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Maximum A- Posterlorl (MAP)

*

r" = argmax ¢(xq1,...,%,)

.. L1y« - 3 Ln
predlctlon scores

* Recently, many message-
passing efficient MAP solvers
for graphs with cycles:

Graph-cuts, Gurobi, MPLP

* (Yamaguchi, Hazan,
McAllester, Urtasun 2012)

Middlebury
(HR)

KITTI

Best other 7.0% 8.86%

Ours 4.4% 6.25%




Inference & Learning with MAP

r* = argmax {¢(x)}
reEX

scores

Scores




Failures - Ambiguity

* Pose estimation: 3D joint
locations from 2D images

* complex scenes




Failures - Ambiguity

* Natural language processing: shot

“l shot an elephant in my 7 T

I elephant in

pajamas’’ (Groucho Marx) P

pajamas my

shot

TN

| elephant

* and everywhere... (Kulesza et in

al 07, Finley et al 08) N

pajamas my




Our Approach

* Inference & Learning with Random Maximum A-Posteriori
Perturbations




Inference and Learning

r" = argmax {¢(z)}

prediction ~ ¥E€X scores
possible

structures

* Probabilistic predictions (e.g.,
Gibbs’ distribution) over

structures

p(z) = - exp(6())

* partition function

Z = exp(¢(x))

reX

- Often hard, even when the max
IS easy

e Success: dominant solution

o),

scores

* Failures: multiple high
scoring alternatives

P(x) ,

SCores




Random Maximum A-Posteriori
o(z),

SCcores

structures

r” = argmax {p(z) + v(z)}

prediction & 69{)' perturbed scores
possible

structures
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Random Maximum A-Posteriori
o(z),

SCcores

structures
structures

r” = argmax {p(z) + v(z)}

prediction & E)'fal perturbed scores
possible

structures

* Theorem: There is a distribution over perturbations ()

P, [a* = argmax{¢(2) +1(x)}]

x e

(cf. Papandreou & Yuille 201 I, Tarlow & Adams & Zemel 2012)




Why the Partition Function?

og 3 exp(é(z))  gadientio  P(x) = — exp(é(a))

e X statistics A
partition function ) . Gibbs’ distribution




Max-Statistics

° Lemma:
Let v(z) be i.i.d with Gumbel distribution with zero mean

de f Ply(x) < t] = exp(—exp(—t))

F(t) =

then the random MAP perturbation

ma{6(x) +7(2)}

has Gumbel distribution whose mean is log 7

*Proof: Plmax{¢(z)+y(z)} <t]= ] F(t-

reX
reX

exp(— ) _ exp(—(t — ¢()))) = exp(—exp(—t)Z) =

reX




Random MAP Perturbations

* (Hazan and Jaakkola 2012)

* Theorem (low dimension perturbations):
Let v:(x;) be i.i.d with Gumbel distribution.Then

log i Efyl (1

* Proof: 4 = Z e Z exp(¢(x))

and previous theorem implies




Upper Bounds

* Corollary:
Let v:(x;) be i.i.d with Gumbel distribution. Then

max {gb +Z% ;) }

L1ge o

logZ < E, [

* Proof:
log Z = K., (5,ymax--- E, ) max{gb ) + Z% ()}

Move maximizations inside

* Related work (Counting): z; € {0,1}, ¢(z) € {—00,0}

- Talagrand 94: Bounds on canonical processes. Laplace
distribution

- Barvinok & Samorodnitsky 07: Approximate counting. Logistic
distribution




Lower Bounds

* Corollary:
Let v:(x;) be i.i.d with Gumbel distribution. Then

logZ > E, { max {¢( )+%($z)}]

L1 ge ooy

* Proof:
log Z = E., (5,ymax---E, ) max{gb ) + Z% x;)}

Move expectation inside, while E|v;(z;)] =0




Results (Upper bounds &Approx)

Attractlve Field 1

* Spin glass, 10x10 grid

Z wz¢z(33z) + Z wi,j¢i,j (5137;, :cj)
1 1,9

Estimation error

¢ ¢'L ('CU’L) — aji? :U'i 6 {_17 1} : ; c;oupling.;trengthés

Mixed. Field 1

o ¢z‘,j($z’,$j) — Lgdy

Estimation error

* Field w;
e attractive w; ; > 0. Graph-cuts.
*mixed w; ; <0 .MPLP

coupling strengths




When it works? The “hi-domain”

p(x) oc exp (ZM@(%) T Zwi,j¢i,j($z‘a %))
0 i\J

o W; = 1,?1}7;73' S [—2,2]




Inference and Learning

og 3 exp(é(z))  gadientio  P(x) = — exp(é(a))

e X statistics A
partition function ) . Gibbs’ distribution

* hard to compute, even if the max is easy




Inference and Learning

gradient to

statistics P[a: - argmax{gb ) + Z% T;) }
< = T1,. .., Tn

surrogate partition induced distribution

* (Hazan and Jaakkola 2012)

* Unbiased sampling is efficient.

* These models were introduced in (Keshet, McAllester, Hazan
201 |, Papandreau, Yuille 201 I, Tarlow, Adams, Zemel 2012).




Learning with Likelihood

* L earning spin glass parameters

Z (or (ZEZ) + Z wz’,j¢7§,j (.CU@, xj)
i 2,7

model .trs;.ui;n / test. . S\./l\-/I-S.t.ru;:t
* (r1,...,%,) are binary pixel

values of 70x100 image + 10%
noise

SVM-struct

* Surrogate partition + MPLP 8%




Learning with Loss Minimization

* Learning measured by loss

loss(w, ) de Zp w)loss(x, x)

* Perturbed MAP predictions give
uniform generalization bounds

P, [i e argmax{(w + W)Tﬁb(fl?/)}}

* Theorem: vw simultaneously

E.ploss(w,z) < ? Zloss w, x)
1 ‘ ‘xES

- (Il + 210g(m/5))

m_

(Keshet, McAllester, Hazan 201 |)

SVM-struct

30.2%




Our Approach

* Inference & Learning with Random Maximum A-Posteriori
Perturbations

Thank You




Panel Discussion

* Compare learning rules:
- log-likelihood
= max-margin
= herding
- loss minimization?

- others!?

* Optimization and statistics point of views




Panel Discussion

* Why does dropout works!?

* Are there other regularization schemes that involve the
injection of noise that should be equally effective!?

* Can dropout be explained using known perturbation
learning techniques (e.g., robust learning / PAC-Bayes?)




Panel Discussion

* Agree or disagree: The Gibbs distribution is special.

* What do we gain in exchange for the hard computation
that go into the Gibbs distribution / partition function!?




Panel Discussion

From Vincent's abstract: "l will be going back and forth
between stochastic perturbations and related deterministic
analytic criteria, which | hope may spawn interesting
discussions on the interface between, and merits of, both

these outlooks."

Are there benefits to thinking in terms of stochastic
perturbations versus deterministic analytic criteria? In
what cases are they equivalent? Are there cases where

one works but the other does not!




Panel Discussion

* Robust optimization versus stochastic perturbations!?




Panel Discussion

* We know there is a close relationship between the Gibbs
distribution and Perturb & MAP models. We also know
there is a close relationship between Perturb & MAP and
regularization via PAC Bayes. Can we then view the
Gibbs distribution in regularization terms!?




Panel Discussion

* Approximate methods!?




Panel Discussion

* Applications? vision, NLP, information retrieval




Panel Discussion

* Where do the ideas at the center of this workshop have
their historical roots!?




Panel Discussion - Question?




