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Abstract— The direct neural control of external prosthetic
devices such as robot hands requires the accurate decoding
of neural activity representing continuous movement. This
requirement becomes formidable when multiple degrees of
freedom (DoFs) are to be controlled as in the case of the fingers
of a robotic hand. In this paper a methodology is proposed for
estimating grasp aperture using the spiking activity of multiple
neurons recorded with an electrode array implanted in the
arm/hand area of primary motor cortex (M1). Grasp aperture
provides a reasonable approximation to the hand configuration
during grasping tasks, while it offers a large reduction in the
number of DoFs that must be estimated. A family of state space
models with hidden variables is used to decode each finger grasp
aperture with respect to the thumb from a population of motor-
cortical neurons. The firing rates of multiple neurons in M1
were found to be correlated with grasp aperture and were used
as inputs to our decoding algorithm. The proposed decoding
architecture was evaluated off-line by decoding pre-recorded
neural activity from monkey motor cortex during a natural
grasping task. We found that our model was able to accurately
reconstruct finger grasp aperture from a small population of
cells. This demonstrates the first decoding of continuous grasp
aperture from M1 suggesting the feasibility for neural control
of prosthetic robotic hands from neuronal population signals.

I. INTRODUCTION

Direct neural control of external devices has recently be-

come feasible. Recent results have demonstrated continuous

neural control of devices such as computer cursors or simple

robotic mechanisms using implanted electrodes in monkeys

[1], [2], [3], [4] and humans [5]. These results are enabled by

a variety of mathematical decoding methods that produce an

estimate of the system “state” (e.g., hand position or velocity)

from a sequence of measurements (e.g., the firing rates of a

population of cells). In previous work, decoded movement

signals were limited to the two or three-dimensional hand

kinematics or grip force for simple robot grasping [4].

However hand posture, which will be essential for more

complex dexterous tasks, has not previously been recovered.

Here we show how the grasp aperture of each finger can

be decoded resulting in a simple representation of the hand

shape. Specifically it is shown that continuous parameters

related to hand grasp aperture can be decoded from a small
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population of cells in primary motor cortex. This provides

the proof of concept necessary for the prosthetic control of

a robot hand in a neural interface system.

Analyzing a distributed neural control signal acting on a

complex biological actuator, such as the hand, is a difficult

technical challenge that has only recently become tenable.

Two key technological developments were necessary: precise

measurement of hand motion and simultaneous recording of

the activity of a large number of cortical neurons. Motion

capture technology addresses the first problem by nonin-

vasively measuring the subtle kinematics of hand motion.

Using high-speed cameras it is possible to reconstruct the

position of reflective markers attached to the hand with

sub-millimeter accuracy. Although motion capture has been

successfully used in primate studies [6], relating this type of

data to the activity of large populations of neurons, remains

an extremely challenging issue that has not previously been

addressed.

A large number of decoding algorithms have been pro-

posed in the last decades. The population vector approach is

the oldest method proposed in early 1980s [7]. Since then,

a variety of methods have been proposed. Linear regression

[8], artificial neural networks [3] and switching Kalman filter

[9] are some of those. However, all the above methods were

used for reconstructing hand kinematics (e.g. the position,

velocity and acceleration of the hand), disregarding the

individual finger movements during the experiments.

Recent work on the neurophysiology of hand movements

supports the idea that the brain does not control each possible

degree of freedom independently (e.g., each joint or muscle

activation) [10]. Even when broken down to the simplest

possible level (the activation of single neurons) the cortex

appears to issue commands that involve several parts of

the hand simultaneously. However, the aim of controlling a

robotic device in grasping tasks allows a simplification in the

description of finger kinematics by selecting a reduced set

of parameters that could describe individual finger motion.

One solution is to use a small number of synergies [11], [12].

Synergistic hand shaping would involve the movement of the

digits in a highly coordinated, dependent pattern. Another

low-dimension representation was reported in [13], where six

vectors were used to represent finger motion during grasping

of a variety of objects, for classification purposes.

In this paper, focusing on monkey grasping movements,

we use the grasp aperture of a finger to approximately

describe that finger’s pose during the grasping task. Here

we define grasp aperture of a given finger as the distance

between the fingertip and the tip of the thumb. Using a



state space model with hidden states to estimate the aperture

from a small population of cells, we were able to accurately

reconstruct the continuous variation of grasp apertures in a

number of object grasping tasks.

II. MATERIALS AND METHODS

Our analysis used data previously collected during ex-

periments where a monkey grasped moving objects. Below

we briefly review the experimental setup, and proceed to

describe the mathematical model used for decoding.

A. Experimental setup

One macaque monkey was implanted with one 96-

electrode Bionic array (Cyberkinetics, Inc.) in the hand and

arm area of primary motor cortex (rostral to the central sulcus

at the level of the genu of the arcuate sulcus). Details of

the array implantation and recording protocols are described

elsewhere [14]. All procedures were in accordance with

protocols approved by Brown University Institutional Animal

Care and Use Committee. Neural signals were recorded using

a Cerebus multichannel recording system (Cyberkinetics

Inc.). Spike waveform recording was triggered using an

amplitude threshold set to 4.5 RMS of the voltage values

recorded for each channel. Single units were isolated offline

using custom software implementing a template matching

algorithm. Action potentials were then counted within fixed

length, sliding time windows (bins) and the firing rate (num-

ber of spikes per unit time) within each bin was computed

for each neuron. All decoding analysis was performed using

these discrete approximations to the firing rate.

An optical motion capture system (Vicon-Peak, Inc.) was

used for tracking hand and finger postures. Using six high-

speed cameras operating at 120 frames per second, we

tracked the position of multiple reflective markers (hemi-

spheroids, 4mm in diameter) with sub-millimeter accuracy.

The positions of between 10 and 19 markers attached to the

monkey’s hand were successfully recorded. The reflective

marker placement at the joints of the monkey’s right hand

during motion capture is shown in Fig.1a. Marker posi-

tions and cortical signals were recorded simultaneously, and

temporally aligned off-line. Labeled markers at individual

frames are used to generate the three-dimensional (3D)

reconstructions. In this paradigm, the grasp aperture of a

finger is approximated by the distance between the most

distal marker on the finger and the most distal marker of

the thumb. This concept is illustrated in Fig. 1b.

The behavioral paradigm of the task entails a monkey

intercepting and holding an object that swings towards it

at the end of a string. After holding the object for one

second the monkey is rewarded with fruit juice. The object

rotates freely, and swings through various positions of the

workspace. This task was designed to elicit the widest

possible range of grasping movements, covering as much

of the multidimensional space of hand motion as possible.

Three different objects were used: a small ball (20mm in

diameter), a cube (35×35×36mm) and a pipe (27mm in

diameter, 167mm in length).

Fig. 1. a) Nineteen reflective markers are attached at the monkey’s hand
during motion capture. b) Aperture of each finger wrt the thumb.

B. State space model

Neural decoding of motor cortical activity involves esti-

mating some movement-related variable from neural signals.

Here our goal is to decode grasp aperture zk for a particular

finger at a particular time instance from the neural firing rates

uk of a population of cells. We take uk = [uk,1...uk,n]T

to be a vector of firing rates for n cells at time instant k.

A large number of algorithms have been previously used

for decoding two- or three-dimensional hand kinematics [3],

[7], [8], [9]. These previous methods typically embody the

assumption that the firing rates are linearly related to the

kinematic variables, either directly in the case of linear filters

[8] or through a generative model in the case of Bayesian

methods [9].

Unlike hand movements which have been well studied, the

neural coding of finger aperture is not well understood. In

particular, we do not know how aperture and firing rates are

related (or even whether aperture is the relevant behavioral

variable). Rather than assume a simple, direct, linear rela-

tionship, we adopt a more flexible decoding model in which

we introduce “hidden”, or “latent” variables we call x. These

hidden variables can, for example, represent the relationship

between u and z in a higher dimensional space. The hope

is that these hidden states model the unknown, intrinsic,

movement parameters and relate these to the observed firing

and finger aperture.

Specifically, we formulate the finger aperture decoding

problem using the following state space model

xk+1 = Fxk + Luk + wk (1)

zk = Cxk + vk. (2)

Here., xk ∈ R
d is the hidden state vector at time instance

kT , k = 1, 2, . . ., (T being the sampling period), uk ∈ R
n

is the vector of firing rates, and zk ∈ R the finger aperture.

The matrix F determines the dynamic behavior of the hidden

state vector x, L is a matrix relating firing rates u to the state

vector x, while C is a matrix that represents the relationship

between the aperture z and the hidden states x. wk and

vk represent zero-mean Gaussian noise in the process and

observation equations, respectively. The covariance matrix



Fig. 2. Estimated (dashed red) and real (solid blue) aperture values for
each finger. Time instances where markers are missing are not plotted. Note:
nearly overlapping solid and dashed lines indicate high estimation accuracy.

of wk is denoted by Q ∈ R
d×d, and the variance of vk is

denoted by σ2. I.e., wk ∼ N (0,Q), vk ∼ N
(

0, σ2
)

.

We note that this approach is more powerful than the pre-

vious Kalman filter methods for decoding hand trajectories

from firing rates. The hidden state can represent internal (and

hence unobserved) processes in the neural system. In future

work we will explore whether the estimated hidden states can

provide insight into the neural control of finger movement.

C. Model building and neural decoding

Fitting of the model requires estimation of the following

parameters: the system matrices F,L and C, the state noise

covariance matrix Q, and the aperture (output) variance σ2.

Given a training set of length M , in which we observe

both the system input UM = [u1,u2, . . . ,uM ]
T

and system

output ZM = [z1, z2, . . . , zM ]T , the parameters can be fit

using an optimization procedure. Specifically, the objective is

to minimize a quadratic prediction error on the training set. A

standard approach is to use an iterative search algorithm [16].

A stability test of the predictor is performed to ensure that

only models corresponding to stable predictors are tested.

In the experiments reported below we used a standard

implementation of this procedure in MatlabTM System Iden-

tification Toolbox.

Finally, the dimensionality d of the hidden state vector,

called the model order, is a design parameter. It is selected

by iterating through a range of values, so as to maximize

the accuracy in prediction on the training set. In most of

the cases tested, this procedure led us to select a 9th order

model.

Once the model has been trained, decoding aperture from

neural signal is straightforward. Given the recorded u, we

estimate the hidden states x according to (1), and then

recover the aperture z according to (2).

III. RESULTS

Neural firing rates were computed from the recorded

action potentials using a window of 400 ms, with sampling

period T =1ms. Before building the decoding model, we

first identified those neurons where the firing rate was most

correlated with the aperture of a given finger. This led to

the selection of n = 8 units. Thus, the input u to the model

consisted of a vector of size eight, comprised of the firing

rates of the selected units.

The aperture measurements of each finger were resampled

offline at the frequency of the firing rates, using an anti-

aliasing (lowpass) finite impulse response (FIR) filter. It must

be noted that during motion of the hand, there were cases

where at least one of the distal marker positions could not

be computed, due to occlusion (and the subsequent failure

of the optical system to track the marker). In these cases, the

corresponding values for firing rates were ignored and not

used during the model parameter estimation.

The model was fit using the iterative optimization algo-

rithm as described in the previous section. The iterations

were terminated when the number of iterations reached 200,

or the expected improvement was less than 1%, or when a

lower value of the criterion could not be found.

The method was initially tested in the ball catching

scenario. Experimental measurements for a contiguous time

period of 15 sec were acquired. During this scenario, the

distal marker position of each finger was computed, and

the four finger apertures were calculated. A separate model

was trained for each finger’s aperture. We divided the data

into four segments, and performed four-fold cross validation,

whereby three segments were used for training and the

remaining segment for testing. We assess the accuracy of

the decoding algorithm using correlation coefficient between

the estimated (decoded) and the true finger aperture. In this

experiment, the correlation coefficients for all four fingers

were found equal to 0.99. Fig. 2 shows the estimated aperture

values for each finger along with the ground truth (we show,

for each segment, the prediction obtained in the fold where

that segment was used for testing). Aperture values at time

instances where markers were missing are not plotted.

A second set of experiments was conducted in order to

test the decoding method in grasping two different objects

(i.e., a cube and a pipe). We fit a single model to a training

set constructed by combining 30 sec of data for each of the

two objects. We then tested it on additional 5 sec segment

for each object (not used in training). Only the aperture of

the index finger was estimated in this experiment. Fig.3, 4

show the estimated aperture values for the index finger along

with the ground truth. The correlation coefficient was 0.94

and 0.9 for the cube and pipe experiment respectively. The

MSE of the estimates were 2.94mm and 3.44mm for the cube

and pipe experiment respectively. The proposed model can

decode neural activity of a population of neurons to derive

continuous grasp aperture in cases where different objects

are grasped.



Fig. 3. Estimated and real index aperture values for cube grasp (test data).

Fig. 4. Estimated and real index aperture values for pipe grasp (test data).

IV. CONCLUSIONS AND DISCUSSION

In this paper we have demonstrated decoding of grasp

aperture from the activity of a population of neurons in motor

cortex. To our knowledge, this is the first work in which

this task is addressed. We see this as an important proof of

concept, and potentially a step towards the goal of direct

brain control of dexterous hand movements. Our results

on reconstructing aperture values in an off-line experiment,

using simultaneously recorded neural activity and 3D finger

movement in three object grasping tasks, suggest that the

task is feasible.

In the context of motor prosthetic applications, we see

three important directions for further research, all of which

we would like to pursue. One is the translation of hand

control parameters (of which grasp aperture is one) to control

signals for a specific robotic actuator. The second direction

involves transferring the decoding framework from non-

human primates to human clinical trials. Third, considering

that natural grasping tasks involve arm reaching and wrist

orientation in addition to grasp aperture, we will explore

the simultaneous decoding of arm and wrist kinematics with

grasping.

In this paper, we have successfully applied a state space

model with latent variables; however, other methods devel-

oped recently for neural decoding have to be considered.

These include linear filter models and Bayesian algorithms

such as Kalman filters. In addition, we are investigating pos-

sible physiological semantics for the hidden states. Eventu-

ally our goal is the direct brain control of a high dimensional

robotic hand prosthesis by paralyzed humans.
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