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Abstract

We propose a novel way to induce a random field from

an energy function on discrete labels. It amounts to lo-

cally injecting noise to the energy potentials, followed by

finding the global minimum of the perturbed energy func-

tion. The resulting Perturb-and-MAP random fields harness

the power of modern discrete energy minimization algo-

rithms, effectively transforming them into efficient random

sampling algorithms, thus extending their scope beyond the

usual deterministic setting. In this fashion we can enjoy

the benefits of a sound probabilistic framework, such as the

ability to represent the solution uncertainty or learn model

parameters from training data, while completely bypassing

costly Markov-chain Monte-Carlo procedures typically as-

sociated with discrete label Gibbs Markov random fields

(MRFs). We study some interesting theoretical properties

of the proposed model in juxtaposition to those of Gibbs

MRFs and address the issue of principled design of the per-

turbation process. We present experimental results in im-

age segmentation and scene labeling that illustrate the new

qualitative aspects and the potential of the proposed model

for practical computer vision applications.

1. Introduction

Discrete label Markov random fields (MRFs), going

back to the classic Ising and Potts models in statistical

physics, offer a natural and sound probabilistic modeling

framework for a host of image analysis and computer vi-

sion problems involving discrete labels, such as image seg-

mentation, texture synthesis, and deep learning [2,7,10,15,

31]. Exact probabilistic inference and maximum likelihood

model parameter fitting is intractable in general MRFs de-

fined on 2-D domains and one has to employ random sam-

pling schemes to perform these tasks [7, 10]. Beyond its

role in inference, random sampling from MRFs can be a

goal in itself when the generative MRF properties are ex-

ploited, as in texture synthesis or inpainting [24, 31]. How-

ever, Markov-chain Monte-Carlo (MCMC) sampling algo-

rithms such as Gibbs sampling can be computationally too

expensive for many practical computer vision applications.

Recent powerful discrete energy minimization algo-

rithms such as graph cuts, linear programming relaxations,

or loopy belief propagation [5, 15–17] can efficiently find

or well approximate the most probable (MAP) configura-

tion for certain important classes of MRFs and have had

big impact on several computer vision applications. Be-

yond MAP computation, energy minimization algorithms

can be used for estimating model parameters using max-

margin criteria [26]. However, the deterministic viewpoint

on MRF modeling as energy minimization problem has im-

portant limitations as it does not provide the right concep-

tual framework for probabilistically characterizing the so-

lution uncertainty or learning the model parameters from

training data by maximum likelihood.

In this work we attempt to somehow bridge the gap be-

tween the probabilistic and the energy minimization ap-

proaches to MRF modeling. We propose a novel way to

induce a discrete label random field model from an energy

function, which amounts to locally injecting additive ran-

dom noise to the continuous energy potentials, followed

by finding the global (approximate) minimum configura-

tion of the perturbed energy function. This Perturb-and-

MAP (PM) random field is a legitimate probabilistic model

which delegates the non-trivial global interactions involved

in sampling to an efficient energy minimization routine, and

thus allows rapid sampling from a wide range of energy

functions widely used in practice.

From the probabilistic MRF perspective, the proposed

technique can be seen as a one-shot approximate random

sampling algorithm that completely bypasses MCMC. We

study the problem of designing the perturbation process

so as the Perturb-and-MAP random field be a good ap-

proximation to the corresponding Gibbs MRF. Interestingly,

we identify a specific perturbation density under which the

Perturb-and-MAP model is identical to its Gibbs counter-



part. Although this ideal perturbation is not practically ap-

plicable since it effectively destroys the local Markov struc-

ture of the energy, it suggests low-order perturbations that

only introduce noise to the unary (order-1) or a subset of the

pairwise (order-2) potential tables, resulting in perturbed

energies that are effectively as easy to minimize as the orig-

inal unperturbed one, while producing random samples vir-

tually indistinguishable from exact Gibbs MRF samples.

Perturb-and-MAP random fields allow qualitatively new

applications of energy minimization algorithms in computer

vision. First, accompanying the MAP solution with sev-

eral typical posterior samples drawn from the model allows

us to quantify our confidence in the solution, which can be

useful in guiding the user’s attention in interactive appli-

cations, propagating uncertainty in further processing steps

of a more complex computer vision pipeline, or assessing

the generative properties of a particular MRF model. Sec-

ond, our efficient sampling algorithm allows learning of

MRF or CRF parameters using the moment matching rule,

in which the model parameters are updated until the gen-

erated samples reproduce the (weighted) sufficient statis-

tics of the observed data. This approach is very popular

for learning of patch-based models [10, 19], but the use of

perturbed sampling instead of contrastive divergence is cru-

cial for fast training in our applications. Similar to Gibbs

MRFs, such greedy parameter update is justified because

the log-likelihood of the Perturb-and-MAP model turns out

to be concave. We illustrate these ideas in experiments on

image segmentation and scene labeling.

Related work Our research on the Perturb-and-MAP dis-

crete random field model has been motivated by the exact

Gaussian MRF sampling algorithm popularized by [20, 24]

and especially its local factor perturbation interpretation

highlighted by [20]. While the underlying mathematics and

methods are completely different in the discrete setup we

consider here, we show that the intuition of local perturba-

tions followed by global optimization can also lead to pow-

erful sampling algorithms for discrete label MRFs.

Herding [29] builds a deterministic dynamical system on

the model parameters designed so as to reproduce the data

sufficient statistics, which is similar in spirit to the moment-

matching algorithm we use for learning. However, herding

is still not a probabilistic model and cannot summarize the

data into a concise set of model parameters.

The limitations of MAP-based inference in discrete

MRFs are nicely illustrated in [30]. They impose extra

global constraints in the energy minimization problem to

mitigate the tendency of MAP inference to produce singular

solutions. However, they still adhere to a deterministic set-

ting which is not suited for parameter learning. Further, op-

timizing the resulting modified energy functions is far more

challenging than minimizing the original energy.

Averaging over multiple samples, our approach allows

efficiently estimating (sum-) marginal densities and thus

quantifying the per-node solution uncertainty even in graphs

with loops. Max-product belief propagation [28] and dy-

namic graph-cuts [14] can compute max-marginals, which

give some indication of the uncertainty in label assignments

[14] but cannot directly estimate marginal densities.

In the context of binary image segmentation, the

sampling-based marginal confidence maps we produce re-

semble the soft segmentation maps of the random walker

model [8], although the underlying probabilistic underpin-

nings of the two methods are completely different.

2. Energy functions and Gibbs MRFs

Our starting point is a deterministic energy function

e(x;θ) = 〈θ,φ(x)〉 , (1)

where x ∈ LN is a length-N state configuration vector with

entries xi in a discrete label set L, θ ∈ R
M is a real param-

eter vector of length M , and φ(x) = (φ1(x), . . . , φM (x))T

is a vector of potentials or “sufficient statistics”. We can in-

terpret θj as the weight assigned to the feature φj(x): we

have many different design goals or sources of information

(e.g., smoothness prior, measurements), each giving rise to

some features. We merge everything together into a single

objective function which we want to optimize so as to re-

cover the best/minimum energy configuration x.

The weights θ are selected in a way that the model as-

signs low energies to desirable configurations and high en-

ergies to “everything else”. When the number of parameters

M is small, we can set them to reasonable values by hand.

A more principled way is to learn the parameters from a la-

beled training set {xk}
K
k=1 by discriminative criteria such

as structured max-margin [15, 19, 26, 27]. Computationally,

one typically ends up with efficient iterative algorithms that

require MAP inference at each parameter update step.

The Gibbs distribution is the standard way to induce a

probabilistic model from the energy function e(x;θ). It de-

fines a Markov random field whose probability mass func-

tion has the exponential family form

fG(x;θ) = Z−1(θ) exp (−e(x;θ)) , (2)

where Z(θ) =
∑

x
exp (−e(x;θ)) is the partition function.

In the probabilistic setting, maximum (penalized) likeli-

hood (ML) is the natural criterion for learning the weights.

Given the labeled training set {xk}
K
k=1, we fit the parame-

ters θ by maximizing the log-likelihood function LG(θ) =

− logZ(θ) − (1/K)
∑K

k=1 e(xk;θ), possibly also includ-

ing an extra penalty term regularizing the weights. For

fully observed models and energies of the form (1) the

log-likelihood is a concave function of the weights θ and

thus the global maximum can be found by gradient ascent



[11, 15, 31]. The gradient is ∂LG/∂θj = EG
θ
{φj(x)} −

ED{φj(x)}. Here EG
θ
{φj(x)} ,

∑

x
fG(x;θ)φj(x) =

−∂(logZ)/∂θj and ED{φj(x)} , (1/K)
∑K

k=1 φj(xk)
are, respectively, the sufficient statistics under the Gibbs

model and the data. Upon convergence, EG
θ
{φj(x)} =

ED{φj(x)}. Thus, ML estimation of the Gibbs model can

be thought of as moment matching: random samples drawn

from the trained model reproduce the sufficient statistics ob-

served in the training data.

The chief computational challenge in ML parameter

learning of the Gibbs model lies in estimating the model

sufficient statistics EG
θ
{φj(x)}. Note that this inference

step needs to be repeated at each parameter update step.

The model sufficient statistics can be computed exactly in

tree-structured (and low tree-width) graphs, but in general

graphs one needs to resort to MCMC techniques for approx-

imating them [10, 11, 31], an avenue considered too costly

for many computer vision applications. Deterministic ap-

proximations such as variational techniques or loopy sum-

product belief propagation do exist, but often are not accu-

rate enough. Simplified criteria such as pseudo-likelihood

[3] have been applied as substitutes to ML, but they can

sometimes give results grossly different to ML.

Beyond model training, random sampling is very useful

in itself, to reveal what are typical instances of the model –

what the model has in its “mind” – and in applications such

as texture synthesis [31]. Further, we might be interested

not only in the global minimum energy configuration, but

in the marginal densities or posterior means as well [24].

In loopy graphs these quantities are typically intractable to

compute, the only viable way being through sampling. Our

Perturb-and-MAP random field model is designed specifi-

cally so as to be amenable to rapid sampling.

3. Perturb-and-MAP random fields

We propose a novel way to induce a probabilistic model

from an energy function:

Definition. The Perturb-and-MAP random field is defined

by x(ǫ) = argmin
q
e(q;θ + ǫ), where ǫ is a random real-

valued additive parameter perturbation vector.

In other words, we inject noise to the model parameters

θ̃ = θ + ǫ, followed by finding the least energy configura-

tion x(ǫ) of the perturbed energy function. While Perturb-

and-MAP random fields can also be built on energies de-

fined over continuous labels [20], our focus in this paper

will be on random fields over discrete labels.

The main motivation for defining a probabilistic model

in such a way is that for certain energy functions e(x;θ)
there exist powerful algorithms which can find the MAP

state efficiently. Thus, by construction, we can efficiently

draw exact one-shot samples from the Perturb-and-MAP

model without resorting to expensive MCMC techniques.

ǫ1

ǫ2

ǫ2 = −β2 + λ

ǫ1 = −β1 − λ

ǫ1 + ǫ2 = −β1 − β2

ǫ2 = −β2 − λ

ǫ1 = −β1 + λ

bC
(−β1,−β2)

x = (−1, 1)
x = (1, 1)

x = (−1,−1)

x = (1,−1)

Figure 1. Perturb-and-MAP geometry under the Ising energy with

N = 2 nodes and perturbations only in the unary terms, β̃i =
βi + ǫi, for parameter values β1 = −1, β2 = 0, and λ = 1. The

ǫ-space is split into four polyhedra, with x(ǫ) = x iff ǫ ∈ Px−θ.

3.1. Weight space geometry

A particular state x ∈ LN will be minimizing the deter-

ministic energy (1) if, and only if, e(x;θ) ≤ e(q;θ), ∀q ∈
LN . This set of |L|N linear inequalities defines a polyhe-

dron Px in the weight space

Px = {θ ∈ R
M : 〈θ,φ(x)−φ(q)〉 ≤ 0, ∀q ∈ LN} . (3)

Actually, Px is a polyhedral cone [4], since θ ∈ Px implies

αθ ∈ Px, for all α ≥ 0. The polyhedra Px split the weight

space R
M into regions of influence of each discrete state

x ∈ LN . Under the Perturb-and-MAP model, x(ǫ) will be

assigned to a particular state x if, and only if, θ + ǫ ∈ Px

or, equivalently, ǫ ∈ Px − θ , {ǫ ∈ R
M : θ + ǫ ∈ Px}.

In other words, if a specific instantiation of the perturbation

ǫ falls in the shifted polyhedron Px − θ, then the Perturb-

and-MAP model generates x as sample.

We assume that perturbations are drawn from a density

fǫ(ǫ) which does not depend on the parameters θ. The

probability mass of a state x under the Perturb-and-MAP

model is then the weighted volume of the corresponding

shifted polyhedron under the perturbation measure

fPM (x;θ) =

∫

Px−θ

fǫ(ǫ)dǫ , (4)

which is the counterpart of the Gibbs density in Eq. (2). It

is intractable (NP-hard) to compute the volume of general

polyhedra in a high-dimensional space; see, e.g., [1, p. 29].

However, for the class of perturbed energy functions which

can be globally minimized efficiently, we can readily draw

exact samples from the Perturb-and-MAP model, without

ever explicitly evaluating the integrals in Eq. (4).

Example: Perturb-and-MAP Ising model Let us con-

sider the Ising energy e(x;θ) = −1
2

∑N

i=1

(

βixi +



∑N

i′=i+1 λii′xixi′
)

over the discrete “spins” xi ∈ {−1, 1};

here βi is the external field strength (βi > 0 favors xi = 1)

and λii′ is the coupling strength (attractive coupling λii′ >
0 favors the same spin for xi and xi′). This energy function

can be written in the standard inner product form (1) with

θ = ({βi}, {λii′})
T and φ(x) = −1

2 ({xi}, {xixi′})
T . The

MRF defined by (2) is the Ising Gibbs random field.

Defining a Perturb-and-MAP Ising random field requires

specifying the perturbation density. In this example, we

leave the binary term parameters λii′ intact and only perturb

the unary term parameters βi. In particular, for each unary

factor, we set β̃i = βi + ǫi, with ǫi IID samples from the

logistic distribution with density l(z) = 1
4 sech

2( z2 ). This

corresponds to the order-1 Gumbel perturbation we discuss

in Sec. 4 and ensures that if a particular node xi is com-

pletely isolated, it will then follow the same Bernoulli dis-

tribution Pr{xi = 1} = 1/(1 + e−βi) as in the Gibbs case.

The ǫ-space geometry in the case of two labels (N = 2) un-

der the Ising energy e(x;θ) = −0.5(β1x1+β2x2+λx1x2)
for a specific value of the parameters θ and perturbations

only to unary terms is depicted in Fig. 1. We show in Fig. 2

some statistics comparing the Gibbs and Perturb-and-MAP

random fields for a toy Ising energy involving 9 variables

and randomly generated parameters. The probability land-

scape under the two models looks quite similar.
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Figure 2. Ising energy on 3×3 grid, with βi and λii′ IID from

N (0, 1). We compare the Gibbs (exact computation) and PM (106

Monte-Carlo runs) random fields. (a) log
10

fG(x) and fG(xi =
1). (b) log

10
fPM (x) and fPM (xi = 1). Scatter-plot of state log

probabilities (c) and state ranking (d) under the two models.

3.2. Parameter estimation

We would like to estimate the parameters θ of the

Perturb-and-MAP model from a labeled training set

{xk}
K
k=1 by maximizing the log-likelihood

LPM (θ) = (1/K)
∑K

k=1
log fPM (xk;θ) . (5)

Although we will not explore this further, we can

also perform parameter estimation from partially observed

data using expectation maximization, as in standard Gibbs

MRFs [15], using Perturb-and-MAP sampling at the E-step.

We can design the perturbations so as the Perturb-and-

MAP log-likelihood LPM is a concave function of θ. This

ensures that the likelihood landscape is well-behaved and

allows the use of local search techniques for parameter esti-

mation, exactly as in the Gibbs case. Specifically (see sup-

plementary material for all proofs in the paper):

Proposition 1. If the perturbations ǫ are drawn from a log-

concave density fǫ(ǫ), the log-likelihood LPM (θ) is a con-

cave function of the energy parameters θ.

The family of log-concave distributions [4], i.e.,

log fǫ(ǫ) is a concave function of ǫ, includes the Gaussian,

the logistic, and other commonly used distributions.

The gradient of LPM (θ) is in general hard to com-

pute. Motivated by the parameter update formula in the

Gibbs case, we opt for the moment matching learning rule,

θj(t+ 1) = θj(t) + r(t)∆θj , where

∆θj = EPM
θ {φj(x)} − ED{φj(x)} . (6)

Here EPM
θ

{φj(x)} ,
∑

x
fPM (x;θ)φj(x) is the ex-

pected sufficient statistic under the Perturb-and-MAP

model for the current parameter values θ, which we can

efficiently estimate by drawing exact samples from it. We

typically adjust the learning rate by a Robbins-Monro type

schedule, e.g., r(t) = r1/(r2 + t). Figure 5 illustrates pa-

rameter learning by moment matching in a spatially homo-

geneous Perturb-and-MAP Ising model.

Changing the parameters θ under the moment matching

rule (6) indeed reduces the discrepancy between the model

and data sufficient statistics. Specifically:

Proposition 2. If θ′ and θ differ only in the j-element, with

θ′j > θj , then EPM
θ′ {φj(x)} ≤ EPM

θ
{φj(x)}.

The inequality in Proposition 2 will be strict if the per-

turbation density satisfies some mild conditions – see sup-

plementary material. To see the effect of parameter up-

date in the Perturb-and-MAP Ising model of Fig. 1, as-

sume that EPM
θ

{φ3(x)} = EPM
θ

{− 1
2x1x2} is larger than

ED{φ3(x)}. Under (6), we increase the coupling strength

θ3 = λ; we see from Fig. 1 that the polyhedra of states x =
(1, 1) and x = (−1,−1) expand over those of x = (1,−1)
and x = (−1, 1), thus decreasing EPM

θ
{φ3(x)}.

Unlike the Gibbs case, the fixed points of the Perturb-

and-MAP moment matching criterion do not need to be ex-

act minima of the log-likelihood (5). However, some re-

assurance is provided by the fact that the M-projection of

fPM (θMM ) (Perturb-and-MAP model trained by moment

matching) is fG(θML) (Gibbs model trained by ML/MM)

[15, Th. 8.6]. Specifically, D (fPM (θMM )‖fG(θML)) ≤
D (fPM (θMM )‖fG(θ)) , ∀θ ∈ R

M , where D (·‖ ·) is the

Kullback-Leibler divergence between two distributions.



4. Perturb-and-MAP perturbation design

Although any perturbation density induces a legitimate

Perturb-and-MAP model, it is desirable to carefully de-

sign it so as the Perturb-and-MAP model approximates

as closely as possible the corresponding Gibbs MRF. The

Gibbs MRF has important structural properties that are not

automatically satisfied by the Perturb-and-MAP model un-

der arbitrary perturbations: (a) Unlike the Gibbs MRF, the

Perturb-and-MAP model is not guaranteed to respect the

state ranking induced by the energy, i.e., e(x) ≤ e(x′) does

not necessarily imply fPM (x) ≥ fPM (x′), see Fig. 2(d).

(b) The Markov dependence structure of the Gibbs MRF

follows directly from the support of the potentials φj(x),
while the Perturb-and-MAP might give rise to longer-range

probabilistic dependencies. (c) The maximum entropy dis-

tribution under moment constraints E{φj(x)} = φ̄j has the

Gibbs form; the Perturb-and-MAP model trained by mo-

ment matching can reproduce these moments but will in

general have smaller entropy than its Gibbs counterpart.
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Figure 3. Gumbel probability density and cumulative distribution.

The Gumbel distribution arising in extreme value the-

ory [25] turns out to play an important role in our effort

to design a perturbation mechanism that yields a Perturb-

and-MAP model closely resembling the Gibbs MRF. It is a

continuous univariate distribution with log-concave density

g(z) = exp(−(−z + ez)), plotted in Fig. 3. We can ef-

ficiently draw independent Gumbel variates by transform-

ing standard uniform samples by u → log(− log(u)). The

Gumbel density naturally fits into the Perturb-and-MAP

model, thanks to the following key Lemma – c.f. [18]:

Lemma 1. Let (θ1, . . . , θm), with θn ∈ R. We additively

perturb them by θ̃n = θn+ǫn, with ǫn IID Gumbel samples.

Then the probability that θ̃n attains the minimum value is

Pr{argmin(θ̃1, . . . , θ̃m) = n} = e−θn/
∑m

n′=1 e
−θ

n′ .

Gumbel perturbation on fully-expanded potential table

The Gibbs random field on N sites xi, i = 1, . . . , N , each

allowed to take a value from the discrete label set L can be

considered as a discrete distribution with |L|N states. This

can be made explicit if we enumerate {xj , j = 1, . . . , M̄ =
|L|N} all the states and consider the maximal equivalent

re-parameterization of Eq. (1)

ē(x; θ̄) , 〈θ̄, φ̄(x)〉 = 〈θ,φ(x)〉 , (7)

where θ̄j = e(xj ;θ) = 〈θ,φ(xj)〉, j = 1, . . . , M̄ , is

the fully-expanded potential table and φ̄j(x) is the indica-

(a) (b) (c)
Figure 4. Reduced-order Gumbel perturbation. Perturbed poten-

tials are denoted with double line. (a) Graph of the original en-

ergy involving unary and pairwise potentials on a 4-neighborhood

graph. (b) Order-1 perturbation. (c) Order-2 perturbation.

tor function of the state xj (i.e., equals 1, if x = xj and 0

otherwise). Using Lemma 1 we can show:

Proposition 3. If we perturb each entry of the fully ex-

panded LN potential table with IID Gumbel noise samples

ǫj , j = 1, . . . , M̄ , then the Perturb-and-MAP and Gibbs

models coincide, i.e., fPM (x;θ) = fG(x;θ).

This order-N perturbation is not practically applicable

when N is large since it independently perturbs all M̄ =
|L|N entries of the fully expanded potential table and ef-

fectively destroys the local Markov structure of the energy

function, rendering it too hard to minimize. Nevertheless,

it shows that it is possible to design a Perturb-and-MAP

model that exactly replicates the Gibbs MRF and paves the

way for the design of reduced-order Gumbel perturbations.

Reduced-order Gumbel perturbation In practice, we

employ low-order Gumbel perturbations, typically only per-

turbing the unary (order-1) or a subset of the pairwise

(order-2) potential tables. This yields perturbed energies

effectively as easy to minimize as the original unperturbed

one, while producing random samples closely resembling

Gibbs MRF samples. We emphasize that even the order-1

Perturb-and-MAP model is able to reproduce the sufficient

statistics of the data and is thus far more accurate than a

mean-field approximation of the Gibbs MRF. Thanks to the

log-concavity of the Gumbel density, the log-likelihood of

the Perturb-and-MAP model remains concave for Gumbel

perturbations of any order, as follows from Proposition 1.

To be more specific, consider the second-order energy

e(x;θ) =

N
∑

i=1

(

Vi(xi) +
∑

i′∈N (i)

Vii′(xi, xi′)
)

(8)

where each site xi can take a discrete label in L. This is

a generalization of the Ising model considered in Sec. 3.1,

where |L| = 2. Each Vi is a |L|×1 unary potential table and

each Vii′ is a |L|×|L| pairwise potential table.

The order-1 perturbation, illustrated in Fig. 4(b),

amounts to adding IID Gumbel noise to each entry of ev-

ery unary potential table Vi. This requires generating |L|N
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Figure 5. Low-order Perturb-and-MAP Ising random field parameter learning. The two model parameters, the global coupling strength

λ and field strength β are fitted by moment matching. (a) One of the 10 Gibbs Ising model samples just below the critical temperature

(λ = 0.88, β = 0, 256×256 grid) that we used as training data. (b) Perturb-and-MAP Ising sample at initial parameter values. (c) Order-1

Perturb-and-MAP sample at fitted parameter values. (d) Order-2 Perturb-and-MAP sample at fitted parameter values. (e) Model moments

of the order-2 Perturb-and-MAP model as they progress towards the training data moments during moment matching learning.

IID Gumbel samples. Note that in the special case of the

Ising model, the order-1 Gumbel perturbation is equivalent

to adding logistic noise to the unary factor parameter βi,

since the difference of two IID Gumbel samples follows a

logistic distribution [25].

In the order-2 perturbation, illustrated in Fig. 4(c), we

add IID Gumbel noise to each entry of a subset of the pair-

wise potential tables Vii′ . We make sure that at most one

of the pairwise potentials adjacent to any node is perturbed.

If none of the pairwise potentials adjacent to a node can

be perturbed, then we perturb its associated unary potential.

In total, the perturbation process requires generating at most

(N/2)|L|2 IID Gumbel samples. Higher-order Gumbel per-

turbations involving clusters of 3 or more variables can be

similarly defined.

It is desirable to select the strongest among the pair-

wise potentials adjacent to each node for order-2 per-

turbation. For energies defined on 4-connected planar

graphs, we globally find an optimal subset of strongest

links by solving a stable marriage (also called stable

matching) problem on the corresponding Red-Black bi-

partite graph using the Gale-Shapley algorithm. See

[13] and particularly [9] for a description of the Gale-

Shapley algorithm as it applies to sets of men/women

of unequal size, as can happen in our case. To indi-

cate the mating preferences of each node xi, we rank its

neighbors in decreasing order of pairwise mutual infor-

mation Iii′ =
∑

xi,xi′
pii′(xi, xi′) log

p
ii′

(xi,xi′
)

pi(xi)pi′
(x

i′
) , with

pii′(xi, xi′)∝ exp (−Vi(xi)− Vi′(xi′)− Vii′(xi, xi′)) and

pi(xi) =
∑

x
i′
pii′(xi, xi′). For the Ising model, Iii′ in-

creases with the edge strength |λii′ |. When producing mul-

tiple samples, we perform link selection only once. The

computational cost is around 0.1 sec for 300×300 images

with our implementation of the Gale-Shapley algorithm.

While the order-1 perturbation preserves submodularity

[17], order-2 perturbation can yield non-submodular func-

tions even when the original energy is submodular. For the

Ising model we can compute in closed form the probability

that a single pairwise link of strength λ will be submodular

after order-2 Gumbel perturbation Pr{λ̃ ≥ 0} = e2λ(e2λ−
2λ − 1)/(e2λ − 1)2; e.g., for λ = 4, Pr{λ̃ ≥ 0} ≈ 0.998.

Thus, if the links selected for perturbation are sufficiently

strong (and the link selection process described in the pre-

vious paragraph contributes to this goal), then most of the

perturbed pairwise potentials will remain submodular and

the perturbed energy can efficiently be minimized with tech-

niques such as QPBO [16] which gracefully handle the few

non-submodular links. This is the approach we follow in

the interactive image segmentation application. Otherwise,

for weak links the order-1 perturbation should be preferred,

which is anyway accurate enough in this case.

In Fig. 5 we juxtapose Perturb-and-MAP samples pro-

duced by order-1 and order-2 Gumbel perturbations with a

Gibbs MRF sample from the Ising model, produced with the

Propp-Wilson exact sampling algorithm [21]. We have fit-

ted the parameters of the Perturb-and-MAP models by mo-

ment matching so that they reproduce the first and second

order statistics of the Gibbs sample. We see that even the

order-1 Gumbel perturbation captures quite well the overall

appearance of the exact Gibbs sample. The order-2 sample

further improves the approximation quality, better capturing

the appearance of same-spin clusters in the Gibbs sample.

5. Applications and experiments

We present experiments with the Perturb-and-MAP

model applied to image segmentation and scene labeling.

Further results are included in the supplementary material.

Software is available from the first author’s web home page.

5.1. Interactive image segmentation

We first report interactive segmentation experiments,

performed on the Grabcut dataset which includes human

annotated ground truth segmentations [22]. The task is to

segment a foreground object, given a relatively tight tri-map

imitating user input obtained by a lasso or pen tool.

This is a relatively small dataset (50 images) not split

into training and test sets and carefully optimized tech-

niques which exploit the regularities of the dataset are



achieving extremely low pixel misclassification results

(around 4.5% using adaptive thresholding on the output of

the random walker model [8]) – see [23] for a recent review.

In our implementation we closely follow the CRF for-

mulation of [23], using the same parameters for defining

the image-based CRF terms and considering pixel interac-

tions in a 8-neighborhood. We used our Perturb-and-MAP

sampling algorithm with order-2 Gumbel perturbation and

QPBO optimization [16] to learn the weights of the poten-

tials – 5 weights in total, one for the unary and one for each

of the 4 pairwise connections of the center pixel with its S,

E, NE, SE neighbors. Using these parameters, we obtained

a classification error rate of 5.6% with the global MAP de-

cision rule. This is similar to the best results attainable with

the particular CRF model and hand-tuned weights.

In Fig. 6 we illustrate the ability of the Perturb-and-MAP

model to produce soft segmentation maps. The soft seg-

mentation map (average over 20 posterior samples) gives a

qualitatively accurate estimate of the segmentation uncer-

tainty, which could potentially be useful in guiding user in-

teraction in an interactive segmentation application.

Figure 6. Interactive image segmentation results on the Grabcut

dataset. Parameters learned by PM moment matching. Top: the

original image and the least energy MAP solution. Bottom: soft

Perturb-and-MAP segmentation and the corresponding mask.

5.2. Scene layout labeling

We next consider an application of Perturb-and-MAP

random fields in scene layout labeling [12]. We use the

tiered layout model of [6], which allows exact global infer-

ence by efficient dynamic programming [6]. The model has

a relatively large number of parameters, making it difficult

to hand tune. Training them with the proposed techniques

illustrates our ability to effectively learn model parameters

from labeled data.

We closely follow the evaluation approach of [6] in set-

ting up the experiment: We use the dataset of 300 out-

door images (and the standard cross-validation splits into

training/test sets) with ground truth from [12] for our ex-

periments. Similarly to [6], we use five labels: T (sky),

B (ground), and three labels for the middle region, L (fac-

ing left), R (facing right), C (front facing). We also do not

include in our label set the classes “porous” and “solid”.

The per-pixel class confidences used as unary terms are pro-

duced using classifiers that we trained using the dataset and

software provided by [12] following the standard five-fold

cross-validation protocol. The small difference between

the baseline confidence-only classification results reported

by [6] and our baseline result should be attributed to our use

of the newer version of Hoiem’s software.

We first fit the tiered scene model parameters (pair-

wise compatibility tables between the different classes) on

the training data using Perturb-and-MAP moment matching

(order-1 Gumbel perturbation). Weights are initialized as

Potts CRF potentials and refined by moment matching rule;

we separated the training set in batches of 10 images each

and stopped after 50 epochs over the training set.

The following tables report row-normalized confusion

matrices for MAP (least energy configuration) and marginal

MODE (i.e., assign each pixel to the label that appears most

frequently in 20 random Perturb-And-Map conditional sam-

ples from the model); in both cases the learned weights are

used. Our results are better than the confidence-only base-

line mean accuracy of 82.1% [12], and the MAP and MODE

results of 82.1% and 81.8%, respectively, that we obtained

with the hand-set weights of [6].

MAP (acc 82.7%)
B L C R T

B 95.3 0.5 3.3 0.5 0.5

L 22.9 46.7 21.9 6.6 1.9

C 24.3 6.7 52.5 11.4 5.0

R 16.0 4.4 24.8 49.4 5.4

T 1.1 0.6 3.1 0.7 94.4

Marginal MODE (acc 82.6%)
B L C R T

B 95.3 0.5 3.2 0.5 0.5

L 23.0 46.9 21.7 6.6 1.9

C 24.6 6.9 51.5 11.7 5.3

R 16.5 4.5 24.2 49.1 5.7

T 1.0 0.6 3.0 0.8 94.7

Table 1. Tiered labeling confusion matrices (learned weights).

In Fig. 7 we show some indicative examples of different

scene layout labelings obtained by the confidence-only, the

MAP, and the Perturb-and-MAP model. The uncertainty of

the solution is indicated by entropy maps.

6. Perspective

The work of Geman and Geman [7] showed that sam-

pling coupled with artificial temperature annealing can be

used as a general purpose method for finding the least en-

ergy configuration in discrete label MRFs. The advent of

much faster deterministic energy minimization techniques

has decreased interest in sampling as an intermediary for

MAP computation. Interestingly, the Perturb-and-MAP

model works in the opposite direction to simulated anneal-

ing, allowing powerful algorithms for MAP computation to

act as intermediaries for MRF sampling. We hope that this

research will help establish discrete optimization techniques

as tools for probabilistic modeling in computer vision.



Figure 7. Tiered scene labeling results with pairwise potentials learned by our Perturb-and-MAP moment matching algorithm. Left to right:

image; confidence-only result; least energy MAP solution; single Perturb-and-MAP sample; PM marginal mode; PM marginal entropy.
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