CMSC 35900 (Spring 2009) Large Scale Learning Lecture: 1
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Instructors: Sham Kakade and Greg Shakhnarovich

1 Introduction

This course will cover a number of methods related to dealing with large datasets. Recently, the term ‘large scale
learning’ refers to the supervised learning regime where the labeled sample size is ‘large’ (issues related to optimization
when n — oc). However, we do not mean that here. Rather, this course will focus on a number of issues related to
learning high dimensions.

2 Karhunen-Loeve theorem

Consider a centered stochastic process [X];, for ¢ € [0, 1]. Centered means that E[X]; = 0. In the discrete case we
have a random vector X € R? where [X]; is the ¢ — thcomponent.
The autocovariance function is:

K(t,s) = Cov(Xy, X,) =< Xi| X, >= E[X, X,]

which can be viewed as a kernel.
The corresponding integral operator is:

Tr®(t) = /0 K(t, s)®(t)ds

which has eigenvectors and eigenvalues.

Theorem 2.1. (KL) Consider the centered stochastic process X for t € [0, 1] with covariance function K (t,s).
Suppose this covariance function is continuous in t, s. By Mercer’s theorem, the corresponding integral operator on
Tk has an orthonormal basis of eigenvectors, {e;(t)}. Define:

1
Zi:/ Xtei(t)dt
0

Then Z; are centered orthogonal random variables and:

o0

Xt = Z Gz(t)Zq

(where convergence is in the mean and uniform in t). Also,
Var(Z;) =E(Z3) = \;

where \; is the eigenvalue corresponding to e;.

2.0.1 Wiener Processes

For things like Brownian motions, these things have well defined answers.



2.0.2 Mercer’s Theorem

Theorem 2.2. Suppose K is a continuous symmetric non-negative definite kernel. Then there is an orthonormal
basis {e;} on L3[0, 1] consisting of eigenfunctions of Tk such that the corresponding sequence of eigenvalues {\;}
is nonnegative. The eigenfunctions corresponding to non-zero eigenvalues are continuous on [0,1] and K has the
representation:

K(s.8) = Y- Aes(8)ey()

where the convergence is absolute and uniform.
In finite dimensions,

Theorem 2.3. Suppose K is a square symmetric matrix. Then there exists a decomposition:
S=UDU"

where D is diagonal and U is orthogonal. The diagonal entries of D are the eigenvalues and corresponding columns
of U are the eigenvalues. If K is non-negative definite then all the eigenvalues are positive.

3 PCA

Given a finite sample X7, ... X,,, we have the empirical covariance matrix:

. 1 n .
K=- Z XX,
i=1
PCA is just the KL transform of the empirical Kernel matrix.
Alternative viewpoint:

. IR
wy = argmaxw:HwHﬂUZ(w - X) = AGMAX y: ap| =1 Z(w - X;)?

i=1
and z; is the value. Next,
X — X; — Z(wl - Xi)wy
J

and repeat to find e, and z, and so on.
An alternative viewpoint is provided by the SVD.

4 The Best Fitting Subspace and the SVD

Now we let A be a general matrix. The maximal singular value is max|,|—; ||Av||2 and the argmax is the corre-
sponding singular vector. We let A; be a row of A.

Lemma 4.1. For an arbitrary matrix A € R"*¢,

argmax||w\|:1”AwH2 = argmin -, [|A — (Aw)yw |7 = argming |, =1 Z [4i = (A; - w)w]?

2 .

where || - ||3. is the Frobenious norm (the Frobenious norm of a matrix M is || - || = 32, ; M7;).

Proof. The proof essentially follows from the Pythagorus theorem. O



Theorem 4.2. (SVD) Define the k dimensional subspace Wi, as the span of the following k vectors:

wy = argmaxuwH:lHAw||2 (D
w2 = argmax“w“:l,w~w1=0”Aw||2 (2)

3)
Wi = arglnax“w”:l,ViSk,w~wi:OVi§kHAw||2 4)

Then Wy, is optimal in the sense that:

Wi, = argmin g, (w)= Z distance(A;, Wy, )?

Furthermore,
o1 = [[Awy|| > 02 = [[Aws|| > ... Omin{n,d} = [AWmingn,a |l

Let o;u; = Av;, so u; is unit length. Then the set {u;} is orthonormal (so is {v;} by construction) and the SVD
decomposition of A is:

A= Z JiuiviT = Udiag(o1, ... amin{md})VT

where U and V are orthogonal matrices with rows {u;} and {v;}, respectively.

Proof. The interesting part of the proof is that {u;} is orthonormal — the rest of the proof essentially follows by

construction. O
As a corollary, we have that:

Corollary 4.3. Among all rank k matrices D, Ay, = o¥_ u; = Av; is the one which minimizes ||A — D||p. Further,

min{n,d}

lA-Dlz= > of

i=k+1

4.1 Computation

Computing an SVD is often intensive for large matrices. There are increasingly fast algorithms for this.

4.2 Latent Semantic Analysis (LSA) or LSI (LSIndexing)

Let look at an application to information retrieval.
Say we represent a document by a vector d and a query by a vector ¢, then one score of a match is the cosine score:
milarit d-q
similarity = ———
ll!lgll
The naive approach is to just use a bag of words to represent these vectors — so the length of the vector is the number
of words (in the language or corpus) and the entry in the k-th position denote the number of times that word appears.
Using just bag of word counts, two difficulties with this approach are synonymy and polysemy.
LSA is a simple way to address this, using a vector space method. Here, let X be the term/document matrix. Let:

X=UDV"
be the SVD of X. We can work with the k-rank approximation to X:
Xy = UpDpV,"

So we represent each document and (new) query as a k-vector. The document j is just represented by V;. A vector
query g is now represented as:

xterm(q) = D]:rlU];rqmdocument (d) = Dlzlvk—rd

Now for recall we can just use the cosine score for retrieval.



5 References

Material used was Wikipedia and Santosh Vempala’s lecture notes. Further reading about LSA can be found in the
Information Retrieval book by Manning and Raghavan.



