
Single-View Reconstruction via Joint Analysis of Image and Shape Collections

Qixing Huang Hai Wang
Toyota Technological Institute at Chicago

Vladlen Koltun
Intel Labs

Web image search Reconstructed 3D models

Figure 1: Our approach reconstructs objects depicted in images, even if each object is only shown in a single image. Left: Web image search
for “windsor chair”, first page results. Right: 3D models automatically generated by our approach for these images.

Abstract

We present an approach to automatic 3D reconstruction of objects
depicted in Web images. The approach reconstructs objects from
single views. The key idea is to jointly analyze a collection of
images of different objects along with a smaller collection of ex-
isting 3D models. The images are analyzed and reconstructed to-
gether. Joint analysis regularizes the formulated optimization prob-
lems, stabilizes correspondence estimation, and leads to reasonable
reproduction of object appearance without traditional multi-view
cues.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling

Keywords: single-view reconstruction, image-based modeling

1 Introduction

Can we create 3D models of all objects in the world? High-fidelity
models can be obtained from range scans and dense multi-view
datasets, but acquiring such data for millions of objects demands

substantial time and labor. Can large repositories of 3D models be
created using existing data that is already present on the Web?

Web images have been used to reconstruct landmark scenes, which
are densely sampled by thousands of visitors [Snavely et al. 2010].
But what about the objects that populate our daily lives? Millions
are already depicted on the Web. Can we exploit the regularity of
object shapes [Kalogerakis et al. 2012] to reconstruct an object even
if it appears in just a single image, thereby paving the way to large
repositories of 3D models created by mining the Web?

In this paper, we present an approach to creating 3D models of ob-
jects depicted in images, even if each object is only shown in a sin-
gle image. Our approach uses a comparatively small collection of
existing 3D models to guide the reconstruction process. A key chal-
lenge is that these existing 3D models may only sparsely sample the
underlying shape space. The number of high-fidelity shapes in ex-
isting 3D model repositories, such as the 3D Warehouse, is much
smaller than the number of images on the Web. For many families
of objects, high-quality images vastly outnumber high-quality 3D
models. Thus simply retrieving the most similar existing 3D model
for each input image does not yield satisfactory results: even if such
retrieval is performed reliably, the closest pre-existing model is of-
ten quite different from the depicted object. We therefore develop
an assembly-based approach that reconstructs objects by compos-
ing parts from pre-existing shapes.

A key idea in the presented pipeline is to jointly analyze the images
and the 3D models. First, camera poses for all images are estimated
by optimizing a global objective that measures the consistency of
estimated poses across similar images. Then, a global network of
dense pixel-level correspondences is established between natural
images and rendered images. These correspondences are used to
jointly segment the images and the 3D models. The computed seg-
mentations and correspondences are used to construct new models,
which are then optimized.
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-



ing the camera toward the center from each sample. Let P be the
resulting set of 360 poses. We now generate a set R of rendered
images by rendering each shape in S from each pose in P . Thus
|R| = |S||P|.

Pipeline. The pipeline begins by estimating the camera pose for
each image in I. This is cast as a structured prediction problem.
We construct a conditional random field that links natural images
to each other and to rendered images, based on image appearance
descriptors. Camera poses for natural images are optimized to be
consistent with the ground-truth poses of similar rendered images,
as well as with optimized poses in similar natural images. This
stage is described in Section 4.

Next, we compute dense correspondences that link images in I
to each other and to images in R. To this end, we iterate over
patches in all images in I and identify similar patches in other
images based on appearance features. This is used to construct a
weighted graph that connects similar patches. A robust clustering
algorithm is used to extract a set of patch clusters with reliable cor-
respondences within each cluster. Based on these correspondences,
we align all patches within each cluster by optimizing a joint non-
rigid alignment objective. This yields highly accurate pixel-level
correspondences within patch clusters.

The patch clusters connect natural images and rendered images.
Rendered images carry segmentation information from the origi-
nal shapes: for each pair of pixels in a rendered image, we know
whether the pair belongs to the same segment or to different seg-
ments on the original shape. These pairwise relationships are prop-
agated to natural images via pixel-level correspondences within
patch clusters. Graph clustering is then used to segment both the
natural images and the rendered images based on the same evi-
dence. These segmentations of the rendered images are then prop-
agated back to the shapes in S. We thus obtain compatible seg-
mentations and correspondences that connect image segments and
shape parts. This stage is described in Section 5.

The computed correspondences are used to associate each image
segment with a shape part, and to carry over adjacency and symme-
try information from shapes to images. An initial model for each
image I ∈ I is assembled from shape parts associated with each
segment in I . This model is then optimized to projectively align
with image contours. The optimization objective is based on pro-
jective correspondences, the accuracy of which depends on the ac-
curacy of the camera parameters. Since the initial camera pose esti-
mation was approximate, we include intrinsic and extrinsic camera
parameters in the optimization, refining them while optimizing the
rigid transforms and nonrigid deformations for all segments. The
object’s configuration is regularized by symmetry and adjacency
relationships inferred from the input shapes and images. The opti-
mization is described in Section 6.

4 Camera Pose Estimation

A natural approach to estimating the pose of an image I ∈ I is
to retrieve the most similar rendered images and use their known
camera poses to estimate the pose of I [Aubry et al. 2014; Lim
et al. 2014; Su et al. 2014]. We found that the results produced by
this approach are noisy, as illustrated in Figure 3.

Our solution is to optimize a global objective that links similar im-
ages across I. In this way, the image collection is used to regularize
camera pose estimation for all images. To estimate a camera pose
for each image in I, we optimize a conditional random field (CRF).
The label space is P: the set of camera poses used for rendering
the synthetic images in R. The variable set is P = {Pi}, where
Pi ∈ P is the camera pose associated with image Ii ∈ I. The CRF

(a) Separate estimation (b) Similar images (c) Joint estimation

Figure 3: Camera pose estimation. (a) Erroneous estimate, ob-
tained when considering one natural image separately. (b) Our
approach estimates camera poses for similar images jointly. (c)
Joint analysis regularizes the estimation and significantly increases
reliability.

objective has the following form:

minimize
P

NI∑
i=1

φi(Pi) +
∑

(Ii,Ij)∈N

ψij(Pi, Pj). (1)

The unary potentials φi(Pi) are defined by the distribution of cam-
era poses of images inR that are similar to Ii. The camera poses are
quantized to P . The distribution is aggregated over a set of nearest
neighbors in HOG descriptor space [Dalal and Triggs 2005]. We
use 4x4 HOG cells.

The connectivity structure N links each image to its 6 nearest
neighbors in HOG space. The pairwise potentials penalize incon-
sistent estimates for similar images:

ψij(Pi, Pj) = µ(Pi, Pj)α(Ii, Ij).

Here µ(Pi, Pj) is a label compatibility term, defined as
µ(Pi, Pj) = ρ( 6 (Pi, Pj)), where 6 (Pi, Pj) is the angle between
the optical axes of Pi and Pj and ρ is the truncated L1 penalty. The
weight α(Ii, Ij) adjusts the strength of the pairwise term based on
the similarity of Ii and Ij and is defined in terms of distance in
HOG space.

Objective (1) is optimized using TRW-S [Kolmogorov 2006]. As
shown in Section 7, estimating camera poses jointly across the im-
age collection increases accuracy considerably.

5 Segmentation and Correspondence

Given the estimated camera poses for all images, the second stage
of the pipeline computes dense pixel-level correspondences be-
tween image patches. The correspondences connect the image sets
I andR, ultimately enabling inference about the three-dimensional
structure of objects depicted in natural images.

5.1 Pixel-level correspondences

Patch graph construction. We operate on patches of size 96x96,
regularly sampled with a 16-pixel stride in all images in I ∪ R.
These patches are connected into a graph G = (GV ,GE). The
edges GE link patches with similar appearance and context. For
each patch u in image I , we compute a multi-scale HOG descriptor
centered at u. The descriptor summarizes the appearance of the
patch and its context. To link u with other patches, we consider
images with viewing direction within 15◦ of the estimated viewing
direction of I . In each image, we identify the patch with the closest
descriptor to u. Among these, we retain the k most similar. (We
use k = 12 in all experiments.) A high-level descriptor like HOG
is not in itself sufficiently discriminative for the level of precision
we seek. We therefore compute dense correspondences between u
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Figure 4: Nonrigid alignment for dense pixel-level correspondence. Example from the tables dataset on top, example from the Windsor chairs
dataset below. For each example, the top row shows six patches from a cluster ω and the bottom row shows the optimized nonrigid alignment
of these patches to the common domain Σ(ω). Each row shows two patches from natural images, four patches from rendered images, and the
overlay of all six patches. The overlays illustrate that the optimized patches are aligned better than the original patches.

and each of the k retained candidate patches using SIFT flow [Liu
et al. 2011]. The patch u is then connected to the closest k′ = k/2
patches based on the SIFT flow matching energy, and the weight
of the corresponding edge in GE is set based on the same matching
energy.

The graph G is used to cluster the patches. We use a variant of
spectral clustering. The spectral embedding space is given by the
top 10 eigenvectors of the normalized graph Laplacian LG . We
perform agglomerative clustering in this space. Clusters are merged
until each has patches from rendered images of at least 15 models.
This yields a set Ω = {ω} of clusters, such that each ω = {u}
collects a set of patches with similar appearance and camera pose.
As we shall see, including rendered images of multiple models in
each cluster increases robustness to noisy initial segmentations.

Dense nonrigid alignment. We now compute pixel-level cor-
respondences between patches. This is done by jointly optimiz-
ing a mapping of all patches in each cluster ω to a common two-
dimensional domain Σ(ω). This naturally induces a dense map-
ping between each pair of patches. Specifically, we optimize a
2D free-form deformation (FFD) fi : ui → Σ(ω) for each patch
ui ∈ ω [Sederberg and Parry 1986]. The mapping has the form
fi(x) =

∑
l bl(x)ci,l, where bl and ci,l describe the bilinear basis

and the control points, respectively. We use an 8× 8 control grid.

To set up the objective function for joint optimization of the de-
formations {fi}, we utilize the point-wise correspondences Ki,j

computed by SIFT flow between each pair of patches ui, uj ∈ ω
during patch graph construction. To tolerate outliers in this ini-
tial set of correspondences, the objective uses the robust Lp norm,

where p = 0.8:

minimize
{fi}

∑
i,j

∑
{p,q}∈Ki,j

‖fi(p)− fj(q)‖p . (2)

This objective is optimized using the Gauss-Newton method, ini-
tialized by the identity maps. To prevent a collapse to the trivial
solution in which the control grids shrink to a point, we fix the map-
ping fi for one of the images to the identity mapping. The effect of
this optimization is illustrated in Figure 4.

5.2 Segmentation

This step jointly segments images in I and models in S, using the
initial segmentations of the models for bootstrapping. Since the ini-
tial segmentations are noisy, we use the pixel-level mappings within
each patch cluster to aggregate segmentation information from mul-
tiple models. In addition, we also aggregate adjacency information
that is later used to regularize the reconstruction.

Given patch cluster ω, define a cumulative similarity score
δ(p,q) = δ+(p,q) − δ−(p,q) between each pair of pixels
p,q ∈ Σ(ω). Here δ+(u, v) (δ−(u, v)) is the frequency with
which p and q appear in the same segment (different segments)
in rendered images in ω. Despite the noise in the segmentations of
the input shapes, we found that the sign of δ(p,q) is a good indica-
tor of whether the two pixels belong to the same segment. For each
image I ∈ I ∪ R, we collect pairwise scores from all patches in
the image. This yields a weighted graph over the pixels of I , which
is segmented using graph clustering, yielding a segmentation of I .

This process segments both the natural images I and the rendered
images R. Segmentations of the rendered images are then used to
segment the shapes S using a variant of the approach described by



Wang et al. [2013], yielding shape parts that are compatible with
image segments.

Adjacency information is propagated in a similar fashion. For pairs
of pixels in each patch cluster that belong to different segments, we
mark pairs of pixels that belong to adjacent segments, following
the sign criterion described above. After segmenting each image,
two image segments are marked as adjacent if at least half of the
pixel pairs that connect these two segments within patch clusters
are marked as adjacent.

5.3 Associating image segments and shape parts

We now associate each image segment with a shape part. To
this end, for each pair u, u′ of image segments in I ∪ R
that overlap in some patch clusters, we compute a weight
β(u, u′) that quantifies their similarity. The weight has the form
β(u, u′) = βo(u, u′)βs(u, u′). Here βo(u, u′) is defined as the
percentage of pixels of u and u′ that overlap with each other in
one or more patch clusters, and βs(u, u′) is the shape context score
of u and u′ [Belongie et al. 2002]. To link an image segment u with
a shape part, we identify the highest-scoring rendered segment. At
this stage we also detect symmetry between shape parts by solving
a maximum matching problem on a graph that connects all pairs of
parts within each shape. For a pair of parts, the corresponding edge
weight in the graph is set by the distance between one part and a
reflected copy of the other.

6 Reconstruction

The final stage of the pipeline creates a 3D modelM for each image
I ∈ I. The model is composed of a set of parts {vj}. This set is
initialized by retrieving the shape part associated with each image
segment uj ⊂ I . Each part carries over its initial pose from its
source shape.

The initial models are illustrated in Figure 5. Initial shapes and
poses of the collected parts only approximate the object shown in
I . We now optimize these shapes and poses to fit contours of the
corresponding image segments in I . Since this optimization aims
to fit the projections of the shape parts to the image segments, the
quantization of the camera pose P , described in Section 4, becomes
an impediment to accuracy. We therefore include the extrinsic and
intrinsic camera parameters in the optimization and optimize them
in tandem with the shapes and poses. Since 3D reconstruction from
a single view is ill-posed, we use symmetry and adjacency informa-
tion to regularize the optimization.

(a) Input (b) Before optimization (c) After optimization

Figure 5: Effect of optimization. From left to right: input images,
initial models (two views), final models after optimization (same
views).

6.1 Objective

The configuration of a part vj is represented by a rigid pose T j

and a nonrigid deformation Cj . The pose T j represents a rigid
displacement from the initial pose and is initialized to the identity
transform. The deformation Cj specifies the configuration of an
FFD control grid, which is parameterized relative to its default con-
figuration and is initialized to 0. The optimization jointly refines
the camera transform P , the set T = {T j} of rigid poses, and the
set C = {Cj} of control grid configurations. The parameterization
of rigid poses and control grid configurations is reduced such that
variables are shared between symmetric parts: the control grids for
a symmetric pair are identical and the poses are related by a reflec-
tion about the symmetry plane.

The objective comprises an image alignment term, a simple regu-
larizer on the rigid pose and nonrigid deformation of each part, and
a correspondence term that binds adjoining parts:

E(P,T,C) = Eimage(P,T,C) + λEreg(C) + µEcorr(T,C). (3)

The image alignment term guides the contours of shape parts, as
seen from the camera, to align with the boundaries of image seg-
ments. Since shape part contours depend both on the part config-
urations and the camera parameters, this term involves all sets of
variables. Let Λj be the set of contour pixels associated with uj .
The image alignment objective is

Eimage(P,T,C) =
∑
j

∑
p∈Λj

min
q∈∂P (T j(Cj(vj)))

‖q− p‖2 , (4)

where P (·) denotes the application of the camera transform, Cj(·)
denotes the application of the nonrigid deformation, and ∂ is the
boundary operator.

The regularization term penalizes large rigid transforms and non-
rigid deformations:

Ereg(C) =
∑
j

(
‖T j − I‖2F +

∑
c∈Cj

c2
)
, (5)

where I is the identity matrix and ‖ ·‖F is the Frobenius norm. The
correspondence term Ecorr(T,C) binds adjoining parts:∑

{i,j}∈K

1

|Jij |
∑

(x,y)∈Jij

∥∥∥T i(Ci(x))− T j(Cj(y))
∥∥∥2

, (6)

where K is the set of adjoining part pairs identified in Section 5.3
and Jij collects pairs of points that span the minimal translational
distance between vi and vj [Cameron and Culley 1986].

6.2 Optimization

The presented objective is difficult to optimize. The first difficulty
is the coupling of the camera configuration P and the apparent con-
tours {∂P (T j(Cj(vj)))} in the image alignment term (4): as the
camera configuration changes, the contours change. The second
difficulty is that the pairs {Jij} that bind adjoining parts in the cor-
respondence term (6) likewise change during the optimization.

We address these difficulties using alternating optimization. Each
of the three parameter blocks—the camera configuration, the rigid
poses, and the nonrigid deformations—is optimized in turn, and the
apparent contours {∂P (T j(Cj(vj)))} and correspondence pairs
{Jij} are periodically updated.

When the camera configuration P is optimized, only the image
alignment term is active. We compute the apparent contours



{∂P (T j(Cj(vj)))} and extract projective correspondences be-
tween ∂P (T j(Cj(vj))) and Λj for each j. The apparent contours
and projective correspondences are then held fixed. The camera
matrix is optimized to fit the computed correspondences; both ex-
trinsic and intrinsic parameters are optimized [Hartley and Zisser-
man 2000]. To optimize the part poses T, we alternate between
updating the correspondence pairs {Jij} and performing Gauss-
Newton steps. The adjoining correspondences are held fixed for the
other stages. Finally, we update the nonrigid deformations C: this
reduces to a convex program.

This procedure is performed for a number of iterations, which is
set to 150 in our implementation. We update the correspondence
pairs every 10 iterations. The effect of the optimization is shown in
Figure 5.

7 Results

We have collected images and shapes for five sets of objects, sum-
marized in Table 1. Images were downloaded by querying the
Bing Search API with the corresponding keywords. The results
were pruned using Amazon Mechanical Turk (AMT) to retain rel-
evant images in which the target object is seen clearly and dis-
tinctly. AMT was also used to obtain bounding boxes for all ob-
jects. Shapes were obtained from the 3D Warehouse and Yobi3D.

Input Running time (hours)
NI NS # seg. pose seg. rec. total # src.

Windsor chairs 981 103 17.1 2.4 12.1 10.2 24.7 4.8
Office chairs 687 79 12 1.9 14.1 9.1 25 1.8

Tables 584 137 6.2 1.2 6.5 7.4 15.1 2.4
Bicycles 897 131 12.1 1.1 7.9 10.1 20.1 3.1

Guns 542 167 7.2 1.1 5.4 14.1 20.6 2.6

Table 1: Statistics for each dataset. On the left, size of image col-
lection, size of shape collection, and average number of segments
in the original input shapes. In the middle, running time for each
stage in the pipeline (camera pose estimation, segmentation and
correspondence, reconstruction) and total running time, all for pro-
cessing the complete datasets. In the rightmost column, the average
number of source shapes from which parts were taken to compose
each reconstructed model.

The five image collections were reconstructed using the presented
pipeline. Running times for processing the complete datasets are
summarized in Table 1. Running times were measured on a work-
station with two Intel Xeon E5-2660 processors. Our implementa-
tion is in Matlab and was not optimized. Examples of reconstruc-
tions are shown in Figures 8 and 9. For each input image, the fig-
ures show the computed image segmentation and the reconstructed
3D model. For reference, the figures also show the most similar
pre-existing model, retrieved using multi-scale HOG. Reconstruc-
tions synthesized by the presented approach reproduce the objects
depicted in the images more accurately than pre-existing models.
This is validated quantitatively in Section 7.1. Additional results
are provided in supplementary material.

7.1 Evaluation

We have conducted a quantitative evaluation of each component
of the presented pipeline. The evaluation was performed on three
datasets: Windsor chairs, bicycles, and guns. Three human assis-
tants were employed to create detailed ground-truth data.

Pose estimation. We evaluated the accuracy of the pose estimation
approach presented in Section 4 on 200 randomly sampled images
from each dataset. To create a ground-truth camera pose for each
image, three annotators manually selected a similar shape from the

shape collection and manually manipulated the camera around the
chosen shape to match the view in the image.

We compared the camera poses produced by our approach, which is
based on joint estimation over an image collection, to camera poses
produced by the approach of Su et al. [2014], which estimates a
camera pose for each image separately. Accuracy was measured by
angular deviations from ground truth. Figure 6 shows cumulative
distributions of angular deviations. The average angular deviation
of poses computed by our approach was 8.3◦, the average angular
deviation of poses produced by the reference approach was 16.4◦.
The variance among the human annotators was 7.2◦.

Angular deviation
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Figure 6: Evaluation of camera pose estimation. Left: ground-
truth poses created by human annotators using reference database
shapes. Right: cumulative distributions of angular deviations from
ground truth on three datasets. The presented approach signifi-
cantly outperforms the reference approach.

Pixel-level correspondences. We now evaluate the accuracy of
pixel-level correspondences estimated by the presented pipeline as
described in Section 5. To obtain ground-truth correspondences,
we randomly sampled 20 pairs of images per dataset. Each pair
consists of a natural image and a corresponding rendered image.
Human annotators marked sets of corresponding pixels in each pair.
Figure 7 shows some of these manually estimated correspondences.
Accuracy of pixel-level correspondences is measured by pixel dis-
tance from ground truth. We compare the accuracy of the presented
approach to the accuracy of correspondences estimated by the ap-
proach of Su et al. [2014]. Cumulative error distributions are shown
in Figure 7. The average accuracy of our approach is 3.8 pixels, the
average accuracy of the reference approach is 6.4 pixels.
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Figure 7: Evaluation of pixel-level correspondences. Left: ground-
truth correspondences marked by human annotators. Right: cumu-
lative distributions of distances from ground truth. The presented
approach significantly outperforms the reference approach.

Segmentation. To evaluate the accuracy of image segmentation
performed by the presented approach, we selected 20 images per
dataset. Each of these images was manually segmented by hu-
man annotators. For reference, the annotators were given images
of 10 shapes from each dataset, rendered from multiple views. The
shapes were chosen based on the quality of their pre-existing seg-
mentation and rendered such that this segmentation is apparent. Ex-
amples of ground-truth segmentations produced by the annotators
are shown in Figure 10.



Figure 8: Results on four datasets. From left to right in each column: Web image, computed segmentation, 3D model reconstructed by our
approach (two views, green), and closest pre-existing model, shown for reference (blue).



Figure 9: Results on the office chairs dataset, arranged as in Figure 8.

Image segmentations produced by our complete approach were
compared to segmentations produced by the same approach when
the input consists of only a single natural image along with the
complete shape collection. As a baseline, we also segmented each
image using normalized cuts, for which parameters were set to pro-
duce a similar number of segments [Shi and Malik 2000]. Accuracy
was evaluated using the Rand index [Unnikrishnan et al. 2007]. The
results are shown in Figure 10. Segmenting the image collection
jointly improves accuracy significantly.

Chairs Bikes Guns
Joint 5.9 8.9 12.1

Individual 13.5 16.1 16.7
Norm. cuts 35.1 37.1 39.1

Human 3.6 4.9 5.6

Figure 10: Evaluation of image segmentation. Left: images and
ground-truth segmentations. Right: Rand index scores for the
presented joint analysis approach, an ablated version of the pre-
sented approach that only considers a single natural image at a
time (along with the complete set of rendered images), normalized
cuts, and human consistency. The presented approach significantly
outperforms the alternatives.

Reconstruction accuracy. Finally, we evaluate the accuracy of
3D models produced by the presented approach. For this exper-
iment, we randomly sampled 10% of the pre-existing models in
each dataset, removed them from the input model collection, and
rendered each model from a random camera pose. Lighting and
material parameters were set to approximate conditions observed
in natural images. The synthesized images were added to the im-
age collection and the presented approach was used to create 3D
reconstructions.

Reconstruction accuracy was measured using the average Euclidean
distance of the synthesized model to the ground-truth shape. Dis-
tance was computed by distributing 1000 samples uniformly on
each surface and evaluating nearest-neighbor distances from the re-
construction to the ground-truth surface. In addition, to evaluate
the detailed quality of local surface geometry, we measured angular
deviations of the normals of nearest-neighbor pairs.

As a baseline, we measured the accuracy of the most accurate pre-
existing model: that is, the model that minimizes the average Eu-
clidean distance to the ground-truth surface. This baseline rep-
resents the performance of an oracle that retrieves the best pre-
existing model. In addition, we measured the accuracy of depth
maps synthesized by the approach of Su et al. [2014]; the output
of this approach is a point cloud that models only one aspect of
the object, but its accuracy can still be estimated by computing the
average Euclidean distance to the ground truth shape.

The results are reported in Figure 11. The average accuracy of re-
constructions produced by our approach is 0.031d, where d is the
diameter of the ground-truth model. In comparison, the average
accuracy of the best pre-existing model is 0.082d. The average ac-
curacy of the depth maps produced by the approach of Su et al. is
0.061d, considerably worse than the accuracy of our reconstruc-
tions. Note that the asymmetric distance measure we use does not
penalize the approach of Su et al. for covering only the visible front-
facing parts of the object, but does evaluate the accuracy of back-
facing and occluded surfaces in reconstructions produced by our
approach. Despite this stringent protocol, our accuracy is better by
a factor of 2. A qualitative comparison is shown in Figure 12.
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Figure 11: Evaluation of reconstruction accuracy. Left: cumu-
lative distributions of Euclidean distances from reconstruction to
ground-truth shape. Right: cumulative distributions of angular dis-
tances of reconstructed normals and corresponding ground-truth
normals. Our approach is much more accurate.

The asymmetric distance measure, which was used to maximize
the reported accuracy for the approach of Su et al., is permissive of
incomplete reconstructions and does not fully characterize the per-
formance of our pipeline. When symmetric Euclidean distance is



evaluated, averaging over distances from reconstruction to ground-
truth as well as from the ground-truth to the reconstruction, the ac-
curacy of our approach remains 0.033d, while the accuracy of the
best pre-existing model drops to 0.145d.

We have also evaluated the effect of the final optimization stage,
described in Section 6, on reconstruction accuracy. To this end, we
measured the accuracy of the initial assembled models before the
optimization. The results are also reported in Figure 11. The aver-
age accuracy at initialization is 0.056d. While these initial models
are already more accurate than the baselines, the optimization stage
is important. The impact is particularly significant for local details,
as indicated by the angular error distributions.

(a) Input (b) Same viewpoint (c) Different viewpoint

Figure 12: Qualitative comparison to depth maps produced by the
approach of Su et al. [2014]. (a) Input images. (b) Reconstructions
synthesized by our approach and depth maps synthesized by the
approach of Su et al., shown from the original viewpoint. (c) Same
reconstructions and depth maps shown from a different viewpoint.

7.2 Applications

The motivating application of this work is the creation of very large
databases of 3D models, which can be used for computer graph-
ics applications and for training computer vision systems. In this
section we present two additional applications that do not entail
large-scale reconstruction. The first is demonstrated in Figure 13.
Given an image of an object, the presented approach can be used to
reconstruct a 3D model of the depicted object. This reconstruction
can be textured by projecting the image colors onto the model. To
assign colors to occluded surfaces, we use symmetry and simple
closest-point color propagation. More sophisticated color mapping
approaches can be used [Kholgade et al. 2014]. The textured model
can now be rendered from different viewpoints, thus enabling 3D
manipulation of objects depicted in photographs.

Another application utilizes three-dimensional understanding of de-
picted objects to enable advanced image search. Using novel views
of an object depicted in an image, synthesized as described above,
we can search for images of similar objects seen from different per-
spectives. This is illustrated in Figure 14. The figure shows im-
ages retrieved by distance in HOG space. When synthesized images
from novel views are used, the retrieved objects are similar to the
object depicted in the original image, despite dissimilarity of im-
age features. Note that both applications use textured models and
can be hindered by imprecise alignment of the reconstruction to the
original image.

Input Novel views

Figure 13: Given a single image of an object, our approach can be
used to manipulate the depicted object in 3D.

Original

Synthesized Retrieved images

Figure 14: Top: search with the original image. Bottom: search
with a synthesized image of the same object from a different view.
Synthesized images of different aspects can be used to identify ad-
ditional relevant images.

8 Discussion

We presented a single-view reconstruction approach that can create
3D models of objects depicted in Web images. The approach has
a number of limitations that suggest fruitful directions for future
work. First, we rely on the availability of initial segmentations of
the input shapes. While our approach is robust to noise in these
segmentations, it would be handicapped if the provided shape col-
lection is missing segmentation information altogether: the pipeline
would essentially reduce to retrieving a complete shape and fitting
it to image contours. While many existing 3D models have useful
segmentations, we found that some types of objects, such as bot-
tles and shoes, generally come in one piece. Furthermore, models
produced by range scanning usually emerge as fused shapes. Tech-
niques for compatible shape segmentation could be applied in this
case [Huang et al. 2011]. Since our approach can utilize a compara-
tively small shape collection to reconstruct a large image collection,
some manual assistance in segmenting the initial shapes could also
be employed. This investment would then be leveraged to yield a
much larger set of models.

The presented approach will fail to accurately reconstruct the im-
ages if appropriate parts are not present in the shape collection or if
they are not correctly identified by the computed correspondences.
This is illustrated in Figure 15. Furthermore, our current nonrigid
deformation formulation cannot match detailed geometry, such as



Figure 15: Failure cases. From left to right: erroneous pose estimation, incomplete segmentation, inability to retrieve sufficiently similar
parts, poor composition.

ornamentation, if it was not originally present.

Another challenge is scalability. Our current implementation is
not optimized and cannot handle Web-scale datasets. We believe
that such massive scalability is possible and hope that the presented
ideas will inform future work that will yield millions of high-quality
3D models. Our implementation will be made freely available.
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