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Probabilistic Bayesian methods such as Markov random fields are well suited

for modeling structured data, providing a natural conceptual framework for

capturing the uncertainty in interpreting them and automatically learning

model parameters from training examples. However, Bayesian methods are

often computationally too expensive for large-scale applications compared to

deterministic energy minimization techniques.

This chapter presents an overview of a recently introduced “Perturb-and-

MAP” generative probabilistic random field model, which produces in a sin-

gle shot a random sample from the whole field by first injecting noise into the

energy function, then solving an optimization problem to find the least en-

ergy configuration of the perturbed system. Perturb-and-MAP random fields

thus turn fast deterministic energy minimization methods into computation-

ally efficient probabilistic inference machines and make Bayesian inference

practically tractable for large-scale problems, as illustrated in challenging

computer vision applications such as image inpainting and deblurring, im-

age segmentation, and scene labeling.

Keywords: MRF, energy minimization, Perturb-and-MAP, extreme value

statistics, graph cuts, random sampling.
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1.1 Introduction

Energy Minimization vs. Gibbs MRF

Deterministic MAP

x̂ = argmin E(x)

Probabilistic Gibbs

x̃ ∼ fG(x) ∝ e−E(x)
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Figure 1.1: Deterministic energy minimization vs. probabilistic Gibbs modeling.
Perturb-and-MAP attempts to bridge the gap between these two approaches.

Structured prediction models are typically built around an energy func-

tion, which assigns to each possible configuration vector x = (x1, . . . , xN ) a

real-valued energy E(x), with more preferable configurations getting lower

energies.

As illustrated in Figure 1.1, there are two quite distinct ways to work

with energy-based models. The first is entirely deterministic and amounts to

finding a single most probable (MAP) configuration of minimum energy, x̂ =

argminxE(x). Such deterministic methods are computationally appealing

thanks to very fast energy minimization algorithms that can efficiently

optimize large scale problems for important families of energy functions

involving both continuous and discrete-valued variables. Parameter learning

in this setting is typically performed with large-margin methods.

The second class of methods is probabilistic, assigning to each state a

Gibbs probability fG(x) ∝ e−E(x). Their key advantage over MAP inference

is that they also allow uncertainty quantification in interpreting ambiguous

data. The probabilistic framework also enables learning model parameters

from training examples using maximum likelihood. However, probabilistic

inference is in general considerably more difficult than optimization, since it

requires capturing multiple solutions plausible under the posterior distribu-

tion instead of just a single MAP configuration.
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This chapter presents an overview of the recently introduced Perturb-and-

MAP method, which attempts to reduce probabilistic inference to an energy

minimization problem, thus establishing a link between the optimization and

probabilistic inference approaches to energy-based modeling. As illustrated

in Figure 1.2, Perturb-and-MAP is a two-step generative process: (1) In

a Perturb step, we inject additive random noise N(x) into the system’s

energy function, followed by (2) a MAP step in which we find the minimum

energy configuration of the perturbed system. By properly designing the

noise injection process we can generate exact Gibbs samples from Gaussian

MRFs and good approximate samples from discrete-label MRFs.

Of course, studying the output sensitivity to input perturbations is om-

nipresent under many different guises not only in machine learning but also

in optimization, signal processing, control, computer science, and theoreti-

cal psychology, among others. However, Perturb-and-MAP is unique in us-

ing random perturbations as the defining building block of a structured

probabilistic model and setting the ambitious goal of replicating the Gibbs

distribution using this approach.

function Perturb-and-MAP
Ẽ(x) = E(x) +N(x) . Perturb
x̃ = argminx Ẽ(x) . MAP
return x̃ . Random sample

end function

Perturb-and-MAP Random Field

Perturb-and-MAP: Probability model via energy minimization.

Generative model:

1. Perturb-... : Ẽ(x) = E(x) + N(x), with

N(x) a sample from a noise distribution.

2. -and-MAP : x̃ = argminx Ẽ(x) states x
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(a) (b) (c)

Figure 1.2: (a) The generic Perturb-and-MAP random sampling algorithm. (b)
Original energies E(x). (c) Perturbed energies Ẽ(x). The MAP state x̂ and the
Perturb-and-MAP sample x̃ are shown shaded in (b) and (c), respectively.

While deterministic MAP inference summarizes the solution space into

a single most probable estimate, Perturb-and-MAP gives other low energy

states the chance to arise as random samples for some instantiations of the

perturbation noise and is thus able to represent the whole probability land-

scape. Perturb-and-MAP follows a fundamentally different approach com-

pared to other approximate probabilistic inference methods such as Markov

Chain Monte-Carlo (MCMC) and Variational Bayes (VB), which are con-

trasted with Perturb-and-MAP in Figure 1.3. MCMC is broadly applica-

ble and can provide very accurate results but is typically computationally

very expensive for large scale problems. When the distribution has multiple

modes, MCMC mixes slowly and becomes particularly ineffective because it

moves in small steps through the state space. Crucially, Perturb-and-MAP

generates samples in a single shot, completely bypassing the Markov Chain
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slow mixing problem, and thus has no difficulty in dealing with multimodal

distributions. Variational Bayesian methods such as mean field or variational

bounding approximate a complicated probability landscape with a simpler

parametric distribution. VB is typically faster yet less accurate than MCMC,

and also faces difficulties in the presence of multiple modes.

(a) (b) (c) (d)

Figure 1.3: Capturing a complicated probability landscape (in dashed lines) with
standard approximate inference methods vs. Perturb-and-MAP. (a) Deterministic
MAP. (b) Markov Chain Monte-Carlo. (c) Variational Bayes. (d) Perturb-and-MAP.

Perturb-and-MAP was initially developed for drawing exact random sam-

ples from Gaussian MRFs. This efficient Gaussian sampling algorithm can

also be used as sub-routine and considerably accellerate both MCMC and

VB in applications involving continuous sparse potentials. We discuss these

in Section 1.3. This line of research led to the development of Perturb-and-

MAP for discrete MRFs, which we discuss in Section 1.4. We present a

summary of recent related work in Section 1.5.

1.2 Energy-Based Modeling: Standard Deterministic and Probabilistic Approaches

1.2.1 Energies and Gibbs MRFs for Modeling Inverse Problems

Structured prediction for solving inverse problems is typically formulated in

terms of energy functions. Given an input vector of noisy measurements y,

our goal is to estimate the latent state output vector x = (x1, . . . , xN ).

The elements of the state vector xi ∈ L can take either continuous or

discrete values from the label set L. As shown in Figure 1.4, in image

processing applications such as image inpainting or deblurring the state

vector x corresponds to a real-valued clean image that we wish to recover

from its partial or degraded version y. In computer vision applications such

as image segmentation or labeling the state vector x corresponds to an

assignment of image areas to different image segments or semantic object
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classes. Probabilistic Bayesian techniques offer a natural framework for

combining the measurements with prior information in tackling such inverse

problems.

(a) (b) (c) (d)

Figure 1.4: In inverse modeling we use observations y (top row) to infer a latent
interpretation x (bottom row). Image processing examples: (a) Inpainting. (b)
Deblurring. Computer vision examples: (c) Figure-ground segmentation. (d) Scene
labeling.

Given a specific measurement y, we quantify a particular interpretation

x by means of a deterministic energy function E(x), where for notational

convenience we are suppressing its dependence on the measurements y. We

will be working with energy functions of the general form

E(x;θ) = 〈θ, φ(x)〉 =

M∑
j=1

θjφj(x) , (1.1)

where θ ∈ RM is a real-valued parameter vector of length M , and φ(x) =

(φ1(x), . . . , φM (x))T is a vector of potentials or “sufficient statistics”. We

can interpret θj as the weight assigned to the feature φj(x): we have many

different design goals or sources of information (e.g., smoothness prior,

measurements), each giving rise to some features, whose weighted linear

combination constitutes the overall energy function. Each potential often

depends on a small subset of the latent variables, which is made explicit in

a factor graph representation of the energy function shown in Figure 1.5.

The Gibbs distribution is the standard way to induce a probabilistic model

from the energy function. It defines a Markov random field whose probability

density/mass function has the exponential family form

fG(x;θ) = Z−1(θ) exp (−E(x;θ)) , (1.2)
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φ1 φ2 φ3 φM

x1 x2 xN

x1 x2

xN

xi xj

Vi

Vij

(a) (b)

Figure 1.5: (a) The factor graph representation of the energy makes explicit which
variables affect each potential. (b) A standard nearest neighbor 2-D grid MRF with
unary and pairwise potentials, φ = ({Vi}, {Vij}).

where Z(θ) =
∑
x exp (−E(x;θ)) is the partition function and summation

over x should be interpreted as integration in the case of a continuous label

space L.

MAP inference in the Gibbs model, i.e., computing the most probable

configuration, x̂ = argmaxx fG(x), is equivalent to solving the energy

minimization problem x̂ = argminxE(x). Thanks to powerful modern

energy minimization algorithms, exact or high-quality approximate MAP

inference can be performed efficiently for several important energy models.

However, other key queries on the Gibbs model such as computing the

marginals fG(xi) =
∑
x\xi

fG(x) or random sampling are computationally

hard.

1.2.2 Probabilistic Parameter Learning from Training Examples

While we typically select the feature set φ by hand, we can exercise much

control on the behavior of the energy-based model by setting the parameters

θ to appropriate values. The high-level goal is to select the weight vector θ

in a way that the model assigns low energies to desirable configurations and

high energies to “everything else”.

When the number of parameters M is small, we can set them to reason-

able values by hand. However, a more principled way is to automatically

learn the parameters from a training set of K structured labeled examples

{xk}Kk=1. Discriminative learning criteria such as structured max-margin

(Taskar et al., 2003; LeCun et al., 2007; Szummer et al., 2008; Koller and

Friedman, 2009) are very powerful and described in detail in other chap-

ters of this volume. Computationally, they are iterative and they typically

require modified MAP inference at each parameter update step, which is

computationally efficient for many energy models often used in practice.

In the probabilistic setting that is the focus of this chapter, maxi-
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mum (penalized) likelihood (ML) is the natural criterion for learning the

weights. Given the labeled training set {xk}Kk=1, we fit the parameters θ

by maximizing the Gibbs log-likelihood function LG(θ) = − logZ(θ) −
(1/K)

∑K
k=1E(xk;θ), possibly also including an extra penalty term reg-

ularizing the weights. For fully observed models and energies of the

form (1.1) the log-likelihood is a concave function of the weights θ

and thus the global maximum can be found by gradient ascent (Hin-

ton and Sejnowski, 1983; Zhu et al., 1998; Koller and Friedman, 2009).

The gradient is ∂LG/∂θj = EGθ {φj(x)} − ED{φj(x)}. Here EGθ {φj(x)} ,∑
x fG(x;θ)φj(x) = −∂(logZ)/∂θj and ED{φj(x)} , (1/K)

∑K
k=1 φj(xk)

are, respectively, the expected sufficient statistics under the Gibbs model

and the data distribution. Upon convergence, EGθ {φj(x)} = ED{φj(x)}.
Thus, ML estimation of the Gibbs model can be thought of as moment

matching: random samples drawn from the trained model reproduce the

sufficient statistics observed in the training data.

The chief computational challenge in ML parameter learning of the Gibbs

model lies in estimating the model sufficient statistics EGθ {φj(x)}. Note that

this inference step needs to be repeated at each parameter update step. The

model sufficient statistics can be computed exactly in tree-structured (and

low tree-width) graphs, but in general graphs one needs to resort to MCMC

techniques for approximating them (Hinton and Sejnowski, 1983; Zhu et al.,

1998; Hinton, 2002), an avenue considered too costly for many computer

vision applications. Deterministic approximations such as variational tech-

niques or loopy sum-product belief propagation do exist, but often are not

accurate enough. Simplified criteria such as pseudo-likelihood (Besag, 1975)

have been applied as substitutes to ML, but they can sometimes give results

grossly different to ML.

Beyond model training, random sampling is very useful in itself, to reveal

what are typical instances of the model – what the model has in its “mind” –

and in applications such as texture synthesis (Zhu et al., 1998). Further, we

might be interested not only in the global minimum energy configuration,

but in the marginal densities or posterior means as well (Schmidt et al.,

2010). In loopy graphs these quantities are typically intractable to compute,

the only viable way being through sampling. Our Perturb-and-MAP random

field model is designed specifically so as to be amenable to rapid sampling.

1.3 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs

Gaussian Markov random fields (GMRFs) are an important MRF class

describing continuous variables linked by quadratic potentials (Besag, 1974;
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Szeliski, 1990; Weiss and Freeman, 2001; Rue and Held, 2005). They are very

useful both for modeling inherently Gaussian data and as building blocks

for constructing more complex models.

1.3.1 Exact Gaussian MRF Sampling by Local Perturbations

We will be working with a GMRF defined by the energy function

E(x;θ) =
1

2
(Fx−µ0)TΣ−1

0 (Fx−µ0) =
1

2
xTJx−kTx+ (const) (1.3)

where J = F TΣ−1
0 F , k = F TΣ−1

0 µ0. The energy can be cast in the

generic inner product form of Equation (1.1) by defining the parameters

θ = (k, vec(J)) and features φ(x) = (−x, 1
2 vec(xxT ). We assume a diago-

nal matrix Σ0 = Diag(Σ1, . . . ,ΣM ), implying that the energy can be decom-

posed as a sum of M independent terms E(x;θ) =
∑M

j=1
1

2Σj
(fTj x − µj)2,

where fTj is the j-th row of the measurement matrix F and µj is the j-th

entry of the vector µ0.

The corresponding Gibbs distribution fG(x) is a multivariate Gaussian

N(µ,Σ) with covariance matrix Σ = J−1 and mean vector µ = J−1k.

The MAP estimate x̂ = argminx
1
2x

TJx− kTx under this Gaussian model

coincides with the mean and amounts to solving the N×N linear system

Jµ = k. Solving this linear system with direct exact methods requires a

Cholesky factorization of J , whose complexity is O(N2) for banded system

matrices with tree-width O(
√
N) arising in typical image analysis problems

on 2-D grids. We can perform approximate MAP inference much faster using

iterative techniques such as preconditioned conjugate gradients (Golub and

Van Loan, 1996) or multigrid (Terzopoulos, 1988), whose complexity for

many computer vision models is O(N3/2) or even O(N).

Standard algorithms for sampling from the Gaussian MRF also require a

Cholesky factorization of J and thus have the same large time and memory

complexity of direct system solvers. The following result though shows that

we can draw exact GMRF samples by Perturb-and-MAP:

Proposition 1.1. Assume that we replace the quadratic potential mean µ0

by its perturbed version µ̃0 ∼ N(µ0,Σ0), followed by finding the MAP of

the perturbed model x̃ = F TΣ−1
0 µ̃0. Then x̃ is an exact sample from the

original GMRF N(µ,Σ).

Proof. Since µ̃0 is Gaussian, x̃ = J−1F TΣ−1
0 µ̃0 also follows a multivariate

Gaussian distribution. It has mean E{x̃} = µ and covariance matrix E{(x̃−
µ)(x̃− µ)T } = J−1F TΣ−1

0 FJ−1 = Σ.

It is noteworthy that the algorithm only involves locally perturbing each
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potential separately, µ̃j ∼ N(µj ,Σj), and turns any existing GMRF MAP

algorithm into an effective random sampler.

As an example, we show in Figure 1.6 an image inpainting application

in which we fill in the flat areas of an image given the values at its edges

under a 2-D thin-membrane prior GMRF model (Terzopoulos, 1988; Szeliski,

1990; Malioutov et al., 2008), which involves pairwise quadratic potentials

Vij = 1
2Σ(xi−xj)2 between nearest neighbors connected as in Figure 1.5(b).

We show both the posterior mean/MAP estimate and a random sample

under the model, both computed in a fraction of a second by solving a

Poisson equation by a O(N) multigrid solver originally developed for solving

PDE problems (Terzopoulos, 1988).

Figure 1.6: Reconstructing an image from its value on edges under a nearest-
neighbor Gaussian MRF model. (a) Masked image. (b) Posterior mean/MAP
estimate x̂. (c) Random sample x̃.

1.3.2 Efficient MCMC Inference in Conditionally Gaussian Models

Gaussian models have proven inadequate for image modeling as they fail to

capture important aspects of natural image statistics such as the heavy tails

in marginal histograms of linear filter responses. Nevertheless, much richer

statistical image tools can be built if we also incorporate into our models

latent variables or allow nonlinear interactions between multiple Gaussian

fields and thus the GMRF sampling technique we describe here is very useful

within this wider setting (Weiss and Freeman, 2007; Roth and Black, 2009;

Papandreou et al., 2008).

In (Papandreou and Yuille, 2010) we discuss the integration of our GMRF

sampling algorithm in a block-Gibbs sampling context, where the condition-

ally Gaussian continuous variables and the conditionally independent latent

variables are sampled alternately. The most straightforward way to capture

the heavy tailed histograms of natural images is to model each filter response

with a Gaussian mixture expert, thus using a single discrete assignment vari-
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able at each factor (Papandreou et al., 2008; Schmidt et al., 2010). We show

in Figure 1.7 an image inpainting example following this approach in which

a wavelet domain hidden Markov tree model is used (Papandreou et al.,

2008).

Figure 1.7: Filling in missing image parts from the ancient wall-paintings of Thera
(Papandreou, 2009). Image inpainting with a wavelet domain model and block
Gibbs sampling inference (Papandreou et al., 2008).

Efficient GMRF Perturb-and-MAP sampling can also be used in conjunc-

tion with Gaussian scale mixture (GSM) models for which the latent scale

variable is continuous (Andrews and Mallows, 1974). We demonstrate this

in the context of Bayesian signal restoration by sampling from the posterior

distribution under a total variation (TV) prior, employing the GSM char-

acterization of the Laplacian density. We show in Figure 1.8 an example

of 1-D signal restoration under a TV signal model. The standard MAP es-

timator features characteristic staircasing artifacts (Nikolova, 2007). Block

Gibbs sampling from the posterior distribution allows us to efficiently ap-

proximate the posterior mean estimator, which outperforms the MAP esti-

mator in terms of mean square error/PSNR. Although individual posterior

random samples are worse in terms of PSNR, they accurately capture the

micro-texture of the original clean signal.

1.3.3 Variational Inference for Bayesian Compressed Sensing

Variational inference is increasingly popular for probabilistic inference in

sparse models, providing the basis for many modern Bayesian compressed

sensing methods. At a high level, variational techniques in this setting

typically approximate the true posterior distribution with a parameterized

Gaussian which allows closed-form computations. Inference amounts to

adjusting the variational parameters to make the fit as tight as possible

(Wainwright and Jordan, 2008). Mostly related to our work are (Attias, 1999;
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Figure 1.8: Signal denoising under a total variation prior model and alternative
estimation criteria. From top to bottom, the graphs show: (a) Original latent clean
signal, synthesized by adding Laplacian noise increments to a piece-wise constant
signal. (b) Noisy version of the signal, corrupted by Gaussian i.i.d. noise. (c) MAP
estimator under a TV prior model. (d) A single sample from the TV posterior Gibbs
distribution. (e) Posterior mean estimator obtained by averaging multiple samples.
(f) Rao-Blackwellized posterior mean estimator (Papandreou and Yuille, 2010).

Lewicki and Sejnowski, 2000; Girolami, 2001; Chantas et al., 2010; Seeger

and Nickisch, 2011a). There exist multiple alternative criteria to quantify

the fit quality, giving rise to approximations such as variational bounding

(Jordan et al., 1999), mean field or ensemble learning, and, expectation

propagation (EP) (Minka, 2001), as well as different iterative algorithms for

optimizing each specific criterion. See (Bishop, 2006; Palmer et al., 2005) for

further discussions about the relations among these variational approaches.

All variational algorithms we study in this chapter are of a double-loop

nature, requiring Gaussian variance estimation in the outer loop and sparse

point estimation in the inner loop (Seeger and Nickisch, 2011a; van Gerven

et al., 2010; Seeger and Nickisch, 2011b). The ubiquity of the Gaussian vari-

ance computation routine is not coincidental. Variational approximations

try to capture uncertainty in the intractable posterior distribution along the

directions of sparsity. These are naturally encoded in the covariance ma-

trix of the proxy Gaussian variational approximation. Marginal Gaussian

variance computation is also required in automatic relevance determination

algorithms for sparse Bayesian learning (MacKay, 1992) and relevance vec-

tor machine training (Tipping, 2001); the methods we review here could also

be applied in that context.

It turns out that variance computation in large-scale Gaussian models

is computationally challenging and a host of sophisticated techniques have
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been developed for this purpose, which often only apply to restricted classes

of models (Schneider and Willsky, 2001; Sudderth et al., 2004; Malioutov

et al., 2008).

(a) (b)

Blind Image Deblurring Example

Blind deblurring with variational Bayes.
Sparse

MCMC

Variational

ground truth blurred

our result learned kernel

[Papandreou & Yuille, ICCVW-11]

16 / 37

(c) (d)

Figure 1.9: Blind image deblurring with variational inference. (a) Ground truth.
(b) Blurred input image. (c) Estimated clean image. (d) Ground truth (top-left)
and iteratively estimated blur kernel (clock-wise, starting from a diffuse Gaussian
profile at top-right).

Perturb-and-MAP allows us to efficiently sample from the GMRF model

and thus makes it practical to employ the generic sample-based estimator

for computing Gaussian variances. More specifically, we repeatedly draw

K independent GMRF samples {x̃k}Kk=1 from which we can estimate the

covariance matrix

Σ̂ =
1

K

K∑
k=1

(x̃k − µ)(x̃k − µ)T (1.4)

This Monte-Carlo estimator, whose accuracy is independent of the problem

size, is particularly attractive if only relatively rough variance estimates
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suffice, as is often the case in practice. We show in Figure 1.9 an example of

applying this variational Bayesian estimation methodology in the problem

of blind image deblurring (Papandreou and Yuille, 2011b).

1.4 Perturb-and-MAP for MRFs with Discrete Labels

1.4.1 Introduction

We now turn our attention to Markov random fields on discrete labels, which

go back to the classic Ising and Potts models in statistical physics. Discrete-

valued MRFs offer a natural and sound probabilistic modeling framework

for a host of image analysis and computer vision problems involving discrete

labels, such as image segmentation and labeling, texture synthesis, and

deep learning (Besag, 1974; Geman and Geman, 1984; Zhu et al., 1998;

Hinton, 2002; Koller and Friedman, 2009). Exact probabilistic inference and

maximum likelihood model parameter fitting is intractable in general MRFs

defined on 2-D domains and one has to employ random sampling schemes

to perform these tasks (Geman and Geman, 1984; Hinton, 2002).

Recent powerful discrete energy minimization algorithms such as graph

cuts, linear programming relaxations, or loopy belief propagation (Boykov

et al., 2001; Kolmogorov and Zabih, 2004; Kolmogorov and Rother, 2007;

Koller and Friedman, 2009) can efficiently find or well approximate the most

probable (MAP) configuration for certain important classes of MRFs. They

have had a particularly big impact on computer vision; for a recent overview,

see the volume edited by Blake et al. (2011).

Our work on the Perturb-and-MAP discrete random field model has been

motivated by the exact Gaussian MRF sampling algorithm described in

Section 1.3. While the underlying mathematics and methods are completely

different in the discrete setup, we have shown in (Papandreou and Yuille,

2011a) that the intuition of local perturbations followed by global optimiza-

tion can also lead to powerful sampling algorithms for discrete label MRFs.

Subsequent work by other groups, summarized in 1.5, has extended our re-

sults and explored related directions.

A surprising finding of our study has been the identification of a pertur-

bation process from extreme value statistics which turns the Perturb-and-

MAP model identical to its Gibbs counterpart even in the discrete setting.

Although this perturbation is too expensive to be applicable in large-scale

models, it nevertheless suggests low-order perturbations that result in per-

turbed energies that are effectively as easy to minimize as the original un-

perturbed one, while producing high-quality random samples.
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Perturb-and-MAP endows discrete energy minimization algorithms such

as graph cuts with probabilistic capabilities that allow them to support

qualitatively new computer vision applications. We illustrate some of them

in image segmentation and scene labeling experiments experiments: First,

drawing several posterior samples from the model allows us to compute

posterior marginal probabilities and quantify our confidence in the MAP

solution. Second, efficient random sampling allows learning of MRF or CRF

parameters using the moment matching rule, in which the model parameters

are updated until the generated samples reproduce the (weighted) sufficient

statistics of the observed data.

1.4.2 Model Definition and Weight Space Geometry

We assume a deterministic energy function which takes the inner product

form of Equation (1.1), i.e., E(x;θ) = 〈θ, φ(x)〉, with xi taking values

in a discrete label set L. A Perturb-and-MAP random sample is obtained

by x̃ = argminxE(x;θ + ε), where ε is a real-valued random additive

parameter perturbation vector. By construction, we can efficiently draw

exact one-shot samples from the Perturb-and-MAP model by solving an

energy minimization problem.

Thanks to the inner product form of the energy function, the Perturb-and-

MAP model has a simple geometric interpretation in the parameter space.

In particular, a state x ∈ LN will be minimizing the deterministic energy if,

and only if, E(x;θ) ≤ E(q;θ),∀q ∈ LN . This set of |L|N linear inequalities

defines a polyhedron Px in the weight space

Px = {θ ∈ RM : 〈θ, φ(x)− φ(q)〉 ≤ 0,∀q ∈ LN} . (1.5)

Actually, Px is a polyhedral cone (Boyd and Vandenberghe, 2004), since

θ ∈ Px implies αθ ∈ Px, for all α ≥ 0. These polyhedral cones are dually

related to the marginal polytope M = conv({φ(x)},x ∈ LN ), as illustrated

in Figure 1.10; see (Wainwright and Jordan, 2008) for background on the

marginal polytope. The polyhedra Px partition the weight space RM into

regions of influence of each discrete state x ∈ LN . Under the Perturb-

and-MAP model, x will be assigned to a particular state x if, and only

if, θ + ε ∈ Px or, equivalently, ε ∈ Px − θ , {ε ∈ RM : θ + ε ∈ Px}.
In other words, if a specific instantiation of the perturbation ε falls in the

shifted polyhedron Px − θ, then the Perturb-and-MAP model generates x

as sample.

We assume that perturbations are drawn from a density fε(ε) which does

not depend on the parameters θ. The probability mass of a state x under the

Perturb-and-MAP model is then the weighted volume of the corresponding
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ǫ1 + ǫ2 = −β1 − β2
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(−β1,−β2)

x = (−1, 1)
x = (1, 1)

x = (−1,−1)

x = (1,−1)

(b)

Figure 1.10: Perturb-and-MAP geometry. (a) The polyhedral cones Px are dual
to the corner cones of the marginal polytope M. (b) The Ising P-M model with
N = 2 nodes and perturbations only in the unary terms, β̃i = βi +εi, for parameter
values β1 = −1, β2 = 0, and λ = 1. The ε-space is split into four polyhedra, with
x(ε) = x iff ε ∈ Px − θ.

shifted polyhedron under the perturbation measure

fPM (x;θ) =

∫
Px−θ

fε(ε)dε , (1.6)

which is the counterpart of the Gibbs density in Equation (1.2). It is

intractable (NP-hard) to compute the volume of general polyhedra in a

high-dimensional space; see, e.g., (Ben-Tal et al., 2009, p. 29). However, for

the class of perturbed energy functions which can be globally minimized

efficiently, we can readily draw exact samples from the Perturb-and-MAP

model, without ever explicitly evaluating the integrals in Equation (1.6).

1.4.3 Example: The Perturb-and-MAP Ising model

Let us illustrate these ideas by considering the Perturb-and-MAP version

of the classic Ising model. The Ising energy over the discrete “spins” xi ∈
{−1, 1} is defined as

E(x;θ) =
−1

2

N∑
i=1

(
βixi +

N∑
i′=i+1

λii′xixi′
)
, (1.7)

where βi is the external field strength (βi > 0 favors xi = 1) and λii′

is the coupling strength, with attractive coupling λii′ > 0 favoring the

same spin for xi and xi′ . This energy function can be written in the

standard inner product form of Equation (1.1) with θ = ({βi}, {λii′})T and

φ(x) = −1
2 ({xi}, {xixi′})T . The MRF defined by Equation (1.2) is the Ising

Gibbs random field.

Defining a Perturb-and-MAP Ising random field requires specifying the
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parameter perturbation density. In this example, we leave the binary term

parameters λii′ intact and only perturb the unary term parameters βi.

In particular, for each unary factor, we set β̃i = βi + εi, with εi i.i.d.

samples from the logistic distribution with density l(z) = 1
4 sech2( z2). This

corresponds to the order-1 Gumbel perturbation we discuss in Section 1.4.5

and ensures that if a particular node xi is completely isolated, it will then

follow the same Bernoulli distribution Pr{xi = 1} = 1/(1 + e−βi) as in the

Gibbs case. The ε-space geometry in the case of two labels (N = 2) under

the Ising energy E(x;θ) = −0.5(β1x1 + β2x2 + λx1x2) for a specific value

of the parameters θ and perturbations only to unary terms is depicted in

Figure 1.10.
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Figure 1.11: We compare the Gibbs (exact computation) and the Perturb-and-
MAP (106 Monte-Carlo runs) models induced from an Ising energy on 3×3 grid, with
βi and λii′ i.i.d. from N(0, 1). (a) Gibbs log-probabilities log10 fG(x) for each of the
29 states, arranged as a 25×24 matrix. (b) Gibbs marginal probabilities fG(xi = 1)
for each of the 9 nodes. (c) Perturb-and-MAP log-probabilities log10 fPM (x). (d)
Perturb-and-MAP marginal probabilities fPM (xi = 1). (e) Scatter-plot of state
log probabilities under the two models. (f) Scatter-plot of states ranked by their
probabilities under the two models.

We compare in Figure 1.11 the Gibbs and Perturb-and-MAP models for

a small-scale Ising energy involving 9 variables on a 3×3 grid with 4-nearest

neighbors connectivity and randomly generated parameters. The probability

landscape (i.e., the probabilities of each of the 29 states) looks quite similar

under the two models, see Figure 1.11 (a) and (c). The same holds for the

corresponding marginal probabilities, shown in Figure 1.11 (b) and (d). To
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further compare the probability landscape under the two models, we show

a scatter plot of their log probabilities in Figure 1.11(e), as well as a scatter

plot of the states ranked by their probability in Figure 1.11(f). Perturb-and-

MAP in this example is particularly close to Gibbs for the leading (most

probable) states but tends to under-estimate the least probable states.

1.4.4 Parameter Estimation by Moment Matching

We would like to estimate the parameters θ of the Perturb-and-MAP model

from a labeled training set {xk}Kk=1 by maximizing the log-likelihood

LPM (θ) = (1/K)

K∑
k=1

log fPM (xk;θ) . (1.8)

We can design the perturbations so as the Perturb-and-MAP log-likelihood

LPM is a concave function of θ. This ensures that the likelihood landscape

is well-behaved and allows the use of local search techniques for parameter

estimation, exactly as in the Gibbs case. Specifically, the following result is

shown in (Papandreou and Yuille, 2011a):

Proposition 1.2. If the perturbations ε are drawn from a log-concave

density fε(ε), the log-likelihood LPM (θ) is a concave function of the energy

parameters θ.

The family of log-concave distributions (Boyd and Vandenberghe, 2004),

i.e., log fε(ε) is a concave function of ε, includes the Gaussian, the logistic,

and other commonly used distributions.

The gradient of LPM (θ) is in general hard to compute. Motivated by the

parameter update formula in the Gibbs case from Section 1.2.2, we opt for

the moment matching learning rule, θj(t+ 1) = θj(t) + r(t)∆θj , where

∆θj = EPMθ {φj(x)} − ED{φj(x)} . (1.9)

Here EPMθ {φj(x)} ,∑x fPM (x;θ)φj(x) is the expected sufficient statistic

under the Perturb-and-MAP model for the current parameter values θ,

which we can efficiently estimate by drawing exact samples from it. We

typically adjust the learning rate by a Robbins-Monro type schedule, e.g.,

r(t) = r1/(r2 + t). Figure 1.12 illustrates parameter learning by moment

matching in a spatially homogeneous Ising energy model.

While the above moment matching rule was originally motivated by

analogy to the Gibbs case (Papandreou and Yuille, 2011a), its fixed points do

not need to be exact minima of the Perturb-and-MAP log-likelihood (1.8).

Subsequent work has shown that moment matching performs gradient ascent
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for an objective function that lower bounds the Gibbs likelihood function

(Hazan and Jaakkola, 2012). Moreover, this lower bound turns out to be

concave even for perturbation densities fε(ε) which are not log-concave.
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Figure 1.12: Perturb-and-MAP Ising random field parameter learning. The two
model parameters, the global coupling strength λ and field strength β are fitted
by moment matching. (a) Gibbs Ising model sample, used as training image. (b)
Perturb-and-MAP Ising sample at initial parameter values. (c) Perturb-and-MAP
Ising sample at final parameter values. (d) Model moments as they converge to
training data moments.

1.4.5 Perturb-and-MAP Perturbation Design

Although any perturbation density induces a legitimate Perturb-and-MAP

model, it is desirable to carefully design it so as the Perturb-and-MAP model

approximates as closely as possible the corresponding Gibbs MRF. The

Gibbs MRF has important structural properties that are not automatically

satisfied by the Perturb-and-MAP model under arbitrary perturbations: (a)

Unlike the Gibbs MRF, the Perturb-and-MAP model is not guaranteed to

respect the state ranking induced by the energy, i.e., E(x) ≤ E(x′) does not

necessarily imply fPM (x) ≥ fPM (x′), see Figure 1.11(f). (b) The Markov

dependence structure of the Gibbs MRF follows directly from the support of

the potentials φj(x), while the Perturb-and-MAP might give rise to longer-

range probabilistic dependencies. (c) The maximum entropy distribution

under moment constraints E{φj(x)} = φ̄j has the Gibbs form; the Perturb-

and-MAP model trained by moment matching can reproduce these moments

but will in general have smaller entropy than its Gibbs counterpart.

The Gumbel distribution arising in extreme value theory (Steutel and

Van Harn, 2004) turns out to play an important role in our effort to

design a perturbation mechanism that yields a Perturb-and-MAP model

closely resembling the Gibbs MRF. It is a continuous univariate distribution

with log-concave density g(z) = exp(−(−z + ez)). We can efficiently draw

independent Gumbel variates by transforming standard uniform samples by
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u→ log(− log(u)). The Gumbel density naturally fits into the Perturb-and-

MAP model, thanks to the following key Lemma – also see (Kuzmin and

Warmuth, 2005):

Lemma 1.3. Let (θ1, . . . , θm), with θn ∈ R, n = 1, . . . ,m. We additively

perturb them by θ̃n = θn + εn, with εn i.i.d. zero-mode Gumbel samples.

Then:

(a) The minimum of the perturbed parameters θ̃min , minn=1:m{θ̃n} follows

a Gumbel distribution with mode θ0, where e−θ0 =
∑m

n=1 e
−θn.

(b) The probability that θ̃n is the minimum value is Pr{argmin(θ̃1, . . . , θ̃m) =

n} = e−θn/e−θ0.

Note that θ0 = − log(
∑m

n=1 e
−θn) = − logZ. This connection is pursued

in detail by Hazan and Jaakkola (2012), which develops a Perturb-and-MAP

based approximation to the partition function.

We can use this Lemma to construct a Perturb-and-MAP model that

exactly replicates the Gibbs distribution, as follows. The Gibbs random

field on N sites xi, i = 1, . . . , N , each allowed to take a value from the

discrete label set L, can be considered as a discrete distribution with |L|N
states. This can be made explicit if we enumerate {xj , j = 1, . . . , M̄ = |L|N}
all the states and consider the maximal equivalent re-parameterization of

Equation (1.1)

Ē(x; θ̄) , 〈θ̄, φ̄(x)〉 = 〈θ, φ(x)〉 , (1.10)

where θ̄j = E(xj ;θ) = 〈θ, φ(xj)〉, j = 1, . . . , M̄ , is the fully-expanded

potential table and φ̄j(x) is the indicator function of the state xj (i.e.,

equals 1, if x = xj and 0 otherwise). Using Lemma 1.3 we can show:

Proposition 1.4. If we perturb each entry of the fully expanded LN po-

tential table with i.i.d. Gumbel noise samples εj , j = 1, . . . , M̄ , then the

Perturb-and-MAP and Gibbs models coincide, i.e., fPM (x;θ) = fG(x;θ).

This order-N perturbation is not practically applicable when N is large

since it independently perturbs all M̄ = |L|N entries of the fully expanded

potential table and effectively destroys the local Markov structure of the

energy function, rendering it too hard to minimize. Nevertheless, it shows

that it is possible to design a Perturb-and-MAP model that exactly replicates

the Gibbs MRF.

In practice, we employ low-order Gumbel perturbations. In our simplest

order-1 design, we only add Gumbel noise to the unary potential tables.

More specifically, for an energy function E(x) =
∑N

i=1 Vi(xi) +
∑

j Vj(xj)



20 Perturb-and-MAP Random Fields

which includes potentials Vi(xi) of order-1 and potentials Vj(xj) of order-

2 or higher, we add i.i.d. Gumbel noise to each of the |L| entries of each

order-1 potential, while leaving the higher order potentials intact. This

yields perturbed energies effectively as easy to minimize as the original

unperturbed one, while producing random samples closely resembling Gibbs

MRF samples. We can improve the Perturb-and-MAP sample quality by

Gumbel perturbations of order-2 or higher, as described in (Papandreou

and Yuille, 2011a). However, high order perturbations typically make the

perturbed energy minimization problem harder to solve.

1.4.6 Applications and Experiments

We present experiments with the Perturb-and-MAP model applied to image

segmentation and scene labeling.

Our interactive image segmentation experiments have been performed

on the Grabcut dataset which includes human annotated ground truth

segmentations (Rother et al., 2004). The task is to segment a foreground

object, given a relatively tight tri-map imitating user input obtained by a

lasso or pen tool.

In our implementation we closely follow the CRF formulation of (Rother

et al., 2011), using the same parameters for defining the image-based CRF

terms and considering pixel interactions in a 8-neighborhood. We used

our Perturb-and-MAP sampling algorithm with order-2 Gumbel perturba-

tion and QPBO optimization (Kolmogorov and Rother, 2007) to learn the

weights of the potentials – 5 weights in total, one for the unary and one for

each of the 4 pairwise connections of the center pixel with its S, E, NE, SE

neighbors. Using these parameters, we obtained a classification error rate of

5.6% with the global MAP decision rule. This is similar to the best results

attainable with the particular CRF model and hand-tuned weights.

In Figure 1.13 we illustrate the ability of the Perturb-and-MAP model

to produce soft segmentation maps. The soft segmentation map (average

over 20 posterior samples) gives a qualitatively accurate estimate of the

segmentation uncertainty, which could potentially be useful in guiding user

interaction in an interactive segmentation application.

We next consider an application of Perturb-and-MAP random fields in

scene layout labeling (Hoiem et al., 2007). We use the tiered layout model

of (Felzenszwalb and Veksler, 2010), which allows exact global inference by

efficient dynamic programming (Felzenszwalb and Veksler, 2010). The model

has a relatively large number of parameters, making it difficult to hand

tune. Training them with the proposed techniques illustrates our ability to

effectively learn model parameters from labeled data.
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(a) (b)

(c) (d)

Figure 1.13: Interactive image segmentation results on the Grabcut dataset.
Parameters learned by Perturb-and-MAP moment matching. (a) Original image.
(b) Least energy MAP solution. (c) Soft Perturb-and-MAP segmentation. (d) The
corresponding segmentation mask.

We closely follow the evaluation approach of (Felzenszwalb and Veksler,

2010) in setting up the experiment: We use the dataset of 300 outdoor images

(and the standard cross-validation splits into training/test sets) with ground

truth from (Hoiem et al., 2007). Similarly to (Felzenszwalb and Veksler,

2010), we use five labels: T (sky), B (ground), and three labels for the

middle region, L (facing left), R (facing right), C (front facing), while we

exclude the classes “porous” and “solid”. The unary scores are produced

using classifiers that we trained using the dataset and software provided by

Hoiem et al. (2007) following the standard five-fold cross-validation protocol.

We first fit the tiered scene model parameters (pairwise compatibility

tables between the different classes) on the training data using Perturb-

and-MAP moment matching (order-1 Gumbel perturbation). Weights are

initialized as Potts CRF potentials and refined by moment matching rule;

we separated the training set in batches of 10 images each and stopped after

50 epochs over the training set. We have measured the performance of the

trained model in terms of average accuracy on the test set. We have tried

two decision criteria, MAP (least energy configuration) and marginal MODE

(i.e., assign each pixel to the label that appears most frequently in 20 random

Perturb-And-Map conditional samples from the model), obtaining accuracy

82.7% and 82.6%, respectively. Our results are better than the unary-only

baseline mean accuracy of 82.1% (Hoiem et al., 2007), and the MAP and

MODE results of 82.1% and 81.8%, respectively, that we obtained with the

hand-set weights of (Felzenszwalb and Veksler, 2010).

In Figure 1.14 we show some indicative examples of different scene layout

labelings obtained by the unary-only, the tiered MAP, and the Perturb-and-
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MAP model. The uncertainty of the solution is indicated by entropy maps.

The marginal mode and entropies shown are Monte Carlo estimates using

20 Perturb-and-MAP samples.

Figure 1.14: Tiered scene labeling results with pairwise potentials learned by our
Perturb-and-MAP moment matching algorithm. Left to right: image; unary-only
MAP; tiered MAP; one tiered Perturb-and-MAP sample; tiered Perturb-and-MAP
marginal mode; tiered Perturb-and-MAP marginal entropy.

1.5 Related Work and Recent Developments

To our knowledge, adding noise to the weighted edges of a graph so as to

randomize the minimum energy configuration found by mincuts was first

proposed by Blum et al. (2004) in the context of a submodular binary MRF

energy arising in semi-supervised learning. Their goal was to break graph

symmetries and allow the standard mincut algorithm to produce a different

solution at each run. They interpret the relative frequency of each node

receiving one or the other label as a confidence score for binary classification.

However, beyond randomizing the deterministic mincut algorithm, they

do not study the implied probabilistic model as a standalone object nor

attempt to design the perturbation mechanism so as to approximate the

corresponding Gibbs model. Indeed, the choice of perturbation distribution

is not discussed at all in (Blum et al., 2004).

Herding (Welling, 2009) builds a deterministic dynamical system on the

model parameters designed so as to reproduce the data sufficient statistics,

which is similar in spirit to the moment-matching algorithm we use for

learning. However, herding is still not a probabilistic model and cannot

summarize the data into a concise set of model parameters.

As pointed out to us by McAllester (2012), Perturb-and-MAP is closely

related to PAC-Bayes (McAllester, 1998) and PAC-Bayesian theorems such

as those in (Germain et al., 2009) can be adapted to the Perturb-and-MAP

setting. Model perturbations through the associated concept of stochastic
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Gibbs classifier play a key role to PAC-Bayesian theory, but PAC-Bayes

typically aims at producing generalization guarantees for the deterministic

classifier instead of capturing the uncertainty in the posterior distribution.

Averaging over multiple samples, Perturb-and-MAP allows efficiently es-

timating (sum-) marginal densities and thus quantifying the per-node solu-

tion uncertainty even in graphs with loops. Max-product belief propagation

(Wainwright et al., 2005) and dynamic graph-cuts (Kohli and Torr, 2008)

can compute max-marginals, which give some indication of the uncertainty

in label assignments (Kohli and Torr, 2008) but cannot directly estimate

marginal densities.

A number of different groups have followed up on our work (Papandreou

and Yuille, 2011a) and further developed it in different directions. In their

randomized optimum models, Tarlow et al. (2012) introduce variants of the

Perturb-and-MAP model for discrete problems such as bi-partite matching

and pursue maximum-likelihood learning of the model parameters using

efficient MCMC algorithms.

The work in (Hazan and Jaakkola, 2012) has offered a better understand-

ing of the Perturb-and-MAP moment matching learning rule, showing that it

optimizes a well-defined concave lower bound of the Gibbs likelihood func-

tion. Moreover, they have shown how Perturb-and-MAP can be used for

computing approximations to the partition function. This connection relates

Perturb-and-MAP more directly to the standard MRF inference problem.

Another related partition function estimation algorithm is proposed in

(Ermon et al., 2013). Interestingly, their method amounts to progressively

introducing more random constraints, followed by energy minimization, in

a randomized Constrain-and-MAP scheme.

While probabilistic random sampling allows one to explore alternative

plausible solutions, Batra et al. (2012) propose to explicitly enforce diversity

in generating a sequence of deterministic solutions.

The work in (Roig et al., 2013) is an excellent demonstration of how

uncertainty quantification can yield practical benefits in a semantic image

labeling setting. They employ Perturb-and-MAP to identify on the fly image

areas with ambiguous labeling and only compute expensive features when

their addition is likely to considerably decrease labeling entropy.

1.6 Discussion

This chapter has presented an overview of the Perturb-and-MAP method,

which turns established deterministic energy minimization algorithms into

efficient probabilistic inference machines. This is a promising new direction
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with many important open questions for both theoretical and application-

driven research: (1) An in-depth systematic comparison of Perturb-and-

MAP and more established approximate inference techniques such as

MCMC or Variational Bayes is still lacking. (2) So far, there is no clear char-

acterization of the approximation quality of the Perturb-and-MAP model

relative to its Gibbs counterpart and how perturbation design affects it. (3)

Unlike MCMC which allows trading off approximation quality with compu-

tation time by simply running the Markov chain for longer, there is currently

no way to iteratively improve the quality of Perturb-and-MAP samples. (4)

The modeling capacity of Perturb-and-MAP needs to be explored in several

more computer vision and machine learning applications.

For further information and links to related works in this exciting emerging

area we point the reader to the NIPS Workshop on Perturbations, Optimiza-

tion, and Statistics, organized in 2012 and 2013 by T. Hazan, D. Tarlow, A.

Rakhlin, and the first author of this chapter.
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