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Scene Understanding



• Recently, many message-
passing efficient MAP solvers 
for graphs with cycles: 
Graph-cuts, Gurobi, MPLP

• (Yamaguchi, Hazan, 
McAllester, Urtasun 2012)
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Inference & Learning with MAP
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• complex scenes

• occlusions

Failures - Ambiguity
• Pose estimation: 3D joint 

locations from 2D images



Failures - Ambiguity
• Natural language processing: 

“I shot an elephant in my 
pajamas” (Groucho Marx)

• and everywhere... (Kulesza et 
al 07, Finley et al 08)



Our Approach

• Inference & Learning with Random Maximum A-Posteriori 
Perturbations



• Success: dominant solution

• Failures: multiple high 
scoring alternatives

• Probabilistic predictions (e.g., 
Gibbs’ distribution) over 
structures

• partition function

- Often hard, even when the max 
is easy

Inference and Learning
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Random Maximum A-Posteriori
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Random Maximum A-Posteriori
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• Theorem: There is a distribution over perturbations        

        

(cf. Papandreou & Yuille 2011, Tarlow & Adams & Zemel 2012)

Random Maximum A-Posteriori
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Why the Partition Function?

partition function

log
�

x�X
exp(�(x))

Gibbs’ distribution

P (x) =
1
Z

exp(�(x))gradient to
statistics



• Lemma: 
Let         be i.i.d with Gumbel distribution with zero mean

then the random MAP perturbation 

has Gumbel distribution whose mean is 

Max-Statistics

�(x)

F (t) def= P [�(x) � t] = exp(� exp(�t))

max
x�X

{�(x) + �(x)}

log Z

• Proof: P [max
x�X

{�(x) + �(x)} � t] =
�

x�X
F (t� �(x)) =

exp(�
�

x�X
exp(�(t� �(x)))) = exp(� exp(�t)Z) = F (t� log Z)



Random MAP Perturbations

• Theorem (low dimension perturbations): 
Let          be i.i.d with Gumbel distribution. Then�i(xi)

log Z = E�1(x1) max
x1

· · ·E�n(xn) max
xn

{�(x) +
n�

i=1

�i(xi)}

• Proof:

and previous theorem implies

Z =
�

x1

· · ·
�

xn

exp(�(x))

E�i(xi) max
xi

��
�

xi

• (Hazan and Jaakkola 2012)



Upper Bounds

• Proof:

Move maximizations inside

• Corollary: 
Let          be i.i.d with Gumbel distribution. Then�i(xi)

log Z � E�

�
max

x1,. . . ,xn

{�(x) +
n�

i=1

�i(xi)}
�

xi � {0, 1}, �(x) � {��, 0}• Related work (Counting):
- Talagrand 94: Bounds on canonical processes. Laplace 

distribution
- Barvinok & Samorodnitsky 07: Approximate counting. Logistic 

distribution

log Z = E�1(x1) max
x1

· · ·E�n(xn) max
xn

{�(x) +
n�

i=1

�i(xi)}



Lower Bounds

• Corollary: 
Let          be i.i.d with Gumbel distribution. Then�i(xi)

log Z � E�

�
max

x1,. . . ,xn

{�(x) + �i(xi)}
�

• Proof:

Move expectation inside, while 

log Z = E�1(x1) max
x1

· · ·E�n(xn) max
xn

{�(x) +
n�

i=1

�i(xi)}

E� [�i(xi)] = 0



• Spin glass, 10x10 grid

•  

•  

• Field 

• attractive             . Graph-cuts.

• mixed                  . MPLP.

Results (Upper bounds & Approx)

�i(xi) = xi, xi � {�1, 1}

�i,j(xi, xj) = xixj

�

i

wi�i(xi) +
�

i,j

wi,j�i,j(xi, xj)

wi,j � 0
wi

wi,j � 0



•

 

•

 

•

•  

When it works? The “hi-domain”
p(x) � exp

� �

i

wi�i(xi) +
�

i,j

wi,j�i,j(xi, xj)
�

wi = 1, wi,j = 0

wi = 1, wi,j � [�1, 1]

wi = 1, wi,j � [�2, 2]

wi = 1, wi,j � [�3, 3]



Inference and Learning

partition function

log
�

x�X
exp(�(x))

Gibbs’ distribution

P (x) =
1
Z

exp(�(x))gradient to
statistics

• hard to compute, even if the max is easy



• (Hazan and Jaakkola 2012)

• Unbiased sampling is efficient.

• These models were introduced in (Keshet, McAllester, Hazan 
2011, Papandreau, Yuille 2011, Tarlow, Adams, Zemel 2012). 

surrogate partition

gradient to
statisticsE�

�
max

x1,. . . ,xn

{�(x) +
n�

i=1

�i(xi)}
�

induced distribution

P
�
x � argmax

x̂1,. . . ,x̂n

{�(x̂) +
�

i

�i(x̂i)}
�

Inference and Learning



• Learning spin glass parameters

•                     are binary pixel 
values of 70x100 image + 10% 
noise

• Surrogate partition +  MPLP

Random MAP perturbations

model train / test ours SVM-struct

Figure 2. From left to right: (a) Binary 100 ⇥ 70 image.

(b) A representative image in the training set and the test

set, where 10% of the pixels are randomly flipped. (c) A

de-noised test image with our method: The test set error

is 1.8%. (d) A de-noised test image with SVM-struct: The

pixel base error is 8.2%.

((Talagrand, 1994), Proposition 4.3) was the first to
use random MAP perturbations in discrete settings.
However, their approach di↵ers from ours in that their
goal was to upper bound the size of dom(�) ✓ {0, 1}n
using random variables with the Laplace distribution.
The proof technique is based on a compression argu-
ment, and does not extend to the partition function.
Restricting to �(y) 2 {�1, 0}, Corollary 1 presents an
alternative technique with weighted assignments. This
allows us to significantly simplify and extend their re-
sult to weighted counting (see supplementary mate-
rial). Another upper bound for dom(�) ✓ {0, 1}n was
described in (Barvinok & Samorodnitsky, 2007). Their
approach used the induction method of (Talagrand,
1995) to prove an upper bound using the logistic distri-
bution. Our Corollary 1 provides an alternative tech-
nique for this result, while simplifying and extending
it to weighted counting. They also extend their upper
bound to functions of the form

P
y2dom(�)

Q
i: yi=1 qi,

where q
i

are rational numbers. We did not compare to
this approach since this quantity does not correspond
to the partition function, except in trivial cases.

In this work we also consider approximate conditional
random fields. While computing the gradient we ob-
tained the known result that the Gibbs distribution
can be described by the maximal argument of ran-
dom MAP perturbation. This result is widely known
in economics, providing a probabilistic interpretation
for choices made by people among a finite set of al-
ternatives. Specifically, in discrete choice theory, ev-
ery alternative y 2 Y has an observed cost �(y) and
some unknown cost �(y) represented by a random vari-
able. The probability of choosing an alternative P [ŷ 2
argmax

y

{�(y) + �(y)}] follows the Gibbs distribution
whenever �(y) are independent and distributed ac-
cording to the Gumbel distribution (McFadden, 1974).
This approach is computationally intractable when
dealing with discrete product spaces, as it considers

n�dimensional independent perturbations. This moti-
vated e�cient ways to approximately sample from the
Gibbs distribution, through a probability distribution
of the form: P [ŷ 2 argmax

y

{�(y)+
P

↵

�

↵

(y
↵

)}], (Pa-
pandreou & Yuille, 2011). In particular, the gradient
suggested in Theorem 4 was described in (Papandreou
& Yuille, 2011), and in this work we provide the the-
oretical justification, as well as the objective function
for such moment matching steps. For other surrogate
probability models using computational structures we
refer to (Papandreou & Yuille, 2010; Domke, 2011;
Kulesza & Taskar, 2010; Tarlow et al., 2012).

More broadly, methods for estimating the partition
function were subject to extensive research over the
past decades. Gibbs sampling, Annealed Importance
Sampling and MCMC are typically used for estimating
the partition function (cf. (Koller & Friedman, 2009)
and references therein). These methods are slow when
considering ragged energy landscapes, and their mix-
ing time is typically exponential in n. In contrast,
perturbed MAP operations are una↵ected by ragged
energy landscapes provided that the MAP is feasible.

Variational approaches have been extensively devel-
oped to e�ciently estimate the partition function in
large-scale problems. These are often inner-bound
methods where a simpler distribution is optimized as
an approximation to the posterior in a KL-divergence
sense. The di�culty comes from non-convexity of the
set of feasible distributions (e.g., mean field) (Jor-
dan et al., 1999). Variational upper bounds on the
other hand are convex, usually derived by replacing
the entropy term with a simpler surrogate function
and relaxing constraints on su�cient statistics (see,
e.g., (Wainwright et al., 2005)).

8. Discussion

Evaluating the partition function and computing MAP
assignments of variables are key sub-problems in ma-
chine learning. While it is well-known that the ability
to compute the partition function also leads to a viable
MAP algorithm, the reverse is not. We showed here
that a randomly perturbed MAP solver can approx-
imate the partition function. The result enables us
to take advantage of e�cient MAP solvers. Moreover,
we demonstrated the e↵ectiveness of our approach in
the ”high-signal high-coupling” regime which domi-
nates machine learning applications and is tradition-
ally hard for current methods. We also applied our
surrogate partition function approximation to condi-
tional random fields, establishing a theoretical frame-
work to recently proposed moment matching algo-
rithm(Papandreou & Yuille, 2011).
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Learning with Loss Minimization

• Learning measured by loss

• Perturbed MAP predictions give 
uniform generalization bounds

• Theorem:    w simultaneously

(Keshet, McAllester, Hazan 2011)

loss(w, x) def=
�

x̂

p(x̂|w)loss(x̂, x)

P�

�
x̂ � argmaxx�{(w + �)��(x�)}

�

y2 y3y1y yT

x

x1x2x3 xT

hh iy iy iy

y2 y3y1y yT

x

x1x2x3 xT

hh iy iy iy

rb ao t

b ao t

loss(x, x̂)

+
1

m� 1

�
�w�2 + 2 log(m/�)

�

�

Ex�Dloss(w, x) � 2
|S|

�

x�S

loss(w, x)

Ours SVM-struct

TIMIT 28.6% 30.2%



Thank You

Our Approach

• Inference & Learning with Random Maximum A-Posteriori 
Perturbations



Panel Discussion

• Compare learning rules:
- log-likelihood
- max-margin
- herding
- loss minimization? 
- others?

• Optimization and statistics point of views



Panel Discussion

• Why does dropout works? 

• Are there other regularization schemes that involve the 
injection of noise that should be equally effective?

• Can dropout be explained using known perturbation 
learning techniques (e.g., robust learning / PAC-Bayes?)  



Panel Discussion

• Agree or disagree: The Gibbs distribution is special.

• What do we gain in exchange for the hard computation 
that go into the Gibbs distribution / partition function?



Panel Discussion

From Vincent's abstract: "I will be going back and forth 
between stochastic perturbations and related deterministic 
analytic criteria, which I hope may spawn interesting 
discussions on the interface between, and merits of, both 
these outlooks."  

Are there benefits to thinking in terms of stochastic 
perturbations versus deterministic analytic criteria?  In 
what cases are they equivalent?  Are there cases where 
one works but the other does not?



Panel Discussion

• Robust optimization versus stochastic perturbations?



Panel Discussion

• We know there is a close relationship between the Gibbs 
distribution and Perturb & MAP models.  We also know 
there is a close relationship between Perturb & MAP and 
regularization via PAC Bayes.  Can we then view the 
Gibbs distribution in regularization terms?



Panel Discussion

• Approximate methods?



Panel Discussion

• Applications? vision, NLP, information retrieval 



Panel Discussion

• Where do the ideas at the center of this workshop have 
their historical roots? 



Panel Discussion - Question?


