
Discriminative Metric Learning by
Neighborhood Gerrymandering

Shubhendu Trivedi, David McAllester, Gregory Shakhnarovich
Toyota Technological Institute

Chicago, IL - 60637
{shubhendu,mcallester,greg}@ttic.edu

Abstract

We formulate the problem of metric learning for k nearest neighbor classification
as a large margin structured prediction problem, with a latent variable representing
the choice of neighbors and the task loss directly corresponding to classification
error. We describe an efficient algorithm for exact loss augmented inference, and
a fast gradient descent algorithm for learning in this model. The objective drives
the metric to establish neighborhood boundaries that benefit the true class labels
for the training points. Our approach, reminiscent of gerrymandering (redrawing
of political boundaries to provide advantage to certain parties), is more direct in
its handling of optimizing classification accuracy than those previously proposed.
In experiments on a variety of data sets our method is shown to achieve excellent
results compared to current state of the art in metric learning.

1 Introduction

Nearest neighbor classifiers are among the oldest and the most widely used tools in machine learn-
ing. Although nearest neighor rules are often successful, their performance tends to be limited by
two factors: the computational cost of searching for nearest neighbors and the choice of the metric
(distance measure) defining “nearest”. The cost of searching for neighbors can be reduced with ef-
ficient indexing, e.g., [1, 4, 2] or learning compact representations, e.g., [13, 19, 16, 9]. We will not
address this issue here. Here we focus on the choice of the metric. The metric is often taken to be
Euclidean, Manhattan or χ2 distance. However, it is well known that in many cases these choices are
suboptimal in that they do not exploit statistical regularities that can be leveraged from labeled data.
This paper focuses on supervised metric learning. In particular, we present a method of learning a
metric so as to optimize the accuracy of the resulting nearest neighbor classifier.

Existing works on metric learning formulate learning as an optimization task with various constraints
driven by considerations of computational feasibility and reasonable, but often vaguely justified
principles [23, 8, 7, 22, 21, 14, 11, 18]. A fundamental intuition is shared by most of the work
in this area: an ideal distance for prediction is distance in the label space. Of course, that can not
be measured, since prediction of a test example’s label is what we want to use the similarities to
begin with. Instead, one could learn a similarity measure with the goal for it to be a good proxy
for the label similarity. Since the performance of kNN prediction often is the real motivation for
similarity learning, the constraints typically involve “pulling” good neighbors (from the correct class
for a given point) closer while “pushing” the bad neighbors farther away. The exact formulation of
“good” and “bad” varies but is defined as a combination of proximity and agreement between labels.
We give a formulation that facilitates a more direct attempt to optimize for the kNN accuracy as
compared to previous work as far as we are aware. We discuss existing methods in more detail in
section 2, where we also place our work in context.

1

In the kNN prediction problem, given a point and a chosen metric, there is an implicit hidden
variable: the choice of k “neighbors”. The inference of the predicted label from these k examples is
trivial, by simple majority vote among the associated labels. Given a query point, there can possibly
exist a very large number of choices of k points that might correspond to zero loss: any set of k
points with the majority of correct class will do. We would like a metric to “prefer” one of these
“good” example sets over any set of k neighbors which would vote for a wrong class. Note that to
win, it is not necessary for the right class to account for all the k neighbors – it just needs to get
more votes than any other class. As the number of classes and the value of k grow, so does the space
of available good (and bad) example sets.

These considerations motivate our approach to metric learning. It is akin to the common, albeit
negatively viewed, practice of gerrymandering in drawing up borders of election districts so as to
provide advantages to desired political parties, e.g., by concentrating voters from that party or by
spreading voters of opposing parties. In our case, the “districts” are the cells in the Voronoi diagram
defined by the Mahalanobis metric, the “parties” are the class labels voted for by the neighbors
falling in each cell, and the “desired winner” is the true label of the training points associated with
the cell. This intuition is why we refer to our method as neighborhood gerrymandering in the title.

Technically, we write kNN prediction as an inference problem with a structured latent variable being
the choice of k neighbors. Thus learning involves minimizing a sum of a structural latent hinge loss
and a regularizer [3]. Computing structural latent hinge loss involves loss-adjusted inference — one
must compute loss-adjusted values of both the output value (the label) and the latent items (the set
of nearest neighbors). The loss augmented inference corresponds to a choice of worst k neighbors
in the sense that while having a high average similarity they also correspond to a high loss (“worst
offending set of k neighbors”). Given the inherent combinatorial considerations, the key to such a
model is efficient inference and loss augmented inference. We give an efficient algorithm for exact
inference. We also design an optimization algorithm based on stochastic gradient descent on the
surrogate loss. Our approach achieves kNN accuracy higher than state of the art for most of the data
sets we tested on, including some methods specialized for the relevant input domains.

Although the experiments reported here are restricted to learning a Mahalanobis distance in an ex-
plicit feature space, the formulation allows for nonlinear similarity measures, such as those defined
by nonlinear kernels, provided computing the gradients of similarities with respect to metric param-
eters is feasible. Our formulation can also naturally handle a user-defined loss matrix on labels.

2 Related Work and Discussion

There is a large body of work on similarity learning done with the stated goal of improving kNN
performance. In much of the recent work, the objective can be written as a combination of some
sort of regularizer on the parameters of similarity, with loss reflecting the desired “purity” of the
neighbors under learned similarity. Optimization then balances violation of these constraints with
regularization. The main contrast between this body of work and our approach here is in the form
of the loss.

A well known family of methods of this type is based on the Large Margin Nearest Neighbor
(LMNN) algorithm [22] . In LMNN, the constraints for each training point involve a set of pre-
defined “target neighbors” from correct class, and “impostors” from other classes. The set of target
neighbors here plays a similar role to our “best correct set of k neighbors” (h∗ in Section 4). How-
ever the set of target neighbors are chosen at the onset based on the euclidean distance (in absence
of a priori knowledge). Moreover as the metric is optimized, the set of “target neighbors” is not dy-
namically updated. There is no reason to believe that the original choice of neighbors based on the
euclidean distance is optimal while the metric is updated. Also h∗ represents the closest neighbors
that have zero loss but they are not necessarily of the same class. In LMNN the target neighbors are
forced to be of the same class. In doing so it does not fully leverage the power of the kNN objective.
The role of imposters is somewhat similar to the role of the “worst offending set of k neighbors” in
our method (ĥ in Section 4). See Figure 1 for an illustration. Extensions of LMNN [21, 11] allow
for non-linear metrics, but retain the same general flavor of constraints. There is another extension
to LMNN that is more aligned to our work [20], in that they lift the constraint of having a static set
of neighbors chosen based on the euclidean distance and instead learn the neighborhood.

2

x

a

b

c

d

e

f

g

h

i

j

x

a

b

c

d

e

f

g

h

i

j

Figure 1: Illustration of objectives of LMNN (left) and our structured approach (right) for k = 3.
The point x of class blue is the query point. In LMNN, the target points are the nearest neighbors of
the same class, which are points a, b and c (the circle centered at x has radius equal to the farthest
of the target points i.e. point b). The LMNN objective will push all the points of the wrong class
that lie inside this circle out (points e, f, h, i, andj), while pulling in the target points to enforce the
margin. For our structured approach (right), the circle around x has radius equal to the distance of
the farthest of the three nearest neighbors irrespective of class. Our objective only needs to ensure
zero loss which is achieved by pushing in point a of the correct class (blue) while pushing out the
point having the incorrect class (point f). Note that two points of the incorrect class lie inside the
circle (e, andf), both being of class red. However f is pushed out and not e since it is farther from
x. Also see section 2.

The above family of methods may be contrasted with methods of the flavor as proposed in [23].
Here “good” neighbors are defined as all similarly labeled points and each class is mapped into a
ball of a fixed radius, but no separation is enforced between the classes. The kNN objective does
not require that similarly labeled points be clustered together and consequently such methods try to
optimize a much harder objective for learning the metric.

In Neighborhood Component Analysis (NCA) [8], the piecewise-constant error of the kNN rule
is replaced by a soft version. This leads to a non-convex objective that is optimized via gradient
descent. This is similar to our method in the sense that it also attempts to directly optimize for
the choice of the nearest neighbor at the price of losing convexity. This issue of non-convexity
was partly remedied in [7], by optimization of a similar stochastic rule while attempting to collapse
each class to one point. While this makes the optimization convex, collapsing classes to distinct
points is unrealistic in practice. Another recent extension of NCA [18] generalizes the stochastic
classification idea to kNN classification with k > 1.

In Metric Learning to Rank (MLR)[14], the constraints involve all the points: the goal is to push
all the correct matches in front of all the incorrect ones. This again is not the same as requiring
correct classification. In addition to global optimization constraints on the rankings (such as mean
average precision for target class), the authors allow localized evaluation criteria such as Precision
at k, which can be used as a surrogate for classification accuracy for binary classification, but is a
poor surrogate for multi-way classification. Direct use of kNN accuracy in optimization objective is
briefly mentioned in [14], but not pursued due to the difficulty in loss-augmented inference. This is
because the interleaving technique of [10] that is used to perform inference with other losses based
inherently on contingency tables, fails for the multiclass case (since the number of data interleavings
could be exponential). We take a very different approach to loss augmented inference, using targeted
inference and the classification loss matrix, and can easily extend it to arbitrary number of classes.

A similar approach is taking in [15], where the constraints are derived from triplets of points formed
by a sample, correct and incorrect neighbors. Again, these are assumed to be set statically as an
input to the algorithm, and the optimization focuses on the distance ordering (ranking) rather than
accuracy of classification.

3 Problem setup

We are given N training examples X = {x1, . . . ,xN}, represented by a “native” feature map,
xi ∈ Rd, and their class labels y = [y1, . . . , yN]T , with yi ∈ [R], where [R] stands for the set

3

{1, . . . , R}. We are also given the loss matrix Λ with Λ(r, r′) being the loss incurred by predicting
r′ when the correct class is r. We assume Λ(r, r) = 0, and ∀(r, r′), Λ(r, r′) ≥ 0.

We are interested in Mahalanobis metrics

DW (x,xi) = (x− xi)
T

W (x− xi) , (1)

parameterized by positive semidefinite d × d matrices W. Let h ⊂ X be a set of examples in X .
For a given W we define the distance score of h w.r.t. a point x as

SW(x, h) = −
∑
xj∈h

DW (x,xj) (2)

Hence, the set of k nearest neighbors of x in X is

hW(x) = argmax
|h|=k

SW(x, h). (3)

For the remainder we will assume that k is known and fixed. From any set h of k examples from X ,
we can predict the label of x by (simple) majority vote:

ŷ (h) = majority{yj : xj ∈ h},
with ties resolved by a heuristic, e.g., according to 1NN vote. In particular, the kNN classifier
predicts ŷ(hW(x)). Due to this deterministic dependence between ŷ and h, we can define the
classification loss incured by a voting classifier when using the set h as

∆(y, h) = Λ (y, ŷ(h)) . (4)

4 Learning and inference

One might want to learn W to minimize training loss
∑
i ∆ (yi, hW(xi)). However, this fails due

to the intractable nature of classification loss ∆. We will follow the usual remedy: define a tractable
surrogate loss.

Here we note that in our formulation, the output of the prediction is a structured object hW, for
which we eventually report the deterministically computed ŷ. Structured prediction problems usu-
ally involve loss which is a generalization of the hinge loss; intuitively, it penalizes the gap between
score of the correct structured output and the score of the “worst offending” incorrect output (the
one with the highest score and highest ∆).

However, in our case there is no single correct output h, since in general many choices of h would
lead to correct ŷ and zero classification loss: any h in which the majority votes for the right class.
Ideally, we want SW to prefer at least one of these correct hs over all incorrect hs. This intuition
leads to the following surrogate loss definition:

L(x, y,W) = max
h

[SW(x, h) + ∆(y, h)] (5)

− max
h:∆(y,h)=0

SW(x, h). (6)

This is a bit different in spirit from the notion of margin sometimes encountered in ranking problems
where we want all the correct answers to be placed ahead of all the wrong ones. Here, we only care
to put one correct answer on top; it does not matter which one, hence the max in (6).

5 Structured Formulation

Although we have motivated this choice of L by intuitive arguments, it turns out that our problem is
an instance of a familiar type of problems: latent structured prediction [24], and thus our choice of
loss can be shown to form an upper bound on the empirical task loss ∆.

First, we note that the score SW can be written as

SW(x, h) =

〈
W,−

∑
xj∈h

(x− xj)(x− xj)
T

〉
, (7)

4

where 〈·, ·〉 stands for the Frobenius inner product. Defining the feature map

Ψ(x, h) , −
∑
xj∈h

(x− xj)(x− xj)
T , (8)

we get a more compact expression 〈W,Ψ(x, h)〉 for (7).

Furthermore, we can encode the deterministic dependence between y and h by a “compatibility”
function A(y, h) = 0 if y = ŷ(h) and A(y, h) = −∞ otherwise. This allows us to write the joint
inference of y and (hidden) h performed by kNN classifier as

ŷW(x), ĥW(x) = argmax
h,y

[A(y, h) + 〈W,Ψ(x, h)〉] . (9)

This is the familiar form of inference in a latent structured model [24, 6] with latent variable h. So,
despite our model’s somewhat unusual property that the latent h completely determines the inferred
y, we can show the equivalence to the “normal” latent structured prediction.

5.1 Learning by gradient descent

We define the objective in learning W as

min
W
‖W‖2F + C

∑
i

L (xi, yi,W) , (10)

where ‖ · ‖2F stands for Frobenius norm of a matrix.1 The regularizer is convex, but as in other
latent structured models, the loss L is non-convex due to the subtraction of the max in (6). To
optimize (10), one can use the convex-concave procedure (CCCP) [25] which has been proposed
specifically for latent SVM learning [24]. However, CCCP tends to be slow on large problems.
Furthermore, its use is complicated here due to the requirement that W be positive semidefinite
(PSD). This means that the inner loop of CCCP includes solving a semidefinite program, making
the algorithm slower still. Instead, we opt for a simpler choice, often faster in practice: stochastic
gradient descent (SGD), described in Algorithm 1.

Algorithm 1: Stochastic gradient descent
Input: labeled data set (X,Y), regularization parameter C, learning rate η(·)
initialize W(0) = 0
for t = 0, . . ., while not converged do

sample i ∼ [N]

ĥi = argmaxh [SW(t)(xi, h) + ∆(yi, h)]
h∗i = argmaxh:∆(yi,h)=0 SW(t)(xi, h)

δW =

[
∂SW(xi, ĥi)

∂W
− ∂SW(xi, h

∗
i)

∂W

] ∣∣∣∣∣
W(t)

W(t+1) = (1− η(t))W(t) − CδW
project W(t+1) to PSD cone

The SGD algorithm requires solving two inference problems (ĥ and h∗), and computing the gradient
of SW which we address below.2

5.1.1 Targeted inference of h∗i

Here we are concerned with finding the highest-scoring h constrained to be compatible with a given
target class y. We give an O(N logN) algorithm in Algorithm 2. Proof of its correctness and
complexity analysis is in Appendix.

1We discuss other choices of regularizer in Section 7.
2We note that both inference problems over h are done in leave one out settings, i.e., we impose an additional

constraint i /∈ h under the argmax, not listed in the algorithm explicitly.

5

Algorithm 2: Targeted inference

Input: x, W, target class y, τ , Jties forbiddenK
Output: argmaxh:ŷ(h)=y SW(x)

Let n∗ = dk+τ(R−1)
R e // min. required number of neighbors from y

h := ∅
for j = 1, . . . , n∗ do

h := h ∪ argmin
xi: yi=y,i/∈h

DW (x,xi)

for l = n∗ + 1, . . . , k do
define #(r) , |{i : xi ∈ h, yi = r}| // count selected neighbors from class r
h := h ∪ argmin

xi: yi=y, or #(yi)<#(y)−τ, i/∈h
DW (x,xi)

return h

The intuition behind Algorithm 2 is as follows. For a given combination of R (number of classes)
and k (number of neighbors), the minimum number of neighbors from the target class y required to
allow (although not guarantee) zero loss, is n∗ (see Proposition 1 in the App. A) The algorithm first
includes n∗ highest scoring neighbors from the target class. The remaining k − n∗ neighbors are
picked by a greedy procedure that selects the highest scoring neighbors (which might or might not
be from the target class) while making sure that no non-target class ends up in a majority.

When using Alg. 2 to find an element in H∗, we forbid ties, i.e. set τ = 1.

5.1.2 Loss augmented inference ĥi

Calculating the max term in (5) is known as loss augmented inference. We note that

max
h′
〈W,Ψ(x,h′)〉+ ∆(y, h′) = max

y′

{
max

h′∈H∗(y′)
〈W,Ψ(x,h′)〉

= 〈W,Ψ(x,h∗(x,y′))〉

+ Λ(y, y′)
}

(11)

which immediately leads to Algorithm 3, relying on Algorithm 2. The intuition: perform targeted
inference for each class (as if that were the target class), and then choose the set of neighbors for the
class for which the loss-augmented score is the highest. In this case, in each call to Alg. 2 we set
τ = 0, i.e., we allow ties, to make sure the argmax is over all possible h’s.

Algorithm 3: Loss augmented inference
Input: x, W,target class y
Output: argmaxh [SW(x, h) + ∆(y, h)]
for r ∈ {1, . . . , R} do

h(r) := h∗(x,W, r, 1) // using Alg. 2

Let Value (r) := SW(x, h(r)),+ Λ(y, r)
Let r∗ = argmaxrValue (r)

return h(r∗)

5.1.3 Gradient update

Finally, we need to compute the gradient of the distance score. From (7), we have

∂SW(x, h)

∂W
= Ψ(x, h) = −

∑
xj∈h

(x− xj)(x− xj)
T . (12)

Thus, the update in Alg 1 has a simple interpretation, illustrated in Fig 1 on the right. For every
xi ∈ h∗ \ ĥ, it “pulls” xi closer to x. For every xi ∈ ĥ \h∗, it “pushes” it farther from x; these push
and pull refer to increase/decrease of Mahalanobis distance under the updated W. Any other xi,
including any xi ∈ h∗∩ ĥ, has no influence on the update. This is a difference of our approach from

6

LMNN, MLR etc. This is illustrated in Figure 1. In particular h∗ corresponds to points a, c and e,
whereas ĥ corresponds to points c, e and f . Thus point a is pulled while point f is pushed.

Since the update does not necessarily preserve W as a PSD matrix, we enforce it by projecting W
onto the PSD cone, by zeroing negative eigenvalues. Note that since we update (or “downdate”)
W each time by matrix of rank at most 2k, the eigendecomposition can be accomplished more
efficiently than the naı̈ve O(d3) approach, e.g., as in [17].

Using first order methods, and in particular gradient methods for optimization of non-convex func-
tions, has been common across machine learning, for instance in training deep neural networks.
Despite lack (to our knowledge) of satisfactory guarantees of convergence, these methods are often
successful in practice; we will show in the next section that this is true here as well.

One might wonder if this method is valid for our objective that is not differentiable; we discuss this
briefly before describing experiments. A given x imposes a Voronoi-type partition of the space of
W into a finite number of cells; each cell is associated with a particular combination of ĥ(x) and
h∗(x) under the values of W in that cell. The score SW is differentiable (actually linear) on the
interior of the cell, but may be non-differentiable (though continuous) on the boundaries. Since the
boundaries between a finite number of cells form a set of measure zero, we see that the score is
differentiable almost everywhere.

6 Experiments
We compare the error of kNN classifiers using metrics learned with our approach to that with other
learned metrics. For this evaluation we replicate the protocol in [11], using the seven data sets in
Table 1. For all data sets, we report error of kNN classifier for a range of values of k; for each
k, we test the metric learned for that k. Competition to our method includes Euclidean Distance,
LMNN [22], NCA, [8], ITML [5], MLR [14] and GB-LMNN [11]. The latter learns non-linear
metrics rather than Mahalanobis.

For each of the competing methods, we used the code provided by the authors. In each case we tuned
the parameters of each method, including ours, in the same cross-validation protocol. We omit a few
other methods that were consistently shown in literature to be dominated by the ones we compare
to, such as χ2 distance, MLCC, M-LMNN. We also could not include χ2-LMNN since code for it is
not available; however published results for k = 3 [11] indicate that our method would win against
χ2-LMNN as well.

Isolet and USPS have a standard training/test partition, for the other five data sets, we report the mean
and standard errors of 5-fold cross validation (results for all methods are on the same folds). We
experimented with different methods for initializing our method (given the non-convex objective),
including the euclidean distance, all zeros etc. and found the euclidean initialization to be always
worse. We initialize each fold with either the diagonal matrix learned by ReliefF [12] (which gives a
scaled euclidean distance) or all zeros depending on whether the scaled euclidean distance obtained
using ReliefF was better than unscaled euclidean distance. In each experiment, x are scaled by mean
and standard deviation of the training portion.3 The value of C is tuned on on a 75%/25% split of
the training portion. Results using different scaling methods are attached in the appendix.

Our SGD algorithm stops when the running average of the surrogate loss over most recent epoch no
longer descreases substantially, or after max. number of iterations. We use learning rate η(t) = 1/t.

The results show that our method dominates other competitors, including non-linear metric learning
methods, and in some cases achieves results significantly better than those of the competition.

7 Conclusion

We propose a formulation of the metric learning for kNN classifier as a structured prediction prob-
lem, with discrete latent variables representing the selection of k neighbors. We give efficient algo-
rithms for exact inference in this model, including loss-augmented inference, and devise a stochastic
gradient algorithm for learning. This approach allows us to learn a Mahalanobis metric with an ob-
jective which is a more direct proxy for the stated goal (improvement of classification by kNN rule)

3For Isolet we also reduce dimensionality to 172 by PCA computed on the training portion.

7

k = 3
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800
N 7797 9298 20000 157 958 295 1123
C 26 10 26 10 10 10 10
Euclidean 8.66 6.18 4.79 ±0.2 75.20 ±3.0 60.13 ±1.9 56.27 ±2.5 80.5 ±4.6

LMNN 4.43 5.48 3.26 ±0.1 24.17 ±4.5 26.72 ±2.1 15.59 ±2.2 46.93 ±3.9

GB-LMNN 4.13 5.48 2.92 ±0.1 21.65 ±4.8 26.72 ±2.1 13.56 ±1.9 46.11 ±3.9

MLR 6.61 8.27 14.25 ±5.8 36.93 ±2.6 24.01 ±1.8 23.05 ±2.8 46.76 ±3.4

ITML 7.89 5.78 4.97 ±0.2 19.07 ±4.9 33.83 ±3.3 13.22 ±4.6 48.78 ±4.5

1-NCA 6.16 5.23 4.71 ±2.2 31.90 ±4.9 30.27 ±1.3 16.27 ±1.5 46.66 ±1.8

k-NCA 4.45 5.18 3.13 ±0.4 21.13 ±4.3 24.31 ±2.3 13.19 ±1.3 44.56 ±1.7

ours 4.87 5.18 2.32 ±0.1 17.18 ±4.7 21.34 ±2.5 10.85 ±3.1 43.37 ±2.4

k = 7
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 7.44 6.08 5.40 ±0.3 76.45 ±6.2 62.21 ±2.2 57.29 ±6.3 80.76 ±3.7

LMNN 3.78 4.9 3.58 ±0.2 25.44 ±4.3 29.23 ±2.0 14.58 ±2.2 46.75 ±2.9

GB-LMNN 3.54 4.9 2.66 ±0.1 25.44 ±4.3 29.12 ±2.1 12.45 ±4.6 46.17 ±2.8

MLR 5.64 8.27 19.92 ±6.4 33.73 ±5.5 23.17 ±2.1 18.98 ±2.9 46.85 ±4.1

ITML 7.57 5.68 5.37 ±0.5 22.32 ±2.5 31.42 ±1.9 10.85 ±3.1 51.74 ±2.8

1-NCA 6.09 5.83 5.28 ±2.5 36.94 ±2.6 29.22 ±2.7 22.03 ±6.5 45.50 ±3.0

k-NCA 4.13 5.1 3.15 ±0.2 22.78 ±3.1 23.11 ±1.9 13.04 ±2.7 43.92 ±3.1

ours 4.61 4.9 2.54 ±0.1 21.61 ±5.9 22.44 ±1.3 11.19 ±3.3 41.61 ±2.6

k = 11
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 8.02 6.88 5.89 ±0.4 73.87 ±2.8 64.61 ±4.2 59.66 ±5.5 81.39 ±4.2

LMNN 3.72 4.78 4.09 ±0.1 23.64 ±3.4 30.12 ±2.9 13.90 ±2.2 49.06 ±2.3

GB-LMNN 3.98 4.78 2.86 ±0.2 23.64 ±3.4 30.07 ±3.0 13.90 ±1.0 49.15 ±2.8

MLR 5.71 11.11 15.54 ±6.8 36.25 ±13.1 24.32 ±3.8 17.97 ±4.1 44.97 ±2.6

ITML 7.77 6.63 6.52 ±0.8 22.28 ±3.1 30.48 ±1.4 11.86 ±5.6 50.76 ±1.9

1-NCA 5.90 5.73 6.04 ±2.8 40.06 ±6.0 30.69 ±2.9 26.44 ±6.3 46.48 ±4.0

k-NCA 4.17 4.81 3.87 ±0.6 23.65 ±4.1 25.67 ±2.1 11.42 ±4.0 43.8 ±3.1

ours 4.11 4.98 3.05 ±0.1 22.28 ±4.9 24.11 ±3.2 11.19 ±4.4 40.76 ±1.8

Table 1: kNN errors for k=3, 7 and 11. Features were scaled by z-scoring.

than previously proposed similarity learning methods. Our learning algorithm is simple yet efficient,
converging on all the data sets we have experimented upon in reasonable time as compared to the
competing methods.

Our choice of Frobenius regularizer is motivated by desire to control model complexity without
biasing towards a particular form of the matrix. We have experimented with alternative regularizers,
both the trace norm of W and the shrinkage towards Euclidean distance, ‖W− I‖2F , but found both
to be inferior to ‖W‖2F . We suspect that often the optimal W corresponds to a highly anisotropic
scaling of data dimensions, and thus bias towards I may be unhealthy. The results in this paper are
restricted to Mahalanobis metric, which is an appealing choice for a number of reasons. In particular,
learning such metrics is equivalent to learning linear embedding of the data, allowing very efficient
methods for metric search. Still, one can consider non-linear embeddings x → φ(x; w) and define
the distance D in terms of the embeddings, for example, as D(x,xi) = ‖φ(x) − φ(xi)‖ or as
−φ(x)Tφ(xi). Learning S in the latter form can be seen as learning a kernel with discriminative
objective of improving kNN performance. Such a model would be more expressive, but also more
challenging to optimize. We are investigating this direction.

Acknowledgments

This work was partly supported by NSF award IIS-1409837.

8

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891–923, 1998.

[2] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In ICML, pages
97–104. ACM, 2006.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers.
In COLT, pages 144–152. ACM Press, 1992.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. In SoCG, pages 253–262. ACM, 2004.

[5] J. V. Davis, B. Kulis, J. Prateek, S. Suvrit, and D. Inderjeet. Information-theoretic metric
learning. pages 209–216, 2007.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part-based models. IEEE T. PAMI, 32(9):1627–1645, 2010.

[7] A. Globerson and S. Roweis. Metric learning by collapsing classes. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, NIPS, pages 451–458, Cambridge, MA, 2006. MIT Press.

[8] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components anal-
ysis. In NIPS, 2004.

[9] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary
codes. In CVPR, pages 817–824. IEEE, 2011.

[10] T. Joachims. A support vector method for multivariate performance measures. In ICML, pages
377–384. ACM Press, 2005.

[11] D. Kedem, S. Tyree, K. Weinberger, F. Sha, and G. Lanckriet. Non-linear metric learning. In
NIPS, pages 2582–2590, 2012.

[12] K. Kira and A. Rendell. The feature selection problem: Traditional methods and a new algo-
rithm). AAAI, 2:129–134, 1992.

[13] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. NIPS,
22:1042–1050, 2009.

[14] B. McFee and G. Lanckriet. Metric learning to rank. In ICML, 2010.
[15] M. Norouzi, D. Fleet, and R. Salakhutdinov. Hamming distance metric learning. In NIPS,

pages 1070–1078, 2012.
[16] M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary codes. ICML, 1:2, 2011.
[17] P. Stange. On the efficient update of the singular value decomposition. PAMM, 8(1):10827–

10828, 2008.
[18] D. Tarlow, K. Swersky, I. Sutskever, and R. S. Zemel. Stochastic k-neighborhood selection for

supervised and unsupervised learning. ICML, 28:199–207, 2013.
[19] J. Wang, S. Kumar, and S.-F. Chang. Sequential projection learning for hashing with compact

codes. In ICML, 2010.
[20] J. Wang, A. Woznica, and A. Kalousis. Learning neighborhoods for metric learning. In ECML-

PKDD, 2012.
[21] K. Q. Weinberger and L. K. Saul. Fast solvers and efficient implementations for distance metric

learning. In ICML, pages 1160–1167. ACM, 2008.
[22] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor

classification. JMLR, 10:207–244, 2009.
[23] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application

to clustering with side-information. In NIPS, pages 505–512. MIT Press, 2002.
[24] C.-N. J. Yu and T. Joachims. Learning structural svms with latent variables. In ICML, pages

1169–1176. ACM, 2009.
[25] A. L. Yuille, A. Rangarajan, and A. Yuille. The concave-convex procedure (cccp). NIPS,

2:1033–1040, 2002.

9

A Proof of correctness of Algorithm 2

First of all it is easy to see that Algorithm 2 terminates. There are k−n∗ iterations after initialization
(of the first n∗ points) and this amounts to at most a linear scan of X . We need O(N logN) time to
sort the data and then finding h∗ involves O(N), thus the algorithm runs in time O(N logN).

We need to prove that the algorithm returns h∗ as defined earlier. First, we establish the correctness
of setting n∗:
Proposition 1. Let R be the number of classes, and let #(h, y) be the count of neighbors from
target class y included in the assignment h. Then, ∆(y∗, h) = 0 only if #(h, y∗) ≥ n∗, where

n∗ =

{⌈
k+R−1
R

⌉
if ties not allowed,⌈

k
R

⌉
if ties allowed.

We prove it below for the case with no ties; the proof when ties are allowed is very similar.

Proof. Suppose by contradiction that ∆(y∗, h) = 0 and #(h, y∗) ≤ dk+R−1
R e − 1. Then, since no

ties are allowed, for all y 6= y∗, we have #(h, y∗) ≤ dk+R−1
R e − 2, and∑

y

#(h, y) ≤ (R− 1)

(⌈
k +R− 1

R

⌉
− 2

)
(13)

+

⌈
k +R− 1

R

⌉
− 1 (14)

< k, (15)

a contradiction to |h| = k.

Next, we prove that the algorithm terminates and produces a correct result. For the purposes of
complexity analysis, we consider R (but not k) to be constant, and number of examples from each
class to be O(N).
Claim 1. Algorithm 2 terminates after at most O((N + k) logN) operations and produces an h
such that |h| = k.

Proof. The elements of X can be held in R priority queues, keyed by DW values, one queue per
class. Construction of this data structure is an O(N logN) operation, carried out before the algo-
rithm starts. To initialize h with n∗ values, the algorithm retrieves n∗ top elements from the priority
queue for class y∗. An O(n∗ logN) operation. Then, for each of the iterations over l, the algorithm
needs to examine at most one top element from R queues, which costs O(logN); each such itera-
tion increases |h| by one. Thus after k − n∗ iterations |h| = k; the total cost is thus O(k logN).
Combined with the complexity of data structure construction mentioned above, this concludes the
proof.

Note that for typical scenarios in which N � k, the cost will be dominated by the N logN data
structure setup.
Claim 2. Let h∗ be returned by Algorithm 2. Then,

h∗ = argmax
h:|h|=k,∆(y∗,h)=0)

SW(x, h), (16)

i.e., the algorithm finds the highest scoring h with total of k neighbors among those h that attain
zero loss.

Proof. From Proposition 1 we know that if #(h, y) < n∗, then h does not satisfy the ∆(x, h) = 0
condition. |h| ≥ n∗ to (16) without altering the definition.

We will call h “optimal for l” if

h = argmax
h:|h|=n∗+l,#(h,y)≥n∗,∆(y∗,h))=0

SW(x, h).

10

We now prove by induction over l that this property is maintained through the loop over l in the
algorithm.

Let h(j) denote choice of h after j iterations of the loop, i.e., |h| = n∗ + j. Suppose that h(l−1) is
optimal for l − 1. Now the algorithm selects xa ∈ X , such that

xa = argmin
xi: yi=y, or #(yi)<#(y)−τ,xi /∈h

DW (x,xi) . (17)

Suppose that h(l) is not optimal for l. Then there exists an xb ∈ X for which DW (x,xb) <
DW (x,xa) such that picking xb instead of xa would produce h optimal for l. But xb is not picked
by the algorithm; this can only happen if conditions on the argmin in (17) are violated, namely, if
#(yb) = #(y)− τ ; therefore picking xb would violate conditions of optimality of h(l), and we get
a contradiction.

It is also clear that after initialization with k highest scoring neighbors in y∗, h is optimal for l = 0,
which forms the base of induction. We conclude that h(k−n∗), i.e. the result of the algorithm, is
optimal for k − n∗, which is equivalent to definition in (16).

B Runtimes using different methods

Here we include the training times in seconds for one fold of each dataset. These timings are for a
single partition, for optimal parameters for k = 7. These experiments were run on a 12-core Intel
Xeon E5-2630 v2 @ 2.60GHz.

Dataset DSLR Caltech Amazon Webcam Letters USPS Isolet
LMNN 358.11 1812.1 1545.1 518.7 179.77 782.66 1762.1
GB-LMNN 410.13 1976.4 1680.9 591.29 272.87 3672.9 2882.6
MLR 4.93 124.42 88.96 85.02 838.13 1281 33.20
MLNG 413.36 1027.6 2157.2 578.74 6657.3 3891.7 3668.9

C Experimental results using different feature normalizations

11

k = 3
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800
N 7797 9298 20000 157 958 295 1123
C 26 10 26 10 10 10 10
Euclidean - - - 26.71 ±11 37.26 ±2.3 23.39 ±5.3 58.42 ±3.7

LMNN - - - 23.53 ±7.6 26.30 ±1.6 11.53 ±6.7 43.72 ±3.5

GB-LMNN - - - 23.53 ±7.6 26.30 ±1.6 11.53 ±6.7 43.54 ±3.5

MLR - - - 24.78 ±14.2 32.35 ±4.5 14.58 ±3.5 52.18 ±2.0

ITML - - - 22.22 ±9.9 32.67 ±3.2 12.88 ±6.1 51.74 ±4.2

NCA - - - 29.84 ±8.1 33.72 ±2.1 21.36 ±4.9 54.50 ±2.0

ours - - - 21.63 ±6.1 28.08 ±2.4 14.58 ±5.4 45.33 ±2.8

k = 7
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean - - - 32.46 ±8.3 38.2 ±1.6 27.46 ±5.9 56.9 ±2.9

LMNN - - - 26.11 ±8.6 25.47 ±1.6 10.51 ±4.9 41.77 ±4.0

GB-LMNN - - - 25.48 ±10.9 25.36 ±1.7 10.51 ±4.9 41.59 ±3.6

MLR - - - 27.94 ±9.0 30.16 ±3.0 16.95 ±3.4 49.51 ±3.6

ITML - - - 22.28 ±8.8 32.88 ±3.3 13.90 ±6.3 50.59 ±4.7

NCA - - - 37.48 ±8.2 33.09 ±1.9 23.39 ±5.3 51.74 ±2.6

ours - - - 25.65 ±7.1 27.24 ±2.7 17.29 ±5.0 44.62 ±2.6

k = 11
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean - - - 35.02 ±8.9 37.57 ±2.3 30.51 ±4.8 56.55 ±2.4

LMNN - - - 49.64 ±5.7 24.84 ±2.1 10.17 ±3.8 43.19 ±2.7

GB-LMNN - - - 43.89 ±5.6 25.16 ±2.0 10.17 ±3.8 43.10 ±3.1

MLR - - - 28.63 ±7.7 30.48 ±2.4 17.63 ±5.3 48.18 ±3.8

ITML - - - 24.82 ±5.1 31.10 ±2.6 15.25 ±6.3 50.32 ±3.9

NCA - - - 41.37 ±4.7 32.88 ±1.5 24.07 ±8.4 51.20 ±3.9

ours - - - 31.79 ±7.2 28.49 ±2.8 17.65 ±3.5 45.95 ±4.8

Table 2: kNN error,for k=3, 7 and 11. Mean and standard deviation are shown for data sets on
which 5-fold partition was used. These experiments were done after histogram normalization. Best
performing methods are shown in bold. Note that the only non-linear metric learning method in the
above is GB-LMNN

12

k = 3
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800
N 7797 9298 20000 157 958 295 1123
C 26 10 26 10 10 10 10
Euclidean 8.98 5.03 4.31 ±0.2 58.01 ±5.0 56.89 ±2.4 40.34 ±4.2 74.89 ±3.2

LMNN 4.17 5.38 3.26 ±0.1 23.53 ±5.6 28.08 ±2.2 11.19 ±5.6 44.97 ±2.6

GB-LMNN 3.72 5.03 2.50 ±0.2 23.53 ±5.6 28.08 ±2.2 11.53 ±5.5 44.70 ±2.4

MLR 17.32 8.42 45.70 ±18.7 35.69 ±7.6 23.40 ±1.7 20 ±4.6 47.11 ±1.7

ITML 6.86 4.78 4.35 ±0.2 24.82 ±10.9 34.77 ±4.7 12.20 ±4.1 53.97 ±3.2

NCA 5.07 5.18 4.39 ±1.1 24.19 ±5.8 29.54 ±1.4 12.88 ±4.9 46.84 ±2.0

ours 4.11 5.13 2.24 ±0.1 21.01 ±4.1 26.20 ±2.6 13.56 ±4.6 44.54 ±2.9

k = 7
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 6.93 5.08 4.69 ±0.2 60.46 ±5.2 59.07 ±4.5 43.05 ±3.7 72.3 ±3.3

LMNN 4.04 5.28 3.53 ±0.2 24.15 ±9.0 28.19 ±2.8 13.56 ±4.5 43.90 ±2.4

GB-LMNN 3.72 5.03 2.32 ±0.2 24.80 ±8.1 28.29 ±3.1 13.14 ±5.8 43.54 ±2.2

MLR 23.28 8.12 33.61 ±16.8 38.17 ±10.9 23.79 ±3.9 20.34 ±2.9 45.60 ±4.8

ITML 5.90 5.23 4.93 ±0.5 23.57 ±9.6 32.46 ±3.2 11.19 ±5.7 52.63 ±3.3

NCA 5.52 4.98 5.06 ±1.1 37.58 ±5.7 31.01 ±2.0 16.81 ±5.9 43.90 ±2.4

ours 4.07 4.93 2.49 ±0.1 29.94 ±7.6 26.10 ±2.1 13.24 ±3.1 42.83 ±3.1

k = 11
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 7.95 5.68 5.26 ±0.2 61.71 ±6.4 61.48 ±3.7 49.15 ±3.9 73.1 ±3.6

LMNN 3.85 5.73 4.09 ±0.2 49.6 ±5.5 27.04 ±1.8 14.58 ±4.6 44.61 ±1.3

GB-LMNN 3.98 6.33 2.96 ±0.1 45.18 ±10.5 27.25 ±2.2 14.58 ±4.6 45.55 ±6.9

MLR 33.61 10.26 35.50 ±16.5 34.40 ±8.2 24.21 ±3.4 18.31 ±5.3 46.04 ±1.9

ITML 7.18 5.88 5.35 ±0.3 28.04 ±7.7 33.09 ±2.1 12.54 ±5.4 51.91 ±3.3

NCA 5.52 5.03 5.8 ±1.3 45.18 ±6.5 32.47 ±1.7 19.32 ±7.5 44.17 ±2.6

ours 3.87 4.98 2.8 ±0.2 33.00 ±5.7 26.10 ±2.7 14.24 ±6.5 45.76 ±2.9

Table 3: kNN error,for k=3, 7 and 11. No feature scaling was applied in these experiments. Mean
and standard deviation are shown for data sets on which 5-fold partition was used. Best performing
methods are shown in bold. Note that the only non-linear metric learning method in the above is
GB-LMNN.

13

	Introduction
	Related Work and Discussion
	Problem setup
	Learning and inference
	Structured Formulation
	Learning by gradient descent
	Targeted inference of hi
	Loss augmented inference h"0362hi
	Gradient update

	Experiments
	Conclusion
	Proof of correctness of Algorithm 2
	Runtimes using different methods
	Experimental results using different feature normalizations

