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Abstract

Learning the structure of a graphical model is a
fundamental problem and it is used extensively
to infer the relationship between random vari-
ables. In many real world applications, we usu-
ally have some prior knowledge about the under-
lying graph structure, such as degree distribution
and block structure. In this paper, we propose a
novel generative model for describing the block
structure in general exponential families, and op-
timize it by an Expectation-Maximization(EM)
algorithm with variational Bayes. Experimental
results show that our method performs well on
both synthetic and real data. Furthermore, our
method can predict overlapping block structure
of a graphical model in general exponential fam-
ilies.

1 INTRODUCTION

Graphical models are an important tool to describe and
model real world data in various fields such as nature lan-
guage processing, computation biology and image analysis.
Learning the structure of a graphical model is thus essen-
tial since it provides a convenient way to model conditional
independence among variables for further analysis. Plenty
of work has been done for some specific settings of this
structure learning problem. For Gaussian Graphical Mod-
els (GGMs), it is well known that conditional independence
is encoded in the precision matrix. Neighborhood estima-
tion [19] and log-likelihood maximization with l1 penalty
[5, 11, 30] have been developed to estimate the structure
of GGMs. Furthermore, for the Ising, Poisson and other
models in exponential families, a consistent neighborhood
estimator is proposed by Ravikumar et al [24] and Yang
et al [29], which apply a logistic regression and a general-
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ized linear model with l1 penalty, respectively, to learn the
underlying graph structure.

Recently, incorporating prior knowledge into structure
learning has drawn much attention because the graph un-
der estimation in many real-world applications usually has
some intrinsic properties, such as scale free [9, 16], block
structure [3, 17, 22, 26] and other topological constraints
[10]. Amongst those properties, the block structure of a
graph is of special interest for biological networks. For
example, in a protein-protein interaction network, proteins
are more likely to form a pathway or complex to expres-
sion a specific function [25]. It is straightforward to esti-
mate the graph first, and then apply a clustering algorithm
such as spectral clustering [27, 28] or Mixed-Membership
Stochastic Blockmodel (MMSB) [1, 12, 13] to obtain block
structure. However, simultaneously inferring the graph and
block structure may improve the result in terms of both
cluster accuracy and graph estimation [22, 26], especially
when the data is limited. To the best of our knowledge,
existing works that focusing on block structure in graph-
ical models are all based on Gaussian graphical models
[3, 15, 17, 18, 26] or factor models [22], and can only
be used to infer hard clustering and non-overlapping block
structure.

This paper proposes a generative model that can (1) ap-
ply to a graphical model on exponential families, (2) infer
the underlying soft clusters as well as overlapping blocks,
and (3) generate graph and block structure at the same time
with better accuracy than those generated by a heuristic ap-
proach. The reason why we want to infer them together is
that the hidden block structure can actually help decide the
penalty parameters. For example, we might increase the
penalty parameters if two nodes are from different blocks
because the probability that there is an edge between them
is small, and also for the converse. In the rest of the paper,
we first describe some related work and notations in Sec-
tion 2, and then present our method in Section 3. Finally,
the results for synthetic data and a microRNA network data
and the conclusions are presented in Section 4 and 5, re-
spectively.

*These two authors contributed equally to this work
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2 RELATED WORK & NOTATION

Let x = (x1, x2, . . . , xp) be a random vector from a multi-
variate Gaussian distribution, Xn×p the observed data, and
n the number of samples. It has been proved that xi and xj
are conditionally independent if and only if Ωij = 0, where
Ω is the precision matrix of the Gaussian distribution [19].
We can also use a graph G = (V,E) to represent the rela-
tionship among the p random variables x1, x2, ..., xp where
V and E are the vertex and edge sets, respectively. Mean-
while, V is the set of the p variables and E models con-
ditional dependency between the variables. To obtain a
sparse graph, some methods have been proposed to esti-
mate the sparse precision matrix [5, 11, 19, 30] by maxi-
mizing the l1 penalized log-likelihood, i.e.,

Ω̂ = arg max
Ω�0

log det(Ω)− tr(ΩΣ̂)− λ
∑
i≤j

|Ωij |, (1)

where λ is the regularizer that controls the sparsity level
and Σ̂ is the empirical covariance matrix. The formulation
defined in Eq. (1) can be efficiently optimized by graphical
lasso [11].

Another line of work first estimates the neighborhood
N̂(xa) for each random variable xa, i.e. node a, and then
constructs the graph as the union of all neighborhoods.

In GGMs, the neighborhood of one node can be estimated
by Lasso as follows,

ŵa = arg min
1

n
‖Xa −X−awa‖22 + λ‖wa‖1, (2)

where Xa is the a-th column of X and X−a is the whole
data matrix excluding column a.

More generally, consider the graphical model where its
conditional distribution can be written as an exponential
form with linear interactions, i.e.,

P (xa|x−a, wa) = q0(xa) exp(
∑
b

wabxaxb −D(x−a, wa)),

(3)

where x−a indicates all random variables except xa, q0(x)
is the base measure, wa is the model parameter and
D(x−a, wa) is the log-normalizing constant. Given the ob-
served data Xn×p, the conditional log-likelihood is

l(Xa, wa) =
1

n

n∑
i=1

∑
b 6=a

wabX
i
aX

i
b +D(wa, X−a), (4)

and its l1 regularized estimator is

ŵa = arg min
wa

l(Xa, wa) + λa‖wa‖1. (5)

The neighbor of a can then be estimated as
N̂(a) = {b ∈ V/a : ŵab 6= 0}. The problem (5)
is usually a linear model (in GGMs) or a generalized
linear model (in Ising or Potts model) with l1 penalty,
which can be solved efficiently by methods like iterative
soft-thresholding [7]. The advantage of this estimator
is that it has both sparsity and consistency [19, 24, 29].
Further it can be easily implemented and parallelized, so it
is scalable for very large scale data.

For graphical models with block structure, most of existing
work focused on GGMs. Marlin et al [17] proposed a
two-stage Bayesian model, in which a spike and slab like
prior based on network with block structure is applied
to generate model parameters (w), and the data is then
generated by linear regression given w. The posterior is
optimized by variational inference.

Ambroise et al [3] used hidden indicator variables Z to
denote the cluster assignment, where only one element
of Z is equal to one, and all the others are zero. Then
the precision matrix is estimated by maximizing the
log complete-data likelihood spreading over Z. Since
summing up all configurations of Z is intractable, an EM
algorithm is employed to perform the inference.

Determining the number of clusters K is still challenging,
and the two previous methods use a heuristic split approach
and ICL (integrated complete likelihood) criterion respec-
tively. To solve this issue, Marlin et al [18] introduced a
novel prior and performed MAP estimation on the model
so that the model can automatically determine the number
of blocks. Furthermore, Sun et al [26] proposed a Bayesian
method that used Chinese Restaurant Process and Wishart
prior to model the number of clusters and precision matrix
Ω, respectively, and Gibbs sampling to estimate the pos-
terior of block membership variables. Besides, Palla et al
[22] proposed a nonparametric Bayesian method to clus-
ter variables in factor models. Note that nearly all of these
work only focus on GGMs, and assume a non-overlapping
or hard clustering block structure.

3 Methods

In this section we present a generative process to model
the dependency between random variables. Assuming that
the number of clusters K is known, our method can be
briefly described as follows. We first use MMSB to gen-
erate a block structured network. That is, we sample the
hidden variables Θ from some prior distribution P (Θ|α, η)
specified by MMSB, where α and η are hyper parameters.
Then given Θ, we sample the model parameters w from a
Laplace prior P (w|Θ). Finally, we sample the data from
P (X|w) in a pseudo-likelihood manner.
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3.1 A Generative Model
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Figure 1: Graphical model representation for cluster struc-
ture

We describe our model in a top-down fashion:

• Sample cluster strength βk ∼ Beta (η) for each clus-
ter 1, . . . ,K.

• Sample cluster membership πa ∼ Dirichlet(α) for
each node a = 1, . . . , p.

• For each pair of nodes a and b,

– Sample interaction indicator za→b ∼ πa.
– Sample interaction indicator za←b ∼ πb .

– Compute rab = β
1(za→b=za←b)
za→b ε1−1(za→b=za←b)

– Sample wab ∼ Laplace(ρab(rab)) =
1

2ρab
exp(− |wab|

ρab
)

• For each node a,

– Fit the data by generalized linear model,
i.e. xa|x−a ∼ q0(xa) exp(

∑
b6=a wabxaxb −

D(x−a, wa)),

where ε is the probability that there is an edge between
different clusters. za→b, za←b are K dimension indicator
vectors, i.e. zka→b = 1 means node a is in cluster k. We
also use za→b = k to denote the same thing if the context
is clear. The relationship between random variables is also
described in Figure 1. In the first three steps, the algorithm
generates a graph with overlapped block structure, and in
the last step, it fits the data by conditional distribution in
Eq. 3. Note that in the third step, ρab(rab) is a function
that decides the penalty for edge (a, b). The higher the
value of ρab, the more likely that there is an edge between
nodes a and b. Since rab is the probability that there is an
edge between a and b, we set ρab = c · rab, where c is a
hyper parameter, so that the penalty for higher rab is lower,
and vice versa. To simplify the notation, we denote Θ as
the union of hidden parameters {β, π, z}.

Based upon the proposed model above, we can write down
the complete data likelihood P (X,w,Θ).

Proposition 1. The complete data likelihood of the model
described above can be written as

P (X,w,Θ) = P (X|w)P (w|Θ)P (Θ)

=

n∏
i=1

exp(

p∑
a=1

p∑
b=1

wabX
i
aX

i
b + C(Xa)−D(X−a))

∏
a,b

1

2ρab(rab)
exp(− |wab|

ρab(rab)
)

∏
k

1

B(ηk, ηk)
βηk−1
k (1− βk)ηk−1

∏
a≤b

∏
k

π
zka→b

a,k π
zka←b

b,k

∏
a

1

B(α)

∏
k

παk−1
a,k , (6)

where B(η, η) is a Beta function and B(α) =
∏K

i=1 Γ(αi)

Γ(
∑k

i=1 αi)

is the multivariate Beta function. The proof is obvious ac-
cording to Bayes rule.

3.2 Optimization

We estimate w by maximizing its posterior given data X ,
i.e.

ŵ = arg max
w

logP (w|X) = arg max
w

logP (X,w). (7)

However, the distribution of w depends on the hidden vari-
able Θ, which encodes all the cluster structure information.
If we marginalize over the hidden variables Θ, we obtain

ŵ = arg max
w

log
∑
Θ

P (X,w,Θ), (8)

where the summation is intractable because it is over all
possible values of the hidden variables. Here we introduce
an EM algorithm to optimize it. To do so we need to com-
pute the following conditional expectation:

Q(w|wt) =EΘ|X,wt [logP (X,w,Θ)]

=
∑
Θ

P (Θ|wt) logP (X,w,Θ). (9)

Unfortunately, the calculation of Q(w|wt) is still in-
tractable since P (Θ|wt) cannot be factorized. To deal
with this, we first use variational approach to approximate
P (Θ|wt) and then the classical EM approach.

3.2.1 Expectation Step

In the E step, the parameter w is assumed to be known as
wt. Here we need to approximate the posterior of Θ by its
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mean field variational probability density q(Θ). Therefore
Q(w|wt) can be approximated by

Q̂(w|wt) =
∑
Θ

q(Θ) logP (X,w,Θ).

To simplify the calculation, we approximate the Laplace
distribution P (wab|Θ) by discretizing wab into a binary
variables ŵab. More specifically, we approximate P (Θ|wt)
as

P (β, π, z|w) =
1

P (w)
P (w|z, β)P (z|π)P (π|α)P (β|η)

≈
∏
k

q(βk|λk)
∏
a

q(πa|γa)∏
a≤b

q(za→b|φa→b)q(za←b|φa←b), (10)

where q(·) is variational distribution, and λ, γ, φ are vari-
ational parameters. To narrow the gap between its varia-
tional approximation and posterior distribution, we maxi-
mize the evidence lower bound (ELBO), which is equiva-
lent to minimizing the KL divergence. To prove the equiv-
alence, note that

KL(q(Θ)‖P (Θ|wt)) =
∑
Θ

q(Θ) log
q(Θ)

P (Θ, wt)
+ logP (wt),

(11)

where the first term in the right hand side of Eq. (11) is
negative ELBO.

Proposition 2. Supposing that q(Θ) can be decomposed
according to Eq. 10, the approximated ELBO (denoted as
L) then can be written as:

L ≈Eq[logP (w̄|z, β)P (z|π)P (β)P (π)]

− Eq[log q(β|λ)q(z|φ)q(π|γ)]

=
∑
k

Eq[log p(βk|ηk)]−
∑
k

Eq[log q(βk|λk)

+
∑
a

Eq[log p(πa|α)−
∑
a

Eq[log q(πa|γa)]

+
∑
a,b

Eq[log p(za→b|πa)] + Eq[log p(za←b|πb)]

−
∑
a,b

Eq[log q(za→b|φa→b)] + Eq[log q(za←b|φa←b)]

+
∑
a,b

Eq[log p(w̄ab|za→b, za←b, β)]. (12)

For detailed derivation, which will be used for next
proposition, please refer to appendix A.

The maximization procedure is usually optimized by coor-
dinate ascent algorithm. However, it would be extremely

slow when the number of nodes is large. The reason is
that before updating global variables λ and γ, we need
to compute all n2 pairs of local variables (φa→b, φa←b),
which is a waste in the first several iterations because
the parameters are initialized randomly. Hence we apply
stochastic variational inference (SVI) [12, 14] to further
speed up computation. In each step of SVI, we use a noisy
estimate of gradient from a subsample of nodes for global
variables.

Proposition 3. Given a pair of nodes (a, b), the estimated
gradient for each global variable is

∂γa,k = αk +
N(N − 1)

2
φka←b − γa,k

∂λk,i = ηk,i +
N(N − 1)

2
φka←b · φka→b · ŵab,i − λk,i,

(13)

and the optimal for local variables are

φka→b|ŵab = 1 ∝ exp

(
ψ(γak)− ψ(γa) + φka←b(ψ(λk1)

− ψ(λk)) + (1− φka←b) log ε

)
φka→b|ŵab = 0 ∝ exp

(
ψ(γak)− ψ(γa) + ψka←b(ψ(λk2)

− ψ(λk)) + (1− φka←b) log(1− ε)
)
,

(14)

where ψ(x) is the digamma function, ŵab,1 = ŵab,
ŵab,2 = 1− ŵab, γa =

∑
k γak and λk = λk1 + λk2. The

derivation for φa←b is similar.

Sketched Proof:
Following proposition 2 and detailed computation in Ap-
pendix, the gradient for γa,j is

∂L

γa,j
=

K∑
k=1

−∂Eq[log πa,k]

∂γa,j
(
N(N − 1)

2
φa←b,k + αk − γa,k)

(15)

Given exponential family

P (x|w) = q0(x) exp(w · T (x)−D(w)), (16)

we have

Eq[log πa,k] =
∂D(γ)

∂γa,k

∂2 log p(x|w)

∂wi∂wj
=− ∂2D(w)

∂wi∂wj
(17)
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Substituting ∂Eq [log πa,k]
∂γa,j

in Eq. 15, we have

∂L

γa,j
=

K∑
k=1

−∂
2 log q(πa|γa)

∂γa,j∂γa,k
(
N(N − 1)

2
φa←b,k + αk − γa,k)

(18)

After multiplying Eq.18 by the inverse of the Fisher infor-
mation matrix of q, we obtain the update for global variable
γ. The proof for λ is similar.
The derivation for local variables is obvious by using the
fact that E[log πak] = ψ(γak) − ψ(γa) if πa follows the
Dirichlet distribution.

We summarize the E step of our algorithm in algorithm 1.
We also use the technique proposed by Gopalan et al [13]
to determine the number of blocks (i.e., K).

Algorithm 1 Stochastic Variational Inference (E-Step)
Initialize γa, λk randomly, τ is a parameter
for t = 1 to MAX ITERATION do

Sample a pair of nodes (a, b) randomly
Compute optimal of local variables based on Eq. 14
Compute gradient of global variables based on Eq. 13
Compute step size st = 1/tτ

Update global variables by g → g + st∂g
end for

3.2.2 Maximization Step

Now we can approximate Q(w|wt) by substituting
P (Θ|wt) with its variational approximation q(Θ), and in-
fer w from q(Θ). Plugging in the complete log-likelihood
in Eq. 6,

Q(w|wt) ≈Q̂(w|wt) = Eq(Θ)[logP (X|w)P (w|Θ)P (Θ)]

=
∑
i

∑
a,b

wabX
i
aX

i
b +D(X−a, w)

−
∑
a,b

c(
∑
k

φka→bφ
k
a←b

λk
λk1

+ (1−
∑
k

φka→bφ
k
a←b)

1

ε
)|wab|+ C. (19)

Therefore we have the following proposition.

Proposition 5. The M step is equivalent to the following
general Lasso-like optimization problem.

ŵ = arg max
w

∑
i

∑
a,b

wabX
i
aX

i
b +D(X−a, w)

−
∑
a,b

ρab|wab|, (20)

where

ρab = c(
∑
k

φka→bφ
k
a←b

λk
λk1

+ (1−
∑
k

φka→bφ
k
a←b)

1

ε
)

(21)

Note that ρ incorporates all the information we need from
hidden variables to compute the penalty term. There-
fore we can treat it as a LASSO-like problem, which
can be solved efficiently by the fast iterative shrinkage-
thresholding algorithm (FISTA) [7] or other similar algo-
rithms.

A Poisson Graphical Model Example
In this part we present an example to show how Proposi-
tion 5 works on an exponential family besides GGMs. For
Poisson Graphical Models, the log conditional probability
density function for node a can be written as

logP (Xa|X−a, wa) =Xa(wa +
∑
b6=a

wabXb)

− exp(wa +
∑
b6=a

wabXb)− log(Xa!)

Therefore the optimization problem is

max
w
− 1

n

∑
a

∑
i

(
exp(wa +

∑
b 6=a

wabX
i
b) +Xi

awa+

∑
b6=a

wabX
i
bX

i
a

)
+
∑
a,b

λab|wab|

s.t. wab = wba ∀a, b. (22)

The problem above can easily be optimized by any soft
thresholding algorithms. Note that wa is a scalar indicat-
ing the constant term for linear interactions between node
a and the others.

We summarize our algorithm as follows.

Algorithm 2 Clustering Graphical Models
Input: Xn×p

while ˆQ(wt) does not converge do
//E Step by Stochastic Variational Inference
Compute γ, λ, φ by Algorithm 1
//M Step by Lasso-like algorithm
Compute ρ by Eq. 21
Compute wt+1 by solving Eq. 20
t← t+1

end while

4 Experimental Results

In this section we present some experimental results of our
method and its comparison with a heuristic approach, i.e.
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Figure 2: Performance comparison of our method and the heuristic approach for GGMs (Top) and PGMs (Bottom) in terms
of Rand Index between clustering result (Left), and Hamming distance between graphs (Right). The standard deviation is
computed based on five simulations for each sample size.

learn the graph by generalized linear model first, and then
cluster the graph by MMSB, on synthetic data. Rand index
and Hamming distance is applied for evaluation purpose.
Rand index is a measure for the similarity of two clustering
results. Rand index ranges from 0 to 1, with 1 indicating
the exact match and 0 the worst. Hamming distance mea-
sures the distance between two graphs, with 0 indicating
that two graphs are same. We further apply our method to
a RNA data set to show that it can detect some biologically
meaningful clusters.

4.1 Synthetic Data

Suppose we want to generate a network with p random
variables and K clusters. We can use a simple version of
MMSB model to generate the graph. In particular, we set
βk (the probability that there is an edge within block k, i.e.
cluster strength) to 0.2 for k = 1, . . . ,K. We also assign
γa to block k (γak = 1) with probability 1

K . Finally we
compute rab according to the third step of our model for
each pair of nodes a and b, and sample an edge between a
and b by probability rab. Furthermore, we set ε to 0.02, p
to 128, and K to 4. Given the graph, we can then sample
the data correspondingly.

To evaluate performance of our model more precisely, two
kinds of graphical models in the exponential family are

used: Gaussian Graphical Models (GGMs) and Poisson
Graphical Models (PGMs). We use the heuristic approach
(i.e., estimate the graph first before clustering it) as the
baseline. Note that the expectation of estimated πak for
each node a can be treated as the probability that node a is
in block k. To compare with the ground truth, we assign
node a to bock l such that πal is maximized over all πak,
k = 1, . . . ,K.

For GGMs, we set the precision matrix element Ωab = 0.3
if there is an edge between node a and node b, and 0 other-
wise. To make sure Ω is positive definite, we set its diag-
onal to the absolute of the minimum eigenvalue of Ω plus
0.2. For PGMs, the conditional distribution for node a is

P (Xa|X−a, wa) = exp(Xa

∑
b6=a

wabXb − log(Xa!)

−A(wa, X−a)), (23)

where log(Xa!) is the base measure and A(wa, X−a) is
log-normalizing constant. Some simple algebra can show
that A(wa, X−a) = exp(

∑
b 6=a wabXb) and wab ≤ 0 for

all a, b so that A(w) <∞ [8]. Given the conditional distri-
bution, Gibbs sampling is used to generate simulated data
for PGMs.

We set p = 128 for both GGMs and PGMs. The
simulation is conducted for each sample size N , where
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Figure 3: The estimated network from a set of breast cancer miRNA data. The five colors in the graph indicate different
clusters, and bigger nodes imply the overlapping nodes. Most of the clusters are clear (Eg. the yellow, blue and green
clusters).

N ∈ {64, 96, 128, 192, 256}, i.e. {0.5, 0.75, 1, 1.5, 2} ×
p, for GGMs. For PGMs, we set sample size N to
{96, 128, 196, 256, 384}, i.e. {0.75, 1, 1.5, 2, 3} · p. The
simulation results are illustrated in Figure 2. It shows that
our algorithm outperforms the heuristic approach for nearly
all sample sizes in terms of both clustering accuracy (Rand
Index) and graph estimation accuracy (Hamming distance).
As for running time, our EM algorithm is about two times
slower than heuristic approach since we use warm start.

4.2 Real Data

To test the performance of our method, we apply it to a
breast cancer microRNA (miRNA) data set from next gen-
eration sequencing data. The data set is obtained from Can-
cer Genome Atlas (TCGA) [21], and preprocessed accord-
ing to the method in [2]. The final dataset has 416 variables
and 452 samples. An EM Poisson graphical model with
ε = 0.05 is fitted to estimate and cluster the graph at the
same time. Note that GGMs cannot be easily applied here
because the data consist of counts. After removing clus-
ter with size less than 5, the final resulting network with
374 miRNAs is illustrated in Figure 3, where the color in-
dicates our clustering result. Bigger nodes indicates “over-
lapping” nodes that probably play the role of connecting
two different blocks. Although we cannot evaluate our re-
sult based on Rand index or Hamming distance since the la-

In this case, a node is called an overlapping node if it belongs
to two blocks with probability larger than or equal to 0.4

bels of cluster assignment as well as network are not avail-
able, there are still several interesting results from a bio-
logical perspective. For example, our algorithm identifies
8 overlapping nodes (i.e., miRNAs). Amongst them, it is
known that HSA-MIR-146A[23], HSA-MIR-200B[4] and
HSA-MIR-200C [4] play a very important role in identi-
fying breast cancer gene targets. In contrast, other models
such as GGMs or PGMs cannot identify such targets since
only hard clustering is involved. Further, those overlap-
ping node cannot be identified by simply selecting nodes
with highest degree since their degrees are 10, 7, 7, 4, 8,
7, 7 and 5 respectively, while the 8-th highest degree of all
nodes is 14.

Our clustering result is also consistent with some biologi-
cal experimental results. For example, in the purple cluster,
the non-coding miRNAs HSA-LET-7g, MIR-200C, HSA-
MIR-181B-1 and HSA-MIR181B are all associated with
Chemoresponse to S-1 in Colon Cancer [20]. In the red
cluster, the HSA-LET-7A family members are a modula-
tor of KLK6 protein expression that is independent of the
KLK6 copy number status. Further, the miRNAs which
have been identified to have no direct relationship with
KLK6 copy number status, such as HSA-MIR-296 and
HSA-MIR-296, do not apprear in the red cluster[6]. On
the other hand, empirical approach fails to detect such in-
formation.



Inferring Block Structure of Graphical Models in Exponential Families

5 Conclusions

We present a generative model that can simultaneously de-
tect the overlapping block structure and estimate the graph
by applying an EM algorithm with variational inference.
Experimental results show that our method outperforms the
heuristic approach on both synthetic and real data. In par-
ticular, our algorithm not only applies to Gaussian Graph-
ical models, but also to all kinds of models belonging to
general exponential families, such as Poisson distribution
and multinomial distribution. Besides, our method can ob-
tain a soft clustering result and detect overlapping nodes
due to the application of MMSB.

In future we will work on the derivation and improvement
of our method in high dimensional data (i.e. n � p) set-
tings, where it shall be more effective and helpful. The
reason is that with enough data, one can always estimate
graph first, then cluster it. Furthermore, theoretical results
also need to be established for our method, since we do not
have consistent guarantee as of yet.
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