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Abstract
We describe a state-space tracking approach based on a
Conditional Random Field (CRF) model, where the obser-
vation potentials are learned from data. We find functions
that embed both state and observation into a space where
similarity corresponds to L1 distance, and define an obser-
vation potential based on distance in this space. This po-
tential is extremely fast to compute and in conjunction with
a grid-filtering framework can be used to reduce a contin-
uous state estimation problem to a discrete one. We show
how a state temporal prior in the grid-filter can be com-
puted in a manner similar to a sparse HMM, resulting in
real-time system performance. The resulting system is used
for human pose tracking in video sequences.

1 Introduction
Tracking articulated objects (such as humans) is an example
of state estimation in a high-dimensional space with a non-
linear observation model that has been a focus of consider-
able attention. The combination of frequent self-occlusion
and unobservable degrees of freedom with the large vol-
ume of the pose space make probabilistic methods appeal-
ing. The vast majority of probabilistic articulated tracking
methods are based on a generative model formulation.

Current state-of-the-art generative tracking algorithms
use non-parametric density estimators, such as particle fil-
ters, due to their ability to model arbitrary multimodal dis-
tributions [17, 10]. Unfortunately, several properties con-
spire to make particle filtering extremely computationally
intensive. On one hand, a large number of particles is
needed in order to faithfully model the distributions in ques-
tion. On the other hand, a complex likelihood function
needs to be evaluated for each particle at every iteration
of the algorithm. A further drawback of generative-model
based algorithms is that the likelihood function is too com-

plicated to be learned from data and is usually specified in
an ad-hoc fashion. Recently, the use of directed discrimina-
tive models with parameters learned directly from data have
been proposed [1, 24, 20].

In this work we pose state estimation as inference in an
undirected Conditional Random Field model (CRF) [16].
This allows us to replace the likelihood function with a
more general observation potential (compatibility) function
that can be automatically learned from training data. These
functions might be expensive to evaluate in general, but can
be made efficient at run-time if all state (pose) values at
which they can be evaluated are known in advance. In this
case much of the computation can be performed off-line,
thus greatly reducing run-time complexity.

This algorithm naturally operates on a discrete set of
samples, and we will show how we can estimate the pos-
terior probability in a continuous state space using grid fil-
tering methods. The idea underlying these methods is that if
the state-space can be partitioned into regions that are small
then the posterior can be well approximated by a constant
function within each region.

The direct application of grid filtering would result in
the need to evaluate the potential function in each region in
the partition, which is impossible to do in real time even
with fast implementation. Fortunately this is not necessary,
since at a particular time-step, the prior state probability is
negligible in the vast majority of the regions, allowing us to
concentrate only on locations with a significant prior.

Our algorithm operates in a standard predict-update
framework: at every step we first estimate the temporal
prior probability of the state being in each of the regions
in the partition. We then evaluate the observation poten-
tial only for regions with non-negligible prior. While one
can view of the resulting algorithm as a version of parti-
cle filtering where particles can assume only a fixed, finite
set of values, this is not quite the case. When the cells are
fixed, the transition probabilities between cells can be pre-
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computed, and the temporal prior computation reduced to
single sparse matrix/vector multiplication, in a manner sim-
ilar to HMMs [18]. This computation avoids sampling step
altogether, producing better distribution estimates and sig-
nificantly reducing computation time compared to Monte
Carlo methods.

After reviewing prior work, we describe the CRF-based
tracking formulation and a way to learn an observation po-
tential function based on image embedding (Section 3). We
then discuss a grid-filter-based inference method which can
be realized with a sparse HMM computation (Section 4).
The results of our method are demonstrated and compared
against competing algorithms in Section 5.

2 Prior Work
Probabilistic articulated pose estimation is often ap-
proached using state-space methods. The majority of the
approaches have been based on a generative model formu-
lation, with varying assumptions about the forms of the
pose distribution and transition probabilities. Early meth-
ods [13, 19] assumed that both were Gaussian and used
Kalman filtering. Extended and Unscented [25] Kalman
filters enabled modeling of non-linear transitions, but still
constrained pose distribution to be Gaussian. These meth-
ods required a relatively small number of evaluations of the
likelihood function, but lost track due to restrictive distribu-
tion models.

The need to relax the unimodality assumption led first
to use of mixture models [11, 5], and then to Monte-Carlo
methods that represent distributions with sets of discrete
samples (particles) [17, 10, 22, 23]. While theoretically
sound, particle filtering methods are not very successful in
high dimensions [14] – they require large numbers of par-
ticles to faithfully represent the distribution, which entails
large computational costs of likelihood evaluation. Further-
more, the emission probability model used in likelihood
evaluation is very expensive to train, and is often hand-
designed in an ad-hoc fashion.

Several discriminative methods have been proposed for
visual pose tracking. These algorithms apply various re-
gression techniques while leveraging large number of anno-
tated image sequences. For example, one [1], or a mixture
[24] of simple experts were trained to predict current pose
based on the past pose estimates and the current observa-
tion. Robust regression combined with fast nearest neighbor
search was used for single frame pose estimation in [21].

In this paper we dispense with directed models alto-
gether and opt for a Conditional Random Field (CRF) [16]
model. The main advantage of CRFs over generative mod-
els is that CRFs do not require specification (and evalu-
ation) of the emission probability, but only similarity be-
tween state and observation(s). CRFs are also a more flexi-

ble model than the previously proposed regression methods.
They allow for modeling the relationship between state and
an arbitrary subset of observations. They are also better able
to adjust to sequences not appearing in the training data. For
example the MEMM model (similar to one used in [24]) has
been shown to be subject to label bias problem [16].

While in the present work we use a simple chain-
structured CRF (Figure 1(b)), which directly models the de-
pendency between concurrent state and observation, it can
be extended by introducing more general relationships be-
tween state and observations.

We learn the observation potential function for our
model using the parameter sensitive embedding introduced
in [21]. This algorithm allows us to learn a transformation
of images of humans into a space where the distance be-
tween embeddings of two images is likely to be small if
the poses are similar and large otherwise. The observation
potential of a particular pose is then determined by the dis-
tance between embeddings of the rendering of the figure in
this pose and the observed image.

If for every pose at which we would like to evaluate the
potential we had to render the corresponding image, our
method would be extremely slow. By discretizing the con-
tinuous pose space, we are able to precompute the embed-
dings of all discrete poses off-line, thus drastically reducing
run-time complexity. Fixing the set of poses at which ob-
servation potential can be computed would seem to be an
unreasonable restriction, since we are operating in a contin-
uous pose space, but we overcome this problem by using a
variant of the grid-filtering technique [6, 2].

The main idea underlying grid filtering is that sufficiently
discretized random variable is indistinguishable from a con-
tinuous one. That is, if the distribution can approximated by
a piece-wise constant function, then it is sufficient to evalu-
ate it only at one point in every “constancy region” (cell) [6].
This reduces a continuous estimation problem to a discrete
one (albeit with very large number of discrete points). We
show that in the case where both observation potential and
the temporal prior are constant in each cell, tracking can be
formulated as state estimation in an HMM framework, al-
lowing us to use existing inference algorithms; further, we
have found in practice that a manageable number of cells
suffices for realistic tracking tasks.

3 Tracking with Conditional Ran-
dom Fields

Figure 1(a) shows the dynamic generative model that is
commonly used in tracking applications. The state (pose1)
at time t is denoted as θt, and the observed images as It.
The full model is specified by the initial distribution p(θ0),

1In this work we consider only first order Markov models of motion.
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Figure 1: Chain-structured generative (a), CRF (b), and MEMM (c) tracking models. In all models the state of the object
(pose) at time t is specified by θt, and the observed image by It. The generative model is described by transition probability
p(θt|θt−1) and the emission probability p(It|θt). The CRF model is described by motion compatibility (potential) function
φ(θt, θt−1) and the image compatibility function φt

o(θ
t) = φ(It, θt). Note the contrast with the MEMM model [24], specified

by the conditional distribution p(θt|θt−1, It) as shown in (c).

the transition probability model p(θt|θt−1), and the emis-
sion distribution p(It|θt). This model describes the joint
probability of the state(s) and observation(s)

p(θ0..T , I1..T ) = p(θ0)
T∏

t=1

[p(θt|θt−1)p(It|θt)],

from which appropriate conditional distributions of the pose
parameters can be derived.

While reasonable approximations can be constructed
for the transition probability, p(θt|θt−1), the problem for
generative models lies in specifying the emission model
p(It|θt). In practice, to evaluate the likelihood function at
a particular pose, a figure in this pose is first rendered as
an image, and this image is then compared with the obser-
vation using a certain metric[12]. Evaluating the likelihood
thus becomes computationally expensive.

The major difference between generative-model based
approaches and ours is that we formulate pose estimation
as inference in a Conditional Random Field (CRF) model,
and are able to learn a compact and efficient observation
and transition potentials from data.

A chain version of a CRF is shown in Figure 1(b).
While, apart from the lack of arrows, it is quite similar
to the generative model, the underlying computations are
quite different. This model is specified by the motion po-
tential φ(θt, θt−1) and the observation potential φt

o(θ
t) =

φ(It, θt). The observation potential function is the mea-
sure of compatibility between the latent state and the obser-
vation. Of course, one choice for it might be the genera-
tive model’s emission probability p(It|θt), but this does not
have to be the case. It can be modeled by any function that is
large when the latent pose corresponds to the one observed
in the image and small otherwise.

Rather than modeling the joint distribution of poses and
observations, the CRF directly models the distribution of
poses conditioned on observation,

p(θ0..T |I1..T ) =
1
Z

p(θ0)
T∏

t=1

[φ(θt, θt−1)φt
o(θ

t)],

where Z is a normalization constant.

Once the observation potential is defined, a chain-
structured CRF2 can be used to perform on-line tracking

p(θt|I1..T ) ∝ φt
o(θ

t)

Z
φ(θt, θt−1)p(θt−1|I1..t−1)dθt−1. (1)

The main advantage of this model from our standpoint is
that the observation potential φt

o(θ
t) may be significantly

simpler to learn and faster to evaluate than the emission
probability p(It|θt). Below we describe an model of such
potential based on similarity between images.

Suppose that we can measure the similarity S such that,
given two images Ia and Ib with underlying poses θa and
θb, respectively, S(Ia, Ib) is with high probability small if
dθ(θa, θb) is small, and large otherwise.3 Suppose now that
we are interested in evaluating the potential φ(It, θ), and
that we have access to an image Iθ that corresponds to the
pose θ (for instance, we can render it using computer graph-
ics). Then, we can define the observation potential based on
distance in the image embedding space:

φ(It, θ) = N(S(It, Iθ); 0, σ2). (2)

In this work, we follow the approach in [21] for learn-
ing a binary embedding H(I) of images such that the L1

distance in the H space serves as a proxy for such a pose-
sensitive similarity S. Briefly, the learning algorithm is
based on formulating a classification problem on image
pairs (similar/dissimilar), and constructing an embedding
based on a labeled training set of such pairs.

Once the desired M -dimensional embedding H =
[h1(I), . . . , hM (I)] has been learned, the induced sim-
ilarity is the Hamming distance in H: S(Ia, Ib) =∑M

m=1 |hm(Ia)− hm(Ib)|.
This potential could conceivably be used in a continuous

domain, for example by using Monte Carlo methods in the
CRF framework, as it captures features relevant to pose esti-
mation better than generic image similarity. Unfortunately
it would not reduce computational cost since it would re-
quire rendering the image Iθ at runtime for every pose θ
which we would like to evaluate.

2While both transition and observation potentials in a CRF are often
trained jointly, it is possible to train them separately, as we do in this case.

3Here dθ stands for the appropriate distance in pose space
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This approach becomes particularly efficient when we
have a finite (albeit large) set of possible pose hypotheses
θ1, . . . , θN . In such a case we can render an image Ii for
each pose in the set, and compute its embedding H(Ii).
The only calculation required at runtime is computing the
embedding H(It) and calculating the Hamming distances
between the bit vectors. We capitalize on this efficiency in
the grid-filtering framework described in the next section.

4 Grid Filtering
In the previous section we have proposed a CRF tracking
framework where the observation potential is computed as
the distance between embeddings of state and observation
described in the previous section. Computing this potential
for an arbitrary pose and image is relatively slow since it
would involve rendering an image of a person in this pose
and then computing the embedding. This is part of the
problem with generative-model-based tracking which we
wanted to avoid.

Fortunately, if all of the poses where the observation po-
tential is to be evaluated are known in advance, then we can
precompute the appropriate embedding off-line, drastically
reducing runtime evaluation cost. We would then compute
a single embedding for the observed image, which would be
amortized when the potential is evaluated at multiple poses.

While fixing the poses in advance seems too restrictive
for continuous space inference, grid-based techniques pio-
neered by [4, 15] show that this can be a profitable approx-
imation. The main idea underlying these methods is that
many functions of interest can be approximated by piece-
wise constant functions, if the region of support for each
constant “piece” is small enough. As metioned above, we
follow the convention and denote such region of support as
a “cell”.

In our case, the function we are interested in is the pos-
terior probability of the pose conditioned on all previously
seen observations (including the current one). The poste-
rior is proportional to the product of the temporal prior (the
pose probability based on the estimate at the previous time-
step and the motion model) and the observation potential.
We would like to define the cells such that both of the com-
ponents are almost constant. The observation potential is
often sharply peaked, so the cells should be small in the re-
gions of pose space where we expect large appearance vari-
ations, but large in other regions. On the other hand the
motion models are usually (and our work is no exception)
very approximate and compensate for it by inflated dynamic
noise. Thus the temporal prior is broad and should also be
approximately constant on cells small enough for observa-
tion potential constancy. We derive the grid filter based on
the assumption that the partition of the pose space into cells
with the properties described above is available.

Let the space of all valid poses Θ be split into N dis-
joint (and not necessarily regular) cells Ci, Θ = ∪N

i=1Ci,
Ci ∩ Cj = ∅, i 6= j, such that both likelihood and prior can
be approximated as constant within each cell. Furthermore,
let us have a sample θi ∈ Ci in every cell. The set of sam-
ple points {θi}N

1 is referred to as “grid” in the grid-filtering
framework.

By virtue of our assumptions, the temporal prior can be
expressed as

p(θt ∈ Ci|θt−1 ∈ Cj) =
∫
Ci

∫
Cj

φ(θt, θt−1)dθt−1dθt (3)

≈ φ(θi, θj)|Ci||Cj |,

where |Ci| is the volume of the ith cell, with the approxi-
mation valid when the noise covariance in the transition is
much wider than the volume of the cell. So the (time inde-
pendent) transition probability from jth to ith cell is

Tij =
φ(θi, θj)|Ci|∑N

k=1 φ(θk, θj)|Ck|
. (4)

The compatibility between observation and the pose be-
longing to a particular cell can be written as

φt
o(Ci) =

∫
Ci

φt
o(θ)dθ ≈ φt

o(θi)|Ci|. (5)

Combining eqs 1, 3, and 5, the posterior probability of
pose being in the ith cell is

p(θt ∈ Ci|I1..t) ≈ 1
Z

φt
o(θi)|Ci|

N∑
j=1

Tijp(θt−1 ∈ Cj |I1..t−1)

(6)

=
1
Z

φt
o(θi)

N∑
j=1

Sijp(θt−1 ∈ Cj |I1..t−1),

where Sij = |Ci|Tij is time independent and can be com-
puted offline. If we denote

πt =


p(θt ∈ C1|I1..t)
p(θt ∈ C2|I1..t)

...
p(θt ∈ CN |I1..t)

 and lt =


φt

o(θ1)
φt

o(θ2)
...

φt
o(θN )

 ,

then the posterior can be written in vector form

πt =
1
W

Sπt−1. ∗ lt, (7)

where .∗ is the element-wise product, and the scaling factor
W =

∑N
i=1(Sπt−1. ∗ lt)i is necessary for probabilities to

sum to unity.
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Algorithm CRP CRPS kNN ICP CND ELMO
Seconds 0.05 0.07 0.5 0.1 120 8

Table 1: Average time required to process a single frame.

The final equation has striking resemblance to the
standard HMM update equations. It defines our on-
line CONDITIONAL RANDOM PERSON tracking algorithm
(CRP). We can also use standard HMM inference methods
[18] to define a batch version of CRP: CRP SMOOTHED
(CRPS) uses a forward-backward algorithm to find the pose
distribution at every time step conditioned on all observed
images. In addition, the most likely pose sequence can be
found by using Viterbi decoding and we call the resulting
method CRP VITERBI (CRPV).

5 Implementation and Evaluation
We have implemented CRP and CRPS as described in the
previous sections. We have used the database of 300,000
pose exemplars generated from a large set of motion cap-
ture data in order to cover a range of valid poses. The im-
ages are synthetic, and were rendered, along with the fore-
ground segmentations masks, in Poser [7] for a fixed view-
point. The motion-capture sequences are available from
www.mocapdata.com and include large body rotations,
complex motions, and self-occlusions. The transition ma-
trix was computed by locating 1000 nearest neighbors in
joint position space for each exemplar, and setting the prob-
ability of transitioning to each neighbor to the be Gaussian
with σ = 0.25. The volume of each cell was approximated
as that of a ball with radius equal to the median distance to
50 nearest neighbors.

We used the multiscale edge direction histogram
(EDH) [21] as the basic representation of images. The
binary embedding H is obtained by thresholding individ-
ual bins in the EDH. It was learned using a training set of
200,000 image pairs with similar underlying poses (we fol-
lowed an approach outlined in [27] for estimating false neg-
ative rate of a paired classifier without explicitly sampling
dissimilar pairs). This resulted in 2,575 binary dimensions.

The tracking algorithms are initialized by searching for
50 exemplars in the database closest to the first frame in the
sequence in the embedding space.

Due to the sizes of the database and the transition ma-
trix, both algorithms require large amounts of memory, so
we performed our tests on a computer with 3.4GHz Pen-
tium 4 processor and 2GB of RAM. The algorithms were
implemented in C++, and were able to achieve real-time
performance with average speeds of 20 frames per second
for CRP and 14 frames per second for CRPS.

5.1 Experiments with synthetic and real data

We have quantitatively evaluated the performance of our
tracking method on a set of 19 motion sequences. These se-
quences, obtained in the similar way as the sequence used
for training our algorithm, were not included in the training
set.

We compared our online algorithm, CRP, and its batch
version CRPS (CRP SMOOTHED), to four state-of-the-art
algorithms. The first baseline was a stateless k-Nearest
Neighbors (kNN) algorithm that at every frame searches
the whole database for 50 closest poses based on the em-
bedding distance. The remaining baseline methods were
incremental tracking algorithms: deterministic gradient de-
scent method using the Iterative Closest Point (ICP) algo-
rithm [8], CONDENSATION [22], and ELMO [9]. The ICP
algorithm directly maximizes the likelihood function at ev-
ery frame, whereas CONDENSATION and ELMO evalu-
ated the full posterior distribution. In our experiments, the
posterior distribution in CONDENSATION was modeled us-
ing 2000 particles. In ELMO, the posterior distribution was
modeled using a mixture of 5 Gaussians. The likelihood
function defined in ICP, CONDENSATION and ELMO was
based on the Euclidean distance between the articulated
model and the 3D (reconstructed) points of the scene ob-
tained from a real-time stereo system. In contrast, both CRP
and kNN algorithms require only single view intensity im-
ages and foreground segmentation.

We have chosen to use the mean distance between es-
timated and true joint positions as an error metric [3]. In
Figure 2 we show the performance of 6 algorithms de-
scribed above on four synthetic sequences. As can be seen,
both CRP and CRPS consistently outperform kNN, and
CONDENSATION4, and compare favorably to ICP. While
CRP produces somewhat worse results than ELMO, it does
not use stereo data, and is 160 times faster. The timing in-
formation for all algorithms is presented in Table 1.5

Figure 3 shows the distribution of the differences in error
between our algorithms (CRP and CPRS) and competing
algorithms computed over a large number of synthetic se-
quences. For instance, in the top right plot, a negative value
on the x axis means an frame on which the error of CRP was
lower than that of ELMO. Statistical analysis of these re-
sults6, using the binomial sign test, show that at significance
level of 0.001, CRP was better (i.e., its error was lower
more often) than kNN and CONDENSATION and worse than
ELMO. CRPS was better than kNN, CONDENSATION and
ICP and worse than ELMO; we could not establish signifi-
cant differences in error of CRP vs. ICP. We also calculated

4Increasing the number of particles used for CONDENSATION should im-
prove performance, but the computational costs would become prohibitive.

5We have used more iterations of gradient descent than the implemen-
tation described in [9].

6Details can be found in [26]
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Figure 2: Comparing algorithm performance on four synthetic sequences. The error is measured as an average distance
between true and estimated joint positions. Best viewed in color.
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Figure 3: Distributions of improvements in joint position estimates of CRP (top) and CRPS (bottom) vs. kNN, ICP,
CONDENSATION, and ELMO (left to right). Negative values along the x-axis mean lower error for CRP/CRPS. For each
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Method kNN ICP CND ELMO
CRP vs. -1.5cm 0.04cm -7.13cm 4.57cm
CRPS vs. -1.75cm -0.28cm -7.47cm 4.27cm

Table 2: Confidence intervals for median error reduction,
with p = 0.001. Negative values mean we are confident
with respect to the improvement achieved by CRP/CRPS
over competing methods.

confidence intervals on the median improvement, shown in
Table 2.

For the real data, segmentation masks were computed
using color background subtraction. Sample frames from
two complicated motion sequences are shown in Figure 4.

6 Conclusions and Discussion
We have presented CRP, an algorithm for tracking articu-
lated human motion in real-time. The main contributions
of this work are the discriminative CRF formulation of the
tracking problem; use of similarity preserving embedding
for modeling observation potential function; and the grid-
filter inference algorithm that transforms the continuous
density estimation problem into a discrete one. The result-
ing algorithm is capable of accurately tracking complicated
motions in real-time (20fps in our experiments for both syn-
thetic and real data).

As future work we are interested in using extra domain
knowledge to further improve the performance of the algo-
rithm in two ways. First, when the set of poses that need to
be tracked is restricted, then the size of the sample database
can be decreased by removing all of the unnecessary poses.
Second, when the motion patterns are constrained, for ex-
ample in a dance, tracking can be made more robust by us-
ing a specialized transition matrix (resulting, in the limit, in
tracking on a motion graph).
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