
Sampling GMRFs by Subgraph Correction

Ying Liu
Department of EECS

Massachusetts Institute of Technology
liu_ying@mit.edu

Oliver Kosut
School of Electrical, Computer and Energy Engineering

Arizona State University
okosut@asu.edu

Alan S. Willsky
Department of EECS

Massachusetts Institute of Technology
willsky@mit.edu

Abstract

The problem of efficiently drawing samples from a Gaussian Markov random field is stud-
ied. We introduce the subgraph correction sampling algorithm, which makes use of any
pre-existing tractable sampling algorithm for a subgraph by perturbing this algorithm so as
to yield asymptotically exact samples for the intended distribution. The subgraph can have
any structure for which efficient sampling algorithms exist: for example, tree-structured,
with low tree-width, or with a small feedback vertex set. Preliminary experimental results
demonstrate that the subgraph correction algorithm yieldsaccurate samples much faster than
many traditional sampling methods—such as Gibbs sampling—for many graph topologies.

1 Introduction and Background

An important family of Markov random fields (MRFs) is the family of Gaussian graphical models or Gaussian
Markov random fields (GMRFs). GMRFs are often used to directly parametrize probabilistic networks and
used as approximate models to circumvent the computationalcomplexity inherent in many discrete models.
This paper is devoted to developing efficient algorithms fordrawing samples from a GMRF.

Samples from a GMRF can be drawn exactly by conducting a Cholesky decomposition of the covariance
or inverse covariance matrix and then performing a linear transformation oni.i.d. Gaussian samples. How-
ever, the cubic complexity of this direct method precludes its use on large-scale models, and thus iterative
MCMC-based methods or methods that exploit the internal structures of the GMRFs are often used. Graphical
models with particular topologies (for example, tree-structured models) have well-known efficient sampling
algorithms, but possess limited modeling power [1]. A popular sampling algorithm for general loopy graphs is
Gibbs sampling, an MCMC algorithm in which variables are sequentially drawn conditioned on the most re-
cent sample of all other variables (or of the variables in theMarkov blankets in the MRF setting) [2]. However,
the Gibbs sampler can have slow mixing rate in many situations, including sampling from some tree-structured
MRFs, which have efficient alternative sampling algorithms. In [3], both exact methods and iterative sampling
methods using blocking or divide-and-conquer strategies are studied. In a recent paper [4], an exact method
using local perturbation is proposed for GMRFs with a sparsedecomposition (sparse filters) and an efficient
linear system solver for the entire model.

In this paper, we introduce thesubgraph correction algorithm, which leverages on any pre-existing efficient
algorithm to sample from a spanning subgraph1 and randomly perturbs parameters so as to generate correct
samples in the long run. With a tree-structured subgraph, our algorithm is a randomized extension of the
embedded-tree algorithm [5], which has been shown to have excellent convergence properties [5]. As our
algorithm produces an exact sample from the target distribution asymptotically, the number of iterations re-
quired to generate a true sample depends on the convergence rate. We provide theoretical analysis guaranteeing

1A spanning subgraph contains all the nodes and a subset of theedges.

1

convergence for the subgraph correction algorithm. Furthermore, we characterize the convergence rate, both
exactly and via tractable bounds. We run experiments using GMRFs of various structures and different sizes
to demonstrate that the algorithm converges quickly on a wide variety of graphs. As our research is ongoing,
we are currently working on experiments on very large-scalemodels.

2 Sampling GMRFs by Subgraph Correction

Consider a GMRF with probability density functionp(x) ∝ exp{− 1
2x

T Jx+h
T
x}. The subgraph correction

algorithm builds on graphical splitting preconditioning algorithms for solving large linear systems [6]. In
our context, determining the means of the graphical model corresponds to solving the equationJµ = h. A
matrix splitting for solving this equation would correspond to writingJ = JT −K and using the relationship
JT µ = Kµ+h as the basis for an iterative algorithm. An underlying assumption here is that the structure of
JT is such that solving equations of the formJT x = b is easy.

Our iterative algorithm is quite simple to describe: At eachiteration, rather than solvingJT µ(t+1) = Kµ(t)+
h—equivalent to finding the mean of a distribution with information matrixJT and potential vectorKµ(t) +
h—instead we draw a sample from a Gaussian with information matrix JT and potential vectorKx

(t) +
h + e

(t+1). The vectore(t+1) is Gaussian with zero mean and covarianceK. It represents a perturbation to
the potential vector that exactly compensates for the discrepancy between the spanning subgraph and the full
graph. Moreover,e(t+1) can be constructed locally for distributed computation. The matrix splitting is given
by

Kij =

∑

k:(i,k)∈E\ET
|Jik| if i = j

−Jij if i 6= j, (i, j) ∈ E \ ET
0 otherwise

(1)

(JT)ij =

Jii +
∑

k:(i,k)∈E\ET
|Jik| if i = j

Jij if i 6= j, (i, j) ∈ ET
0 otherwise.

(2)

It is easy to see that, as required,JT −K = J , and that bothJT andK are positive semi-definite. In particular,
K can be decomposed into a sum of rank-one matrices, so it is quite easy to draw samples from a Gaussian
distribution with covarianceK, as follows: For each(i, j) ∈ E\ET , let e(i,j) = [|Jij | Jij]

T
uij , where

uij is drawn independently from an zero-mean unit-variance Gaussian distribution. We can obtaine(t+1) by
computing

e
(t+1) =

∑

(i,j)∈E\ET

[

e
(i,j)

]

n
, (3)

where
[

e
(i,j)

]

n
is ann-dimensional vector zero-padded frome(i,j), i.e., thei-th andj-th entries of

[

e
(i,j)

]

n

take the two entries ofe(i,j)and all other entries of
[

e
(i,j)

]

n
are zero.

The subgraph correction algorithm is summarized in Algorithm 1. As we can easily see from Algorithm 1, the
computational complexity of one iteration isCT +O(|EK |), whereCT is the complexity of drawing a sample
from the tractable subgraphT and|EK | = |E − ET | is the number of edges missing fromJT .

3 Theoretical Results

In this section, we state some theoretical results on the convergence of the algorithm. Proofs are omitted due
to the page limit. We give both the exact convergence rate2 and its tractable bounds.

Proposition 1. For a GMRF with information matrixJ � 0 and potential vectorh, the sample distribution
generated by Algorithm 1 is guaranteed to converge to the exact distribution and the convergence rate is
ρ(J−1

T K) < 1.

2Here the convergence rate is defined as− lim supt→∞ ln
(

||Σ(t+1) − Σ||/||Σ(t) − Σ||
)

, whereΣ(t) is the sample

covariance at iterationt andΣ = J−1 is the exact target covariance. The larger the convergence rate is, the faster the
sample distribution converges to the target distribution.

2

Algorithm 1 Sampling by Subgraph Correction

Input: J , h, andT , whereT corresponds to a tractable subgraph.
Output: samples with the asymptotic distributionN (J−1

h, J−1).

1. FormJT andK using (1)–(2).

2. Draw an initial samplex(0) from a Gaussian distribution with potential vectorh and information matrix being
the diagonal ofJ .

3. In each iteration:

(a) For each(i, j) ∈ E \ ET , drawuij from N (0, 1).

(b) Computee(t+1) using (3).

(c) Draw a new samplex(t+1) from a Gaussian distribution with information matrixJT and potential vector
h+Kx(t) + e

(t+1).

Proposition 2 and Corollary 1 give bounds on the convergencerate of the subgraph correction algorithm.

Proposition 2. Consider symmetric matricesJ , JT , andK that satisfyJ = JT −K. If J � 0 andK � 0,
then

λmax(K)

λmax(K) + λmax(J)
≤ ρ(J−1

T K) ≤
λmax(K)

λmax(K) + λmin(J)
< 1.

We can further boundλmax(K), the largest eigenvalue ofK, using a simple function of its entries. We define
the weight of nodei in a GMRF with information matrixK asw(i) =

∑

j |Kij | and the weight of the model
asw(K) = maxiw(i). Corollary 1 follows immediately.

Corollary 1. In the same setting as in Proposition 2, we haveρ(J−1
T K) ≤ w(K)

w(K)+λmin(J)

4 On Selecting Tractable Subgraphs
Our algorithm does not restrict the subgraph to be tree-structured and any subgraph with an existent fast sam-
pling method can be used, such as subgraphs with low tree-width [7], or subgraphs with small feedback vertex
sets (FVS3) [8]. The computational complexity of one iteration is the complexity of generating one sample
from the tractable subgraph, plus a term proportional to thenumber of missing edges from the subgraph. For
many sparse graphs, the complexity is linear with respect tothe number of nodes. Although we have presented
the algorithm using a single, constant splitting for clarity, using different trees or other tractable structures on
different iterations can be very beneficial, as it is when calculating the means in the inference case [9]. By
Proposition 1, to speed convergence,JT should be selected to minimizeρ(J−1

T K). In this section, we give
brief references to the selection algorithms for differentfamilies of tractable subgraphs.

Tree-Structured Subgraphs The idea of using a maximum spanning tree (MST) has been discussed in
the support graph preconditioner literature [6] as well as in the studies of the embedded tree algorithm for
inference [9], where multiple embedded trees are selected adaptively.

Subgraphs with Low Tree-width Graphical models with low tree-width have efficient inference and sam-
pling algorithms and have been widely studied. We can compute a low tree-width approximationJT to J
using algorithms such as those in [10, 11, 7].

Subgraphs with Small FVS The key step of obtaining the structure of a graph with a smallFVS is the
selection of the FVS. We first use the heuristic in [8] to select a pseudo-FVS (a subset of an FVS that breaks
most crucial cycles, but not all the cycles) of the whole graph. The structure of the subgraph with a small FVS
is constructed by combing the nodes in the FVS (with all theirincident edges) and the MST of the remaining
graph. There is a trade-off in choosing the FVS size (a largerFVS means more computation per iteration but
faster convergence).

Spectrally Sparsified Subraphs Many common GMRFs such as thin-membrane or thin-plate models have
diagonally dominant information matrices. Some recent studies show that the graph Laplacian of a dense graph
can be well-approximated by the graph Laplacian of graphs with nearly-linear number of edges [12]. These
spectrally sparsified graphs have efficiently inference andsampling algorithms and can be used as tractable
subgraphs.

3An FVS is a set of nodes whose removal results in a cycle-free graph.

3

5 Experimental Results

In this section, we present some preliminary experimental results showing the subgraph correction algorithm
on graphs of various structures and compare the performancewith the Gibbs sampler. For a given graph
structure, the model parametersJ andh are randomly generated as follows: the entries of the potential vector
h are generatedi.i.d. from a uniform distributionU [−1, 1]; the edge weights ofJ are also generatedi.i.d. from
U [−1, 1] with a multiple of the identity matrix added to ensureJ � 0. We compute the numbers of iterations
needed to achieve an approximating error ofε = 10−5, i.e., the minimumt such that

∥

∥Σ(t) − Σ
∥

∥ ≤ ε. For
each graph structure and each size, we repeat the algorithm for 100 sets of random model parameters and the
results shown are averaged over the 100 runs.

We run the subgraph correction algorithm on cycles of 3 to 100nodes. The tractable subgraph we use for
a cycle is a spanning tree (for a cycle, it is equivalent to removing the edge with the weakest normalized
weight from the graph). As shown in Figure 1, our algorithm gives a substantial reduction of the number of
iterations needed compared with the Gibbs sampler. For example, for a cycle of length 100, the Gibbs sampler
needs more than 600 iterations on average while our algorithm only needs fewer than ten. We also test the
algorithm onl-by-l grids withl ranging from 3 to 30. For each grid, two different subgraphs are used: one is a
tree-structured subgraph, the other is a graph with an FVS ofsize

⌈

log l2
⌉

. Figure 2 shows that both kinds of
subgraphs give better convergence than the Gibbs sampler while the subgraphs with small FVSs perform the
best consistently.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

Number of Nodes on the Cycles

N
u

m
b

e
r

o
f
It
e

ra
tio

n
s

Number of Iterations Needed for Cycles (ε=10−5)

Gibbs Sampling
Subgraph (Tree) Correction

Figure 1: the performance of subgraph correc-
tion on cycles of size 3 to 100. The subgraphs
used are tree-structured.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Number of Nodes on Each Row or Column

N
u

m
b

e
r

o
f

It
e

ra
tio

n
s

Number of Iterations Needed for Grids (ε=10−5)

Gibbs Sampling
Subgraph (Tree) Correction
 Subgraph (with small FVS) Correction

Figure 2: the performance of subgraph correc-
tion on grids of size3-by-3 to 30-by-30. The sub-
graphs used include tree-structured graphs and
graphs with small FVSs.

6 Conclusion

This paper introduced the subgraph correction algorithm for sampling from GMRFs, which takes advantage
of a subgraph with an existing fast solvers. We gave theoretical results on the convergence rate and tractable
bounds, as well as experimental results. Our analysis foundthe algorithm to be particularly effective when the
model can be decomposed into a tree and a set of edges of small weights. We also found that even for graph
as apparently un-tree-like as a grid the algorithm performsquite well as compared to Gibbs sampling. We
limited our analysis to a fixed subgraph, but the algorithm naturally extends to allow for different subgraphs to
be used at different iterations. This sequence of subgraphscan be selecteda priori or on the fly. This idea is
particularly useful if the model changes over time. Currently, we are working on expanding the experiments
on very large-scale models and compare more extensively with other existing methods. Studying the trade-
off between the convergence rate and the complexity of one iteration is also an interesting future research
direction.

References

[1] D. Batra, A. Gallagher, D. Parikh, and T. Chen, “Beyond trees: MRF inference via outer-planar de-
composition,” inComputer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE,

4

2010, pp. 2496–2503.

[2] C. Bishop,Pattern recognition and machine learning. Springer New York:, 2006.

[3] H. Rue, “Fast sampling of Gaussian Markov random fields,”Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 63, no. 2, pp. 325–338, 2001.

[4] G. Papandreou and A. Yuille, “Gaussian sampling by localperturbations,” inProc. NIPS, 2010.

[5] E. Sudderth, M. Wainwright, and A. Willsky, “Embedded trees: estimation of Gaussian processes on
graphs with cycles,”IEEE Transactions on Signal Processing, vol. 52, no. 11, pp. 3136–3150, 2004.

[6] M. Bern, J. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, “Support-graph preconditioners,”SIAM
Journal on Matrix Analysis and Applications, vol. 27, no. 4, pp. 930–951, 2006.

[7] D. Karger and N. Srebro, “Learning Markov networks: Maximum bounded tree-width graphs,” inPro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 2001, pp. 392–401.

[8] Y. Liu, V. Chandrasekaran, A. Anandkumar, and A. Willsky, “Feedback message passing for inference
in gaussian graphical models,”Signal Processing, IEEE Transactions on, vol. 60, no. 8, pp. 4135–4150,
2012.

[9] V. Chandrasekaran, J. Johnson, and A. Willsky, “Estimation in Gaussian graphical models using tractable
subgraphs: A walk-sum analysis,”Signal Processing, IEEE Transactions on, vol. 56, no. 5, pp. 1916–
1930, 2008.

[10] N. Srebro, “Maximum likelihood bounded tree-width Markov networks,” inProceedings of the Seven-
teenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2001,
pp. 504–511.

[11] D. Shahaf, A. Chechetka, and C. Guestrin, “Learning thin junction trees via graph cuts,” inConference
on Artificial Intelligence and Statistics, 2009.

[12] D. Spielman and S. Teng, “Spectral Sparsification of Graphs,”SIAM Journal on Computing, vol. 40, p.
981, 2011.

5

