
CMSC 35900 (Spring 2009) Large Scale Learning Lecture: 6

Locally Weighted Regression

Instructors: Sham Kakade and Greg Shakhnarovich

1 NN in a subspace

A common pre-processing step is to project the data into a lower-dimensional subspace, before applying
k-NN estimator. One example of this is the Eigenfaces algorithm for face recognition. PCA is applied
on a database of face images (aligned, of fixed dimension) to get a principal subspace (of much lower
dimensionality than the original, which is the number of pixels in the image). For some fixed m this means
taking the m eigenvectors U = [u1, . . . ,um] of XXT with the largest eigenvalues. Each face image is then
represented by the vector of coefficients obtained by projecting it to the principal dimensions: x′

i = UTxi.
Given a test image, its coefficient vector x′

0 = UTx0 is calculated, and classified using k-NN in this new
m-dimensional representation.

2 Parametric vs nonparametric egression methods

We are now focusing on the regression problem. We will assume that the observations are generated by a
process yi = f(xi) + ε, where the noise ε is independent of the data, and has zero mean and variance σ2.
Two “global” approaches to regression:

Parametric: assume parametric form y = f(x; θ), fit the parameters to the training set

θ∗ = argminθ

n∑
i=1

L(yi, f(xi; θ))

(for instance, using least squares procedure when L is squared loss) and then estimate

ŷ0 = f(x0; θ∗)

• Pros: Once trained, cheap to apply on any new data points. For many forms of f , a closed-form
solution for θ∗

• Cons: A pretty strong assumption regarding the parametric form of f .

Non-parametric:

ŷ0 =
n∑

i=1

yig(xi,x0).

1

A special case of this is a k-NN estimator, in which h is defined as

g(xi,x0) =

{
1/k if xi = x(j)(x0) for some 1 ≤ j ≤ k,

0 otherwise.

More generally, g may itself be a parametric function. For instance, Gaussian kernel

K(x,x′) = C exp
(
−‖x− x′‖2/2σ2

)
requires settings for the kernel bandwidth σ2; these settings affect the properties of the estimate (its smooth-
ness in particular).

• Pros: very flexible, does not assume any particular form of f .

• Cons: very expensive: for every test set, need to go over all the training examples to compute the
kernel (find the neighbors, in the case of k-NN). Still subject to parameter fitting, in case of parametric
kernels.

3 Kernel regression

An estimator that emphasizes points closer to the query can be expressed as

ŷNW
0 =

n∑
i=1

si(x0)yi, (1)

This form is called a linear smoother. One way to define si for 1D x is to set

si(x0) =
K(xi−x0

h)∑
j K(xj−x0

h)

and K is a positive definite continuous kernel satisfying, for any u,

K(u) ≥ 0 (2)∫
K(u)du = 1, (3)∫

uK(u)du = 0, (4)∫
u2K(u)du > 0, (5)

and h > 0 is a parameter effectively controlling the distance falloff. This estimator is called the Nadaraya-
Watson (N-W) kernel estimator. Kernels that are particularly popular for this model are the Epanechnikov
kernel,

K(u) =

{
1− (u)2 if |u| < 1,

0 otherwise

and the tri-cubic kernel

K(u) =

{(
1− |u|3

)3 if |u| < 1,

0 otherwise,

2

and the “boxcar” kernel

K(u) =

{
1 if |u| < 1,

0 otherwise

which effectively defines a distance cutoff, determined by the value of h. All of these have finite support, and
potentially allow for huge savings if we have a way to find the points with non-zero kernel values without
an exhaustive scan of the training data. Theoretically, the Epanechnikov kernel has certain optimality prop-
erties; on the other hand, it suffers from discontinuity at the support boundaries, which may cause problems
in practice as well as in theoretical analyses.

In a multivariate case, the kernel is parametrized by a symmetric positive-definite matrix H, such that

K(xix0;H) = |H|−1/2K
(
H−1/2(xi − x0)

)
Often the multivariate kernel is a product of 1D kernels,

K(xix0;H) =
d∏

q=1

K((xi,q − x0,q)/hq),

where xi,q is the q-th element of xi, and H = diag(h1, . . . , hd). The conditions on a valid K become∫
uuT K(u)du = vI, v 6= 0 (6)∫

ul1
1 · · ·u

ld
d K(u)du = 0, for all odd l1, . . . , ld. (7)

The specific choice of the kernel K turns out not to be very important. However, the value of the
bandwidth h has an effect on the behavior of the estimate. It is possible to derive an optimal value of h that
will minimize the risk of the estimator; however, this value depends on the unknown true function f (its
derivatives, more precisely), as well as the input probability density p. We can try to estimate p, as well as
the derivatives of f , directly; however, this of course leads to a new bandwidth selection problem.

A common way to estimate h in practice is via cross-validation: for each training example xi, remove
it from the set, fit the function at xi using the remaining points, compute the residual with respect to yi,
and average the squared residuals over the n samples. This sounds rather expensive, since it requires re-
calculating the function parameters for each removed sample. Fortunately, for any linear smoother this can
be done in closed form. We compute, for each i and j, the weights si(xj). Then,

1
n

n∑
i=1

(
yi − f̂(−i)(xi)

)2
=

1
n

n∑
i=1

(
yi − ŷi

1− si(xi)

)2

(8)

This allows an efficient estimate of a global bandwidth. The value of h carries a bias-variance tradeoff:
larger h means smoother, less varying estimate, however it may be affected too much by distant points,
increasing the bias. It has been proposed by many researchers that a better solution than to use a global h
is to allow an adaptive h. A particularly popular method is to set h to be the distance to the k-th nearest
neighbor.

3

4 Locally polynomial regression

The N-W estimator employs a truly non-parametric model. In fact, this is a locally constant estimator: it
models the function at x0 (and in its infinitisemal vicinity) as a constant, defined by the weighted combina-
tion of the training labels. We now consider a parametric model in which we explicitly model the variation
of the function at x0, but emphasize nearby points more heavily than those far away. During training, we
can do that by weighting the training examples:

θ∗(x0) =
n∑

i=1

L(yi, f(xi; θ))K(D(xi − x0;h)/h) (9)

Note that here we use a more general notation for the kernel, referring to an arbitrary distance function D.
For squared loss, and linear model, we get an analytical solution as follows. First, we shift the xs by

subtracting the query x0 from each xi and replacing x0 with [0, . . . , 0, 1]T (the 1 is for the constant term).
We set up an n× d + 1 matrix X by placing the shifted xT

i in its rows. We denote

wi ,
√

K(xi,x0)

and

W ,


w1 0 . . . 0
0 w2 . . . 0

. . .
0 0 . . . wn


We then reweight the original data, both x and y: zi , wixi, so that Z = WX, and vi , wiyi, so that
v = Wy. Now, we have

θ(x0) =
n∑

i=1

(
yi − xT

i θ
)2

K(xi,x0)

⇒ (ZTZ)θ = ZTv

⇒ θ∗(x0) = (ZTZ)−1ZTv

⇒ ŷ0 = xT
0 (ZTZ)−1ZTv

(10)

Note that we have to do this for each test example x0 producing a different parameter vector θ∗(x0), and
so even if we use a locally linear model, the resulting function is no longer globally linear!

In practice, especially in high dimensions, the regression matrix ZTZ can be singular. The usual solution
is to use ridge regression:

θ∗ = (ZTZ + λI)−1ZTv

An alternative to this is to perform a weighted dimensionality reduction, by applying SVD on ZTZ.
In terms of (1), we can define

[s1(x0), . . . , sn(x0)]T = xT
0

(
ZTZ + λI

)−1
ZTW.

If we want to use a locally polynomial model of order higher than 1, we will need to replace the de-
sign matrix X with the degree-extended matrix, which includes in each column, in addition to x, features
obtained by higher-order polynomial terms: x2

1, x1x2, . . .

4

5 Bias and variance

In case when the kernel and the distance function have the form that is applicable to both N-W and the local
linear estimator, we can characterize the asymptotic behavior of these estimators as follows. Details can be
found in [2].

Theorem 5.1. (Fan, 1992) Let yi = f(xi) + εi, for i = 1, . . . , n, with xi ∼ p(x) i.i.d. over a bounded
support, with additive noise εi ∼ p(ε) i.i.d., with zero mean and variance σ2. Furthermore, for x0, assume
p(x0) > 0, p is continuously differentiable at x0, and all second-order derivatives of f are continuous in
x0. Consider a sequence of bandwidth matrices H such that, as n →∞, |H|/n → 0, as well as each entry
of H. We will also assume that the condition number (ratio of the largest to the smallest eigenvalue) of H is
bounded from below by some positive constant, for all n. Then, both the N-W and the local linear estimator
have variance in x0 (conditional on x1, . . . ,xn)

1
n|H|1/2

σ2

p(x0)

∫
K(u)2du (1 + oP (1)) (11)

The bias of N-W kernel estimator is

1
2
v tr (HHf (x0)) + v

∇f (x0)THHT∇p(x0)
p(x0)

+ oP (tr(H)), (12)

where v is defined as in (6), Hf (x) stands for the Hessian of f in x, and ∇f (x) for the gradient. The bias
of the local linear estimator is

1
2
v tr (HHf (x0)) + oP (tr(H)) . (13)

This shows that the N-W estimator suffers from “design bias”: it depends on the density of x, while the
locally linear estimator does not. Furthermore, it can be shown that the the bias of the N-W is higher at the
boundaries. These results hold in general, for local polynomial models of order t. Interestingly, using odd t
vs. the next even p reduces bias without increasing variance. Note however that these results are asymptotic!

For finite-sample case we can write the estimate in x0 as

ŷ0 = s(x0)Ty.

The conditional mean of the locally linear estimator is given exactly by

Ex1,...,xn [ŷ0] = Ex1,...,xn

[
s(x0)Ty

]
=

n∑
i=1

si(x0)f(xi),

and the variance is

var ŷ0 = σ2
n∑

i=1

s2
i (x0) = σ2‖s(x0)‖2

Note that this estimate does not depend on the labels y, but only on the xs!

5

References

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelligence Review,
11:11–73, 1997.

[2] D. Ruppert and M. P. Wand. Multivariate locally weighted least squares regression. Annals of Statistics,
22(3):1346–1370, 1994.

[3] L. Wasserman. All of Nonparametric Statistics, chapter 5. Springer, 2006.

6

