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Abstract

The problem of efficiently drawing samples from a Gaussiamk@arandom field is stud-
ied. We introduce the subgraph correction sampling algerjtwhich makes use of any
pre-existing tractable sampling algorithm for a subgraplpérturbing this algorithm so as
to yield asymptotically exact samples for the intendedditligtion. The subgraph can have
any structure for which efficient sampling algorithms existr example, tree-structured,
with low tree-width, or with a small feedback vertex set. llPneary experimental results
demonstrate that the subgraph correction algorithm yeddarate samples much faster than
many traditional sampling methods—such as Gibbs sampliieg+sany graph topologies.

1 Introduction and Background

An important family of Markov random fields (MRFs) is the fdynmdf Gaussian graphical models or Gaussian
Markov random fields (GMRFs). GMRFs are often used to diygerametrize probabilistic networks and

used as approximate models to circumvent the computatemmaplexity inherent in many discrete models.

This paper is devoted to developing efficient algorithmaiimwing samples from a GMRF.

Samples from a GMRF can be drawn exactly by conducting a Gkgldecomposition of the covariance
or inverse covariance matrix and then performing a lineangformation on.i.d. Gaussian samples. How-
ever, the cubic complexity of this direct method precludeaise on large-scale models, and thus iterative
MCMC-based methods or methods that exploit the internatsires of the GMRFs are often used. Graphical
models with particular topologies (for example, tree-stineed models) have well-known efficient sampling
algorithms, but possess limited modeling power [1]. A papshmpling algorithm for general loopy graphs is
Gibbs sampling, an MCMC algorithm in which variables areusadially drawn conditioned on the most re-
cent sample of all other variables (or of the variables inlagkov blankets in the MRF setting) [2]. However,
the Gibbs sampler can have slow mixing rate in many situafimrcluding sampling from some tree-structured
MRFs, which have efficient alternative sampling algorithing3], both exact methods and iterative sampling
methods using blocking or divide-and-conquer strategiestudied. In a recent paper [4], an exact method
using local perturbation is proposed for GMRFs with a spdessomposition (sparse filters) and an efficient
linear system solver for the entire model.

In this paper, we introduce threibgraph correction algorithimwhich leverages on any pre-existing efficient
algorithm to sample from a spanning subgraphd randomly perturbs parameters so as to generate correct
samples in the long run. With a tree-structured subgraphatmorithm is a randomized extension of the
embedded-tree algorithm [5], which has been shown to hawellext convergence properties [5]. As our
algorithm produces an exact sample from the target digtobwasymptotically, the number of iterations re-
quired to generate a true sample depends on the convergdac®ie provide theoretical analysis guaranteeing

A spanning subgraph contains all the nodes and a subset efltfes.



convergence for the subgraph correction algorithm. Fumlloee, we characterize the convergence rate, both
exactly and via tractable bounds. We run experiments usM&Es of various structures and different sizes
to demonstrate that the algorithm converges quickly on &watiety of graphs. As our research is ongoing,
we are currently working on experiments on very large-sgaddels.

2 Sampling GMRFs by Subgraph Correction

Consider a GMRF with probability density functipfix) o eXp{—% T Jx +hTx}. The subgraph correction
algorithm builds on graphical splitting preconditioninigg@rithms for solving large linear systems [6]. In
our context, determining the means of the graphical modeksponds to solving the equatiolp. = h. A
matrix splitting for solving this equation would corresiio writing J = J+ — K and using the relationship
Jrp = Kp+ h as the basis for an iterative algorithm. An underlying agstion here is that the structure of
J7 is such that solving equations of the forthax = b is easy.

Our iterative algorithm is quite simple to describe: At ederation, rather than solvingr (1) = Kpu® +
h—equivalent to finding the mean of a distribution with infation matrix.J;- and potential vectoK pu(*) +
h—instead we draw a sample from a Gaussian with informatiotrima, and potential vectofx(*) +

h + e(**1), The vectore(**! is Gaussian with zero mean and covariafcelt represents a perturbation to
the potential vector that exactly compensates for the elgmomcy between the spanning subgraph and the full
graph. Moreovere(*+1) can be constructed locally for distributed computatione Tmtrix splitting is given

by

Zk:(i,k)eg\gT |Ji| ifi=3j

K ={ —Jy it i # 5, (i,) € E\ Er (1)
0 otherwise
Jii + Lriimpesrer ikl Fi=j

(JT)ij = Ji' if ¢ 5& j, (Zv.]) € 57' (2)
0 otherwise.

Itis easy to see that, as requirgd,— K = J, and that botly;- and K are positive semi-definite. In particular,
K can be decomposed into a sum of rank-one matrices, so itts gasy to draw samples from a Gaussian

distribution with covariancés, as follows: For eaclii, j) € E\Er, lete(™) = [ |J;] Ji»]T u;j, where
u;; is drawn independently from an zero-mean unit-variancesGaa distribution. We can obtait’ ™! by

computing
et = % [eu,j)} = 3)
(i.)€E\ET
where[e("7)] is ann-dimensional vector zero-padded frasti-7), i.e., thei-th and;-th entries of[e("))] |
take the two entries af())and all other entries dfie()] are zero.
The subgraph correction algorithm is summarized in AldponitL. As we can easily see from Algorithm 1, the

computational complexity of one iterationds- + O(|€k |), whereC'r is the complexity of drawing a sample
from the tractable subgraghand|Ex| = |€ — £7] is the number of edges missing frofi.

3 Theoretical Results

In this section, we state some theoretical results on theergence of the algorithm. Proofs are omitted due
to the page limit. We give both the exact convergence ratd its tractable bounds.

Proposition 1. For a GMRF with information matrix’ > 0 and potential vectoh, the sample distribution
gene{ated by Algorithm 1 is guaranteed to converge to thetediatribution and the convergence rate is
p(J K) < 1.

Here the convergence rate is defined-a$m sup, ,__ In (||2<t+1) —3||/=® — 2||), wherex® is the sample

covariance at iterationand® = J~! is the exact target covariance. The larger the convergetteds, the faster the
sample distribution converges to the target distribution.



Algorithm 1 Sampling by Subgraph Correction

Input: J, h, and7T, where7T corresponds to a tractable subgraph.
Output: samples with the asymptotic distributidf(.J ~*h, J ).

1. FormJr andK using (1)—(2).

2. Draw an initial sample(® from a Gaussian distribution with potential vectoand information matrix being
the diagonal ofJ.

3. Ineach iteration:
(@) Foreach(,j) € £\ Er, drawu,; from N (0, 1).
(b) Computee**V using (3).
(c) Draw a new samplg**t) from a Gaussian distribution with information matti+ and potential vecto
h+ Kz® 4+ e(t+Y,

Proposition 2 and Corollary 1 give bounds on the convergeatesof the subgraph correction algorithm.

Proposition 2. Consider symmetric matrices Jr, and K that satisfyJ = Jr — K. If J = 0 and K > 0,
then
)\max (K)

)\max(K) + )\max(J)

/\max(K)

< 1.
)\max(K) + /\min(J)

<p(Jr'K) <

We can further bound,,,..(K), the largest eigenvalue &, using a simple function of its entries. We define
the weight of nodé in a GMRF with information matri¥<’ asw(i) = >, |K;;| and the weight of the model

asw(K) = max; w(i). Corollary 1 follows immediately.

w(K)

Corollary 1. Inthe same setting as in Proposition 2, we have;lK) < 2@ e

4 On Selecting Tractable Subgraphs

Our algorithm does not restrict the subgraph to be treeststrad and any subgraph with an existent fast sam-
pling method can be used, such as subgraphs with low trea{iif] or subgraphs with small feedback vertex
sets (FVS) [8]. The computational complexity of one iteration is th@mplexity of generating one sample
from the tractable subgraph, plus a term proportional totimaber of missing edges from the subgraph. For
many sparse graphs, the complexity is linear with respabetaumber of nodes. Although we have presented
the algorithm using a single, constant splitting for claritsing different trees or other tractable structures on
different iterations can be very beneficial, as it is whertaiating the means in the inference case [9]. By
Proposition 1, to speed convergende, should be selected to minimizéJ;lK). In this section, we give
brief references to the selection algorithms for diffeffamtilies of tractable subgraphs.

Tree-Structured Subgraphs The idea of using a maximum spanning tree (MST) has been stisduin
the support graph preconditioner literature [6] as wellrathe studies of the embedded tree algorithm for
inference [9], where multiple embedded trees are seledeptiely.

Subgraphs with Low Tree-width  Graphical models with low tree-width have efficient infererand sam-
pling algorithms and have been widely studied. We can coepubw tree-width approximatiost, to J
using algorithms such as those in [10, 11, 7].

Subgraphs with Small FVS The key step of obtaining the structure of a graph with a sifRelb is the
selection of the FVS. We first use the heuristic in [8] to setepseudo-FVS (a subset of an FVS that breaks
most crucial cycles, but not all the cycles) of the whole §raphe structure of the subgraph with a small FVS
is constructed by combing the nodes in the FVS (with all thiident edges) and the MST of the remaining
graph. There is a trade-off in choosing the FVS size (a ldryS$ means more computation per iteration but
faster convergence).

Spectrally Sparsified Subraphs Many common GMRFs such as thin-membrane or thin-plate nsdusle
diagonally dominantinformation matrices. Some recertistishow that the graph Laplacian of a dense graph
can be well-approximated by the graph Laplacian of grapltis mearly-linear number of edges [12]. These

spectrally sparsified graphs have efficiently inference sardpling algorithms and can be used as tractable
subgraphs

p
3An FVS is a set of nodes whose removal results in a cycle-fraphy




5 Experimental Results

In this section, we present some preliminary experimeetallts showing the subgraph correction algorithm
on graphs of various structures and compare the performaithehe Gibbs sampler. For a given graph
structure, the model parametefsindh are randomly generated as follows: the entries of the palamgctor

h are generatedi.d. from a uniform distributior/ [—1, 1]; the edge weights of are also generatedd. from
U[-1, 1] with a multiple of the identity matrix added to ensufe- 0. We compute the numbers of iterations
needed to achieve an approximating erroe of 10~°, i.e., the minimunt such thaff~() — %3|| < . For
each graph structure and each size, we repeat the algothh@® sets of random model parameters and the
results shown are averaged over the 100 runs.

We run the subgraph correction algorithm on cycles of 3 to d8@es. The tractable subgraph we use for
a cycle is a spanning tree (for a cycle, it is equivalent toaeng the edge with the weakest normalized
weight from the graph). As shown in Figure 1, our algorithivegia substantial reduction of the number of
iterations needed compared with the Gibbs sampler. For pbeaffior a cycle of length 100, the Gibbs sampler
needs more than 600 iterations on average while our algorithly needs fewer than ten. We also test the
algorithm onl-by-I grids with/ ranging from 3 to 30. For each grid, two different subgrapkeased: oneis a
tree-structured subgraph, the other is a graph with an F\é&eiﬂog lﬂ. Figure 2 shows that both kinds of
subgraphs give better convergence than the Gibbs sampiler tivé subgraphs with small FVSs perform the
best consistently.
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Figure 1: the performance of subgraph correc-Figure 2: the performance of subgraph correc-
tion on cycles of size 3 to 100. The subgraphsion on grids of sizeg-by-3 to 30-by-30. The sub-
used are tree-structured. graphs used include tree-structured graphs and

graphs with small FVSs.

6 Conclusion

This paper introduced the subgraph correction algorithnsémpling from GMRFs, which takes advantage
of a subgraph with an existing fast solvers. We gave thexaiatesults on the convergence rate and tractable
bounds, as well as experimental results. Our analysis fthmdlgorithm to be particularly effective when the
model can be decomposed into a tree and a set of edges of seiglita: We also found that even for graph
as apparently un-tree-like as a grid the algorithm perfogoite well as compared to Gibbs sampling. We
limited our analysis to a fixed subgraph, but the algorithmuradly extends to allow for different subgraphs to
be used at different iterations. This sequence of subgregquinde selected priori or on the fly. This idea is
particularly useful if the model changes over time. Cuisente are working on expanding the experiments
on very large-scale models and compare more extensivelyotfiter existing methods. Studying the trade-
off between the convergence rate and the complexity of aratibn is also an interesting future research
direction.
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