∑
i∈Is

out(Xi)+
1
λ

cap(U \X ,V \S) .

By combining this result with Inequality 2 we get

2λ · cap(X ,Y)≥ cap(U,V \S)+ ∑
i∈Is

out(Xi) . (3)

Now, we relate cap(X ,Y) to cap(U,S\U).

cap(U ,S\U)
= cap(Y ∩U,S\U)+ cap(X ∩U,X ∩ (S\U))

+ cap(X ∩U,Y ∩ (S\U))
= cap(]i∈IlYi,S\U)+ cap(X ∩U,]i∈IsXi)

+ cap(X ∩U,Y ∩ (S\U))

≤ ∑
i∈Il

out(Yi)+ ∑
i∈Is

out(Xi)+ cap(X ∩U,Y)

≤ λ ∑
i∈Il

cap(Xi,Yi)+λ ∑
i∈Is

cap(Xi,Yi)+ cap(X ,Y)

≤ (λ+1) · cap(X ,Y)
≤ 2λ · cap(X ,Y)

Summing the above inequality and Inequality 3 gives

4λ · cap(X ,Y)≥ cap(U,S\U)+ cap(U,V \S)

+ ∑
i∈Is

out(Xi)

= out(U)+ ∑
i∈Is

out(Xi) .

This yields the claim.

	Introduction
	Definition of the model
	Previous work and new results
	Outline of the framework

	The decomposition tree
	Simulation results
	Simulating G on T_G
	Simulating G on T_G

	The graph decomposition
	Appendix
	Proof of Claim 5
	Proof of Claim 15
	Proof of Claim 17

