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Abstract

In the supplementary material we give proofs of the

propositions stated in the main paper and provide addi-

tional experimental results.

1. Perturb-and-MAP random fields

Recall the definitions of the polyhedra Px in the space of

perturbations

Px = {θ ∈ R
M : 〈θ,φ(x)− φ(q)〉 ≤ 0, ∀q ∈ LN}, (1)

as well as the density

fPM (x;θ) =

∫

Px−θ

fǫ(ǫ)dǫ , (2)

and log-likelihood

LPM (θ) = (1/K)

K
∑

k=1

log fPM (xk;θ) (3)

under the Perturb-and-MAP model (Section 3 of the main

paper [7]).

1.1. Concavity of Perturb­MAP log­likelihood

We will use an important property of log-concave func-

tions (i.e., functions whose logarithm is concave) arising in

stochastic programming [8]; also see [3, Sec.3.5]:

Lemma 0. If h : RM1×R
M2 → R is log-concave in (θ, ǫ),

then g(θ) =
∫

h(θ, ǫ)dǫ is log-concave in θ.

Proposition 1. If the perturbations ǫ are drawn from a log-

concave density fǫ(ǫ), the log-likelihood LPM (θ) is a con-

cave function of the energy parameters θ.

Proof. We will prove that fPM (x;θ) of Eq. (2) is log-

concave in θ for any x ∈ LN ; the log-likelihood LPM (θ)

of Eq. (3) will then be concave as the sum of concave func-

tions. We write fPM (x;θ) =
∫

Ψx(θ, ǫ)fǫ(ǫ)dǫ, where

Ψx(θ, ǫ) equals 1, if θ + ǫ ∈ Px and 0, otherwise. As a

function jointly of (θ, ǫ), Ψx is the indicator function of the

convex set (polyhedron) {(θ, ǫ) : 〈θ + ǫ,φ(x) − φ(q)〉 ≤
0, ∀q ∈ LN} and is thus log-concave. Since fǫ(ǫ) is also

log-concave, the integrand is log-concave in (θ, ǫ), as the

product of log-concave functions. By invoking Lemma 0,

we conclude that fPM (x;θ) is log-concave in θ.

1.2. Moment matching update takes steps in the
right direction

Proposition 2. If θ′ and θ differ only in the j-element, with

θ′j > θj , then EPM
θ′ {φj(x)} ≤ EPM

θ
{φj(x)}. The in-

equality will be strict if the the perturbation density fǫ(ǫ) is

“rich enough”.

Proof. The j-moment under the Perturb-and-MAP model is

EPM
θ

{φj(x)} =
∑

x
φj(x)fPM (x;θ), where from Eq. (2)

fPM (x;θ) =
∫

Px−θ
fǫ(ǫ)dǫ is the measure of the shifted

polyhedron Px − θ under the perturbation density fǫ(ǫ).
Let as re-write the linear inequalities defining the shifted

polyhedron as Px − θ = {ǫ ∈ R
M :

∑M
j′=1 ǫj′(φj′(x) −

φj′(q)) ≤ −
∑M

j′=1 θj′(φj′(x) − φj′(q)), ∀q ∈ LN}.

Since θ′ and θ are identical except for θ′j > θj , any of

the inequalities above gets tighter if φj(x) ≥ φj(q), looser

if φj(x) ≤ φj(q), and stays the same if φj(x) = φj(q).
Thus, the effect in ǫ-space of increasing θj is that if a state

x has a neighbor q for which φj(x) > φj(q), then the poly-

hedron Px − θ of state x shrinks in favor of the polyhedron

Pq − θ of state q, whereas if φj(x) < φj(q) then Px − θ

expands over Pq − θ; in both cases, the j-moment will de-

crease EPM
θ′ {φj(x)} ≤ EPM

θ
{φj(x)}.

The inequality will be strict if any of the ǫ-space ex-

changes among neighboring polyhedra has strictly positive

measure under fǫ(ǫ). This condition is satisfied even if we

only perturb the unary terms with a strictly positive density.

In particular, the Gumbel perturbation of any order (even
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the order-1) satisfies this condition.

Note that if we change many elements of θ at once, there

can be interference due to correlation among different fea-

tures. This implies that the convergence of the model suf-

ficient statistics towards their observed values needs not be

monotonic, which is also the case with the gradient ascent

learning rule for Gibbs MRFs.

1.3. Gumbel perturbations

The Gumbel continuous univariate distribution1 with

mode µ has probability density function (PDF) g(z;µ) =
exp((z − µ)− ez−µ)) and cumulative distribution function

(CDF) G(z;µ) = 1 − exp(−ez−µ). Note that the Gumbel

density is log-concave, since z − ez is concave in z. Also,

if u is drawn from the standard uniform distribution, then

z = µ + log(− log(u)) ∼ G(µ), i.e., z follows a Gumbel

distribution with mode µ – see, e.g., [9]. We plot the Gum-

bel PDF and CDF for µ = 0 in Fig. 1.
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Figure 1. Probability density function and cumulative distribution

function of the Gumbel distribution with mode µ = 0.

The Gumbel density fits naturally into the Perturb-and-

MAP model. We have the following Lemma on the mini-

mum of independent Gumbel random variables:

Lemma 1. Let (θ1, . . . , θm), with θn ∈ R, n = 1, . . . ,m.

We additively perturb them by θ̃n = θn + ǫn, with ǫn IID

zero-mode Gumbel samples. Then:

1We use the min-Gumbel form of the density which arises in the study

of minima of random variables, as is the case with our energy minimization

problem. In the study of maxima of random variables, the max-Gumbel

form of the density is encountered, whose density is just the mirror g(−z+
µ;µ) of the min-Gumbel density.

(a) The minimum of the perturbed parameters θ̃min ,

minn=1:m{θ̃n} follows a Gumbel distribution with

mode θ0, where e−θ0 =
∑m

n=1 e
−θn .

(b) The probability that θ̃n attains the minimum value is

Pr{argmin(θ̃1, . . . , θ̃m) = n} = e−θn/e−θ0 .

Proof. (a) The CDF of the minimum θ̃min is

Fmin(θ) = Pr{θ̃min ≤ θ}

= 1− Pr{θ̃n > θ, 1 ≤ n ≤ m}

= 1−

m
∏

n=1

(

1−G(θ; θn)
)

= 1−
m
∏

n=1

exp(−eθ−θn)

= 1− exp
(

− eθ(

m
∑

n=1

e−θn)
)

= 1− exp(−eθ−θ0),

which is the CDF of a Gumbel distribution with mode θ0 =
− log(

∑m
n=1 e

−θn).
(b) We have

Pr{ argmin(θ̃1, . . . , θ̃m) = n} =

= Pr{θ̃n ≤ min
j 6=n

{θ̃j}}

=

∫ +∞

−∞

g(t; θn)
∏

j 6=n

(

1−G(t; θj)
)

dt

=

∫ +∞

−∞

et−θn exp(−et−θn)
∏

j 6=n

exp(−et−θj )dt

=

∫ 1

0

∏

j 6=n

zexp(θn−θj)dz [we set z , exp(−et−θn)]

=

∫ 1

0

z
∑

j 6=n
exp(θn−θj)dz

=
1

1 +
∑

j 6=n e
θn−θj

=
e−θn

∑m
j=1 e

−θj

A result related to Lemma 1 has appeared before in the

context of online learning [6, 10].

Gumbel perturbation on fully-expanded potential table

The Gibbs random field on N sites xi, i = 1, . . . , N , each

allowed to take a value from the discrete label set L can be

considered as a discrete distribution with |L|N states. This
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can be made explicit if we enumerate {xj , j = 1, . . . , M̄ =
|L|N} all the states and consider the maximal equivalent

re-parameterization of Eq. (1) of the main paper

ē(x; θ̄) , 〈θ̄, φ̄(x)〉 = 〈θ,φ(x)〉 , (4)

where θ̄j = e(xj ;θ) = 〈θ,φ(xj)〉, j = 1, . . . , M̄ , is

the fully-expanded potential table and φ̄j(x) is the indicator

function of xj (i.e., equals 1, if x = xj and 0 otherwise).

Using Lemma 1, we can then prove the following:

Proposition 3. If we perturb each entry of the fully ex-

panded LN potential table with IID Gumbel noise samples

ǫj , j = 1, . . . , M̄ , then the Perturb-and-MAP and Gibbs

models coincide, i.e., fPM (x;θ) = fG(x;θ).

Proof. We have:

fPM (xj ;θ) =

= Pr{argmin
q

ē(q; θ̄) = xj}

= Pr{argmin(θ̄1 + ǫ1, . . . , θ̄M̄ + ǫM̄ ) = j}

=
exp(−θ̄j)

∑M̄
j′=1 exp(−θ̄j′)

[by Lemma 1(b)]

=
exp(−e(xj ; θ)

∑M̄
j′=1 exp(−e(xj′ ; θ))

=
exp(−e(xj ; θ)

Z(θ)

= fG(xj ;θ)

Probability that a perturbed Ising link is submodular

The order-2 Gumbel perturbation can yield non-submodular

functions even when our original energy is submodular.

It turns out that for the Ising model we can compute in

closed-form (using a result of [1] on the distribution of

the sum of two logistic random variables) the probability

that a single pairwise link of strength λ will remain sub-

modular after order-2 Gumbel perturbation. The formula is

Pr{λ̃ ≥ 0} = e2λ(e2λ − 2λ − 1)/(e2λ − 1)2, plotted in

Fig. 2; for example, for λ = 4, Pr{λ̃ ≥ 0} ≈ 0.998.

2. Additional experimental results

2.1. Interactive image segmentation

In Fig. 3 we show further results obtained by the Perturb-

and-MAP model on the interactive image segmentation

task, produced as described in Sec. 5.1 of the main pa-

per. We show the original image, the ground-truth hand-

annotated segmentation, the least energy MAP solution
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Figure 2. Probability that a perturbed Ising link is submodular.

(i.e., the result obtained by the standard Grabcut algo-

rithm using the weights learned by Perturb-and-MAP mo-

ment matching), and the soft Perturb-and-MAP segmenta-

tion (average over 20 posterior samples) along with the cor-

responding alpha mask.

2.2. Scene layout labeling

We report additional results on the evaluation of the

Perturb-and-MAP model on the scene layout labeling task,

described in Sec. 5.2 of the main paper.

First, for completeness, we give in Table 1 the baseline

mean accuracy and full row-normalized confusion matrices

for confidence-only [5] and MAP [4] (the result obtained by

the standard tiered algorithm using the hand set potentials of

[4], as distinct from the learned potentials – the MAP results

with our learned potentials are reported in Table 1 of the

main paper.) In both cases we use the classifiers we trained

using the dataset and software of [5] (same classifiers as

the ones we used in conjunction with the Perturb-and-MAP

experiments reported in the main paper).

Confidence only (acc 82.1%)
B L C R T

B 93.6 0.4 4.7 0.8 0.5

L 20.7 38.2 31.7 8.5 1.0

C 21.3 5.2 55.6 12.9 5.0

R 13.5 2.8 26.6 51.8 5.3

T 0.5 0.3 3.2 1.0 95.0

MAP (hand set w) (acc 82.1%)
B L C R T

B 93.8 0.3 4.6 0.8 0.5

L 20.8 35.3 34.3 8.0 1.7

C 21.5 4.3 57.5 11.8 4.9

R 13.9 1.2 28.4 51.1 5.4

T 0.7 0.3 3.6 0.8 94.6

Table 1. Baseline scene labeling confusion matrices.

In Fig. 4 we show further examples obtained by the

Perturb-and-MAP model on the scene layout labeling task

with the tiered model. We show the original image, the

confidence-only result, the least energy MAP solution (i.e.,

the result obtained by the standard tiered algorithm using

the potentials learned by Perturb-and-MAP moment match-

ing), the per-pixel most probable labeling (mode on the

labels over 20 posterior Perturb-and-MAP samples), one

Perturb-and-MAP sample, and the per-pixel entropy of the

labeling (computed on the per-pixel labeling histogram of

the 20 posterior Perturb-and-MAP samples). In all Perturb-

and-MAP results we have used order-1 Gumbel perturba-

tions.
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(a) (b) (c) (d) (e)
Figure 3. Interactive image segmentation results. We show: (a) the original image, (b) the ground-truth segmentation, (c) the least en-

ergy MAP solution (i.e., the result obtained by the standard Grabcut algorithm using the weights learned by Perturb-and-MAP moment

matching), (d & e) the soft Perturb-and-MAP segmentation (average over 20 posterior samples), and the corresponding alpha mask.
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(a) (b) (c) (d) (e) (f)
Figure 4. Tiered scene labeling results. We show (a) original image, (b) confidence-only result, (c) least energy MAP solution, (d) indicative

sample, (e) per-pixel Perturb-and-MAP marginal mode, (f) per-pixel marginal entropy map. The results (c-f) use the potentials learned by

our Perturb-and-MAP moment matching algorithm. Marginal densities used in (e-f) are averages over 20 posterior samples.
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In Fig. 5 we visualize the pairwise neighbor poten-

tial tables learned for the tiered model on the dataset of

[5]. These correspond to the fpq vertical and horizontal

CRF weights of [4]. For training, we also added to the

model log-likelihood a mild L2 weight regularization term

κ
∑

α,b(fpq(α, b))
2, with κ = 10−4 (and similarly for the

unary term weights).

Figure 5. Vertical and horizontal pairwise potential tables of the

tiered model learned on the dataset of [5]. Class labels are ordered

as in [4]. Weights illustrated as Hinton diagrams.

3. Further discussion

This Section has been added after the conference

camera-ready deadline and discusses issues that have come

up from correspondence with colleagues.

3.1. Every state is reachable under the Perturb­and­
MAP model

Similarly to the Gibbs-MRF, the Perturb-and-MAP

model assigns strictly positive probability to every state2.

Specifically:

Proposition 4. The order-1 perturbation (i.e., adding noise

to the unary potentials only) yields a Perturb-and-MAP

model that assigns non-zero probability to every state, pro-

vided that the perturbation density is unbounded (i.e., its

support is the whole real line), which holds for the order-1

Gumbel perturbation.

Proof. We consider a general MRF with N nodes

xi, i = 1, . . . , N and L states per node. In the order-1 per-

turbation, the feature set φ includes all N×L unary indicator

functions φi,l(x) = [xi = l] = 1, if xi = l, and 0,

otherwise, plus any other features specific to the particular

MRF (e.g., pairwise potentials etc.).

Using the notation of the main paper’s Sec. 3.1, an ar-

bitrary state x will be generated by the P-M sampler iff the

perturbations {ǫi,l} satisfy the linear inequalities

∑

i,l

(θi,l+ǫi,l)([xi = l]−[qi = l]) ≤ −
∑

α

θα(φα(x)−φα(q))

(5)

2Question raised by M. Welling of UC Irvine.

for all other states q ∈ LN , with q 6= x, where α is an

index to all the remaining features of order 2 or more. Note

that since we are dealing with order-1 perturbations the cor-

responding parameters θα stay unperturbed.

Let mx = minq −
∑

α θα(φα(x)− φα(q)) be the mini-

mum of the right hand side over all possible states q ∈ LN

and m̄x = min(mx, 0) ≤ 0. Then it is sufficient that the

perturbations {ǫi,l} satisfy the tighter set of linear inequali-

ties
∑

i,l

(θi,l + ǫi,l)([xi = l]− [qi = l]) ≤ m̄x (6)

for all states q ∈ LN , with q 6= x.

For this last set of inequalities to be satisfied, it suffices

that the perturbations fall within the quadrant

θi,l + ǫi,l ≤ m̄x, if xi = l (7)

θi,l + ǫi,l ≥ −m̄x, if xi 6= l (8)

Since the support of the independent unary perturbations is

the whole real line, the probability of the state x under the

P-M model is bounded by fPM (x) ≥
∏

i,l:xi=l Pr{ǫi,l ≤
m̄x − θi,l}

∏

i,l:xi 6=l Pr{ǫi,l ≤ −m̄x − θi,l} > 0.

In other words, the order-1 perturbation is expressive

enough to generate an arbitrary state x as a sample. For

this to happen, it suffices that the unary term perturbation

encourages a lot the particular state, Eq. (7), and discour-

ages a lot its competitors, Eq. (8).

For a geometric understanding of this property and with

reference to Fig. 1 of the main paper, we are guaranteed to

reach state x = (1,−1) if we select ǫ1 sufficiently large

and ǫ2 sufficiently small, no matter what the values of the

coupling strength |λ| or the external field βi are.

Perturbations of order 2 or larger are even more ex-

pressive and thus also guaranteed to assign strictly positive

probability to all states.

3.2. Bibliographic note

In the related work Section of the main paper, we have

missed referring to the article of Blum et al. [2]3. They also

propose adding noise to the weighted edges of a graph so

as to randomize the minimum energy configuration found

by mincuts. They deal with a submodular binary MRF

problem arising in the context of semi-supervised learning.

Their main arguments are: (a) In the presence of multiple

cuts with the same minimum cost, randomization breaks the

graph symmetries and allows the standard mincut algorithm

produce a different mincut solution at each run. In partic-

ular, randomization, coupled with an extra post-processing

pruning step, allows one to avoid highly unbalanced cuts

3We thank an anonymous reviewer and C. Lampert of IST Austria for

pointing us to it.
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which can be detrimental to semi-supervised learning clas-

sification performance [2]. (b) They interpret the relative

frequency of each node receiving one or the other label as

a confidence score for binary classification. However, be-

yond randomizing the deterministic mincut algorithm, they

do not study the implied probabilistic model as a standalone

object nor attempt to design the perturbation mechanism so

as to approximate the corresponding Gibbs model. Indeed,

the choice of perturbation distribution is not discussed at all

in [2], presumably because adding small amounts of noise

from any well-behaved continuous distribution suffices to

break model symmetries. Their discussion is also limited to

submodular energies on binary labels.
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