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Abstract

We approach the task of person identification based on
face and gait cues. The cues are derived from multiple
simultaneous camera views, combined through the visual
hull algorithm to create imagery in canonical pose prior to
recognition. These view-normalized sequences, containing
frontal images of face and profile silhouettes, are separately
used for face and gait recognition, and the results may be
combined using a range of strategies. We discuss the is-
sues of cross-modal correlation and score transformations
for different modalities, present the probabilistic settings for
the cross-modal fusion. and explore several common fusion
approaches. The effectiveness of various strategies is eval-
uated on a data set with 26 subjects. We hope that the dis-
cussion presented in this paper may be useful in developing
further statistical framework for multi-modal recognition.

1. Introduction

Visual recogintion of individuals from multiple arbitrary
views is an important task for many applications. Percep-
tual interfaces for intelligent environments, visual surveil-
lance and activity monitoring, and covert security and ac-
cess control can all benefit from recognition at a distance.
These applications usually can not presume that users will
present themselves in a canonical pose or be close to the
camera. For optimal performance, a system should incor-
porate as many observations as are available, and extract as
many informative cues as is possible.

We have developed a system for recognition from mul-
tiple video streams, based on a canonical view rendering
technique applied to face and gait recognition algorithms.
Given a set of images from multiple cameras, we recon-
struct virtual views in canonical pose: frontal for face, and
profile for gait. In [10] it was demonstrated that synthetic
views rendered with a visual hull [8] improved recognition
significantly over results with unnormalized imagery, from

52% to 90%. It was also shown that the combination of
face and gait cues provided slightly better recognition re-
sults than either modality alone, using a simple average of
classifier outputs across modality and over time.

In this paper we investigate different approaches to clas-
sifier combination for face and gait recognition, and demon-
strate both improved performance and better statistical jus-
tification for the integration step. First, we compare the per-
formance of several common data fusion strategies on our
task, and develop statistical interpretations of each. Follow-
ing the theoretical framework presented in [6], we compare
MAX, MIN, MEAN, and PRODUCT rules for combining
classifier outputs. We assess the underlying assumptions
for each model, and empirically evaluate which ones are
appropriate for the task of face and gait integration.

Second, we explore the effect of early versus late tempo-
ral integration for instantaneous features. Since gait recog-
nition is performed over an entire sequence of data, no tem-
poral integration occurs. But face cues (images) are gen-
erated per set of input frames, and the order of recognition
and temporal integration is arbitrary. With late integration,
classification is performed on each frame and the resulting
scores or probabilities are combined. With early integration,
the features themselves are combined over time before be-
ing passed to the classifier. In both cases, one can consider
the range of combination schemes mentioned above.

We use existing algorithms for face and gait recogni-
tion, based on a subspace-per-user eigenfaces technique
[11], and a technique for gait recognition based on spatio-
temporal motion sequence matching [7]. Face and gait are
appropriate features to use on multi-view sequence data,
since they capture apparently independent characterisitcs of
users. Face cues are derived from the relatively detailed in-
stanteous appearance of the face surface, while gait cues are
obtained from coarse body shape as it moves over time.

In the remainder of this paper, we will review rele-
vant prior work, our scheme for recogntion from synthetic
canonical views, and the face and gait recognition algo-
rithms used in our system. We will then discuss different



integration strategies used for combining face and gait data,
and for combining face data over time. Finally, we will
present the results of experiments involving 26 subjects, and
conclude with a discussion of the implications of these re-
sults and avenues for future work.

2. Fusion for Recognition

The general topic of sensor fusion for pattern recognition
has a substantial literature. For the specific task of biomet-
ric recognition, a variety of approaches are possible, a few
of which we mention here. Voting schemes, such as those
used in [3] for integrating face, lip, motion,and voice, ig-
nore all non-winning individuals in each modality. Rank
ordering approaches have been used by several authors, in-
cluding [2] for face/voice integration and [13] for recog-
nizing commands using speech and pen gesture. In [5] a
framework for integrating multiple biometric cues in a large
database application was provided, where a portion of the
cues were used for retrieval and the remainder for verifica-
tion, and also explored late vs. early fusion in the context
of fingerprint recognition. In [6] a theoretical framework
was developed for combining independent classifiers, and
different sets of simple assumptions were shown to lead to
a range of commonly used combination heuristics. We fol-
lowed in our experiments.

3. Integrated recognition by face and gait

We shall briefly review the view-normalized recognition
system, with which our face and gait data are obtained, and
the face and gait classifiers involved.A more detailed de-
scription can be found in [10].

3.1. General overview

The system is based onK monocular cameras
c1, . . . , cK , synchronized by hardware and calibrated in a
coordinate system in which theXZ plane coincides with
the ground plane. In our immplementationK = 4. At
each timet, ci provides data consisting of a “raw” im-
ageIt

i and the silhouetteSt
i computed by means of fore-

ground/background detection (Figure 1, (a)). LetF t be the
collection of allK inputs at timet. FromF t we construct
the visual hull [8] – a geometric model constructed from
the intersection of the 3D cones defined by theK silhou-
ettes and centers of projection of the cameras. The visual
hull is approximated by a triangular meshHt as shown in
Figure 1, (b). The projection ofHt to an arbitrary image
plane defines asynthetic silhouetteof the object. Texture
can then be mapped onto the silhouette, based onIt

i and on
the desired vantage point, thus producing asynthetic view

(bottom row of Figure 1(b)). It remains to choose the view-
point optimal for each of the recognition modalities. Such
viewpoint is defined in terms of the motion trajectory of the
person.

The trajectory of the moving person can be estimated
by fitting a curve to the observed locations of the centroid
of Ht for eacht. Assuming linear motion of the subject,
one can find a least-squares fit. In a more general case, a
Kalman filter can be applied to the measured locations [10].
Estimation of the tangent to the trajectory, together with the
ground plane to which the motion is assumed to be roughly
parallel, establishes canonical axes and allows us to produce
synthetic views of the person from a desired vantage point
relative to his/her body orientation.

3.2. View-normalized face recognition

We use eigenfaces approach [11] for recognition of view-
normalized faces. For each subjectwk in the database, it
computes the distance from the presented imagef to the
subspace spanned byM principal componentsBk of the
training set of faces for that class. The input is assumed to
be a frontal facial image, which makes view-normalization
crucial. The score ofwk given the inputf is computed as

Df (wk|f) = ‖f − fT Bk‖,
and the classes are ranked by increasing score.

Under the mild assumptions of upright body posture and
fronto-parallel motion1, the expected position of the face
is in the top portion ofHt, facing the direction of motion
within a small angle. Note that the scale is known from
the distance of the virtual image plane fromHt. The face
is then sought in all relevant subimages using a fast face
detector [12]. The detected “box” is resized to a base size,
which in our experiments is 22×22.

At a given timet we can have more than one face detec-
tions, corresponding to different spatial angles with respect
to the estimated motion direction. For simplicity, let us as-
sume that we pick one of the faces, say, that with the highest
score with respect to a certain criterion (such as highest esti-
mated degree of frontality)2. Sometimes, however, no faces
are detected due to visual hull inaccuracies, face detector
failure or momentary occlusion of the face. In the worst
case, in which not a single face is detected for the whole se-
quence, the face modality can not be used for recognition.

3.3. View-normalized gait recognition

We use a simple and robust algorithm for matching spa-
tiotemporal sequences recently proposed in [7]. In this al-

1These assumptions may be relieved by performing a more exhaustive
search att = 1 and tracking the face in the subsequent frames.

2Alternatively, we may use all of the available face detections for clas-
sification.
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(a) “Raw” input (b) Model

(c) Representation for gait and face recognition

Figure 1. Examples of input(a) and output(b) of visual hull and its use for constructing synthetic input
for face and gait classifiers(c)

gorithm, each frame containing the silhouette of a walking
subject is divided into a small number of fixed regions, and
moments of the foreground pixels are computed in each
region. The means and standard deviations of these mo-
ments, along with the centroid of the entire silhouette, com-
prise the feature vectorγ for a given sequence of silhouettes
〈S1, . . . , St〉. This representation relies on the geometry of
the projected silhouettes and is therefore view-dependent.
However, the visual hull representation allows us to create
a sequence of synthetic silhouettes3from any desired view,
making view-independent gait recognition possible [10].

The training data for the algorithm consists of a collec-
tion of labeled profile sequences{〈Sj , lj〉}. When a test
sequenceS is presented to the algorithm, the score for each
class is computed as

Γ(wk|S) = min
lj=wk

‖γ(S) − γ(Sj)‖

3.4. Score transformation

Having obtained the score for each model given the ob-
servations in each modality, one generally can not directly
combine these scores in a statistically meaningful way. The
gait classifier produces scores which are not direct estimates
of the posterior, but rather measures of the distance between
the test example the best matching reference feature vector
of thekth person. The face classifier, in addition to the dis-
tance between a face and thekth eigenspace provides an es-
timate of the likelihood of that face underkth model. These
scores, with quite different ranges and distributions, must
therefore be transformed. In order to justify the scored-
based decision statistically, such a transformation must as-
sume a monotonic growth in score of a model given the data
as a function of the posterior probability of that model.

3In fact, we can produce two synthetic silhouettes for each frame, as
viewed from both sides of the body, and combine the resulting feature
vectors or the recognition results

A number of heuristics for score transformation have
been proposed in the literature [1, 4]. Below we attempt
to establish a generalized approach to score transformation
for classifiers that output distances in some metric space,
with no analytic form of the class-conditional or the poste-
rior available. For the sake of clarity, we shall refer to the
gait classifier; however, it should be stressed that it applies
to a more general case. In particular, the score of the face
classifier can be transformed in a similar way.

We assume a probability distribution over the scores as-
signed to thecorrect labels – essentially, the distribution of
the distances between two representations of a person4, and
try to model this distribution̂P (·). Examination of the em-
pirical distribution over the observed scores for both correct
and incorrect labels (Figure 2) suggests that this approach
is valid. The proposed estimate of the posterior can then
simply be

Pgait(wk|S) = Pgait(wk|Γ(S)) = P̂ (Γ(S)

(normalized to sum to unity over allwk). In practice this
means fitting a functionT to the empirical distribution, and
treatingT (Γ(S)) as the estimate of the posterior.

The solid line in Figure 3 shows the empirical probabil-
ity density computed over the training data, and the logistic
function1/

(
1 + eax/C

)
, which we used as the transforma-

tion function. The parametera controls the slope,C is a
normalization constant that ensures that the argument of the
logistic function is contained in[0, 1]. This constant may be
found analytically, through parametric regression, or empir-
ically (as it was in our case).

Clearly, when a specific probabilistic model of the clas-
sification process is available, including some estimate for
the posterior, this model can replace the proposed estima-
tion scheme.

4The implicit assumption that this model is the same for each class is
somewhat simplistic, and may be lifted in the future work
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Figure 2. Distribution of the scores assigned
to correct (solid lines) and false (dotted lines)
labels by face and gait classifiers

4. Temporal fusion

One of the fusion problems in the presented framework
is related to multiple available images of a person’s face.
Ii is an instance of a general problem, where a set or a se-
quence of observations, all belonging to the same domain,
are known to belong to the same class. We have a choice be-
tween two options: “early” and “late” fusion. In both cases,
we assume statistical independence between images in the
set, an assumption clearly incorrect in the case of tempo-
rally adjacent face images with dynamic expression etc.

Early fusion, i.e. fusion on thesensor level, consists of
combining the observations (in our case separate face im-
ages ) and mapping them into a single data point to be clas-
sified. This can be achieved, for example, by computing the
mean face in the input set and presenting it to the recogni-
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Figure 3. Modeling the distribution of the
scores for gait recognition algorithm. The em-
pirical distribution is well approximated by a lo-
gistic function

tion algorithm. A more sophisticated approach is to esti-
mate a probabilistic model of the input set and compare it
directly to the learned models of the database subjects [9].

Alternatively, one can treat all the images as separate
independent data, and perform late fusion, at thedecision
level. This can be done, for example, using one of the rel-
evant combination rules discussed in Section 5. In our ex-
periments, we found that when working with the scores as
opposed to posteriors, the distance of the mean face to the
subspace provides a good way of classifying the whole set
of face images. When posteriors or likelihoods are given,
their product acts as the optimal combination rule.

5. Cross-modal integration

Early fusion of data in domains so different as silhouettes
and face images is an important subject of future research.
However, at this time it is not clear how to combine the
information at the sensor level. Thus we resort to decision-
level fusion. Previously, anad-hoccombination rule was
used, namely, averaging the normalized scores of the two
classifiers and choosing the first ranking label. However,
this rule is not optimal for the case of highly uncorrelated
(or independent) classifiers. In [6] a number of common
combination schemes were given a theoretical justification,
which we shall discuss below with regard to our recognition
domain.

5.1. Combination rules

Let the feature input to thej-th classifier,j = 1, . . . , R
bexj , and the winning label beh. We assume a uniform
prior across all classes (identities) and shall omit it from the
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formulae, but the rules allow for the incorporation of any
knowledge about priors.

PRODUCT rule:h = argmaxk

∏R
j=1 P (wk|xj). This

rule is derived under the assumption of conditional statisti-
cal independence of the representations:

P (x1,x2|[F 1, . . . , FN ])

= P (x1|[F 1, . . . , FN ])P (x2|[F 1, . . . , FN ]).

It is important to evaluate the validity of this assump-
tion. In the absence of a probabilistic model for gait fea-
tures or the gait classifier, all we can examine is the amount
of correlation in the data, and treat the lack of correlation
as an evidence of independence. Figure 4 demonstrates that
the features (on the left - from left to right and from top to
bottom, gait features and the pixels of the face images) are
correlated much stronger within each modality than across
modalities. The correlation that does exist can be in pat
explained by the parameters such as gender, which is ob-
viously correlated with face appearance and, in light of the
success of the same gait classification approach when ap-
plied to gender classification, with our gait features.

MEAN (sum) rule : h = argmaxk

∑R
j=1 P (wk|xj).

This rule, derived from PRODUCT, is reported to be the
winner in [6]. It is most applicable when a high level of
noise and/or high ambiguity in the classification problem
cause the posterior estimated by a classifier not to deviate
much from the prior.

MAX rule : h = argmaxk maxj P (wk|xj). This rule
approximates the mean by the maximum of the posteriors.

MIN rule : h = argmaxk minj P (wk|xj). An approach
is to bound the product from above by the minimum.

MAJORITY rule : this rule chooses the class with the
highest number of hard classifications. It is irrelevant here
since we have only two classifiers. The weighted majority
rule is not appealing either, since the individual classifiers
exhibit very similar error rates, and it is not clear why one
would prefer one of them over the other.

6. Experiments

We collected 206 data sequences of 26 people walking;
the number of sequences per person varies from 2 to 14.
For 11 of the subjects the data was collected on two sepa-
rate days about 3 months apart. Lengths of the sequences
range from 9 to 23, with an average of 15 frames, at 13
frames per second. Main results are shown in Figure 5. All
reported results were computed by leave-one-out cross val-
idation: each sequence was classified based on the rest.

The baseline single-modality classifiers have an accu-
racy of 68% (gait) and57-73% (face, depending on the
scheme for integration of the faces). Fusion on the sen-
sor level (working with the face averaged over a sequence)

Gait Face

Gait

Face

(a) Correlation in the input

Gait Face

Gait

Face

(b) Correlation in the scores

Figure 4. Correlation of the features (a) and
the scores (b) for gait recognition. The cross-
modal correlation is clearly much weaker than
the correlation between features in the same
modality.

produces a baseline face recognition rate of69%. The best
combined accuracy using mean faces was85%. Our feeling
is that due to the noise and misalignment, we lose informa-
tion by performing early integration for face recognition.

There are two main degrees of freedom in choosing the
combination strategy. First, one has to choose the rule
for combining multiple faces. Second, one has to choose
the rule for combining the modalities. In our experience,
the better performing combination rules – PRODUCT and
MEAN – were robust to the changes in temporal furion of
faces (compare the

Before starting the experiments with the rules discussed
above, we tried a simpler rule which requires both classi-
fiers to agree on a label for a test example; otherwise, the
example is rejected. Since the classifier decisions appear
to be uncorrelated (Figure 4), we expect the accuracy to be
close to the the product of the individual accuracies, which
is 45%. The observed accuracy was indeed49%.

The best performance was achieved by the PRODUCT
rule:89% accuracy. When the quantities combined are esti-
mates of the posterior distribution, and under the indepen-
dence assumption, this rule can be shown to be equivalent
to the likelihood ratio hypothesis test, when the joint like-
lihood of the combined data is considered under different
models, and equal priors are assumed.

We believe that the main reason for the poor performance
of the MIN and MAX rules is the high degree of overlap
of the distributions of correct and incorrect scores for the
classifiers (see Figure 2). Both rules rely on order statistics
and are likely to suffer from the noise in score assignment
more than the more robust MEAN and PRODUCT.
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Figure 5. Result of various cross-modal fusion
rules, with faces integrated with PRODUCT
rule

MIN MAX MEAN PRODUCT
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rules for cross−modal fusion

A
cc

ur
ac

y

G
ai

t 

G
ai

t 

G
ai

t 

G
ai

t 

F
ac

e 

F
ac

e 

F
ac

e 

F
ac

e 

F
us

io
n 

F
us

io
n 

F
us

io
n 

F
us

io
n 

Figure 6. Cross-modal fusion, with faces inte-
grated by MIN rule

7. Conclusions

We have developed a probabilistic approach to combin-
ing visual cues for human recognition, as well as for using
multiple instances of face classifications, and demonstrated
its performance on the example of integrated face and gait
recognition. A number of previously proposed combination
rules have been empirically compared. While the combi-
nation improved the classification accuracy of the system
in almost all cases, the best performance was obtained by a
classifier that uses product of the posterior probabilities esti-
mated from different modalities. This classifier achieved an
improvement of 15% in the leave-one-out test performance.

Our study highlights the importance of a careful choice
of the whole combination strategy. Some of the straight-
forward rules, such as MIN, performed poorly in our ex-
periments and at times proved harmful (Figure 6). Score

transformation appeared to be another important issue.
Interesting future work includes extension of this bi-

modal recognition scheme to additional modalities (color
distributions, voice, activity patterns), thus making more
complex rules relevant. Finally, the combination strat-
egy remains largely anad-hocendeavor. Exploring the
decision-level fusion in a Bayesian context, with regard to
the estimated distributions of the correct and incorrect la-
bels, may lead to a more theoretically sound understanding
and design of this process.
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