
TTIC 31190: Natural Language Processing
Lecture 9: Language Modeling

Fall 2023

Announcements

• Freda’s office hour this week
• Thu 1:30-2:30 pm, TTIC 4th floor open space

• TA (Jiamin Yang) Tutorial Sessions & Office Hours
• Fridays 3 pm – 4 pm; TTIC Room 530
• This week: HMM & CRF
• Office hour 4 pm – 5 pm

• Assignment 2 due on Nov 2, 11:59 pm

Recap

• Neural Networks
• Multi Layer Perceptron (MLP)
• Convolutional neural network (CNN)
• Recurrent neural network (RNN)
• Transformer (Attention Is All You Need)

• Sequence Labeling (structured prediction)
• Hidden Markov Model (HMM)
• Conditional Random Field (CRF)

A bottle of tezgüino is on the table.
Everybody likes tezgüino.
Don’t have tezgüino before you drive.
We make tezgüino out of corn.

Tezgüino ?

A bottle of tezgüino is on the table.
Everybody likes tezgüino.
Don’t have tezgüino before you drive.
We make tezgüino out of corn.

A bottle of tezgüino is on the table.

CBOW (Continuous Bag-of-Words): learn representations that
predict a word given context

word2vec

A bottle of tezgüino is on the table.
Everybody likes tezgüino.
Don’t have tezgüino before you drive.
We make tezgüino out of corn.

A bottle of _____ is on the table.
Everybody likes _____.
Don’t have _____ before you drive.
We make _____ out of corn.

Language Modeling

Language Modeling

• The Shannon game [Shannon 1951]:
How well can you predict the next
letter?

Language Modeling

• The Shannon game [Shannon 1951]:
How well can you predict the next
letter?

Language Modeling

[Src: https://www.dwarkeshpatel.com/p/ilya-sutskever#details]

“I challenge the claim that next-token prediction cannot
surpass human performance. On the surface, it looks like it
cannot. It looks like if you just learn to imitate, to predict what
people do, it means that you can only copy people. But here is
a counter argument for why it might not be quite so. If your
base neural net is smart enough, you just ask it — What would
a person with great insight, wisdom, and capability do?”

“It's actually a much deeper question than it seems. Predicting
the next token well means that you understand the underlying
reality that led to the creation of that token. It's not statistics.”

• Language Model: a probability distribution over strings in a
language.

Language Models

• Language Model: a probability distribution over strings in a
language.

Language Models

• Language Model: a probability distribution over strings in a
language.

Language Models

• Language Modeling: the task of estimating this distribution
from data

• Define a statistical model with parameters

• Maximize likelihood

Language Modeling

• Language Modeling: assign probabilities to token sequences
• Why?

• machine translation:
• P(turn the camera off) > P(put the camera out)

• speech recognition:
• P(be back soonish) > P(be bassoon dish)

• spelling/grammar correction:
• The office is about fifteen minuets from my house
• P(about fifteen minutes from) > P(about fifteen minuets from)

• assistive writing, dialogue systems, question answering, etc.!

Language Modeling

ca. 2007

Impact of size of language model training data (in words) on quality of
Arabic-English statistical machine translation system

Nowadays: large language models

Language Models are Everywhere

Language Models are Everywhere

• Goal: compute the probability of a sequence of words:

• Related task: probability of next word:

• A model that computes either of these:

 or

is called a language model (LM)

Language Modeling

[SLP3: Chapter 3]

Language Modeling

• Building language models
• Generating from a language model
• Evaluating a language model

• Count-based language models
• MLE estimation
• Smoothing

• Neural language models
• Feed-forward models
• RNN models
• Attention models

How do we model?

Language Modeling

• Chain rule of probability

• In general to a sequence

Chain Rule

• Factor joint probability into product of conditional probabilities:

• We have not yet made any independence assumptions

Chain Rule

[SLP3: Chapter 3]

• Factor joint probability into product of conditional probabilities:

• For example, “the cat sat on the mat”

Chain Rule

[SLP3: Chapter 3]

• a language model assigns probabilities to token sequences
• can be any length, so the probabilities should sum to 1 across all possible

sequences of all possible lengths

• usually length is modeled by including a “stop symbol” at the
end of the sequence and using “stopping probabilities”

• a “start symbol” is also assumed to be at the beginning

• our language model with start/stop symbols:

Important Detail: Modeling Length

• our language model:

• we need to ensure:

• consider removing stopping probabilities:

Why Stopping Probabilities?

• without stopping probabilities, sums of probabilities for all possible
length-1 and length-2 sequences:

• uh oh…

Without Stopping Probabilities

length = 1:

length = 2:

• With the stop symbol

• Signal to stop during generation
• E.g. machine translation, automatic summarization

With Stopping Probabilities

• alternatively, we can model the length n explicitly (e.g., using a zero-
truncated Poisson distribution):

Other Ways of Modeling Length

Estimating Language Model Probabilities

• let’s use maximum likelihood estimation (MLE):

• problem: we’ll never have enough data!

<s> I do not like green eggs and ham </s>

• Suppose we have a vocabulary of size V, how many sequences of
length n do we have?

Estimating Language Model Probabilities

Typical English vocabulary ~ 40k words

Even sentences of length <= 11 results in more than 4 * 10^50 sequences.
Too many to count! (# of atoms in the earth ~ 10^50)

• Independence assumption: the next word only
depends on the most recent past

• Reduces the number of estimated parameters in
exchange for modeling capacity

Markov Assumption

Andrey Markov

Most recent k words

• Independence assumption: the next word only
depends on the most recent past

Markov Assumption

Most recent k words

1st order Markov: k = 1

2nd order Markov: k = 2

• unigram language model

• bigram language model

• trigram language model

n-gram Language Models

• unigram language model

• Example sentences generated by a unigram model trained on
financial news:

fifth an of futures the an incorporated a a the inflation most dollars quarter in is
mass

thrift did eighty said hard ‘m july bullish

that or limited the

n-gram Language Models

• bigram language model

• Example sentences generated by a bigram model trained on financial
news:

texaco rose one in this issue is pursuing growth in a boiler house said mr. gurria
mexico ’s motion control proposal without permission from five hundred fifty five
yen
outside new car parking lot of the agreement reached
this would be a record november

n-gram Language Models

n-gram Language Models

[SLP3: Chapter 3]

• maximum likelihood estimate (MLE)

Estimating Bigram Probabilities

[SLP3: Chapter 3]

An Example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

a few estimated bigram probabilities:

training data: MLE estimator:

[SLP3: Chapter 3]

Generating from a Language Model

• Bigram model

• Generate the first word
• Generate the second word
• Generate the third word
• …

Generating from a Language Model

[SLP3: Chapter 3]

Sampling

• Trigram model

• Generate the first word
• Generate the second word
• Generate the third word
• …

Generating from a Language Model

• Typical LMs are not sufficient to handle long-range dependencies

Generating from a Language Model

“The computer(s) that I just put into the machine
room on the fifth floor is (are) crashing.”

• GPT-4 generations

Generating from a Language Model

Modern language models can take much longer context!

Prefix / Prompt

• Greedy search: choose the most likely word at every step
 To predict the next word given the previous two words , :

Generating from a Language Model (more)

[src: https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3]

• Top-k vs. top-p sampling

Generating from a Language Model (more)

Top-k sampling Top-p sampling

[src: https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3]

Evaluating Language Models

Extrinsic (task-based) evaluation
• use language model in a system for some task, see if performance

improves
• downsides:

• can be time-consuming depending on task/system
• changing the language model might require changing how it’s used in the

system in order to improve performance

Evaluating Language Models

Intrinsic evaluation
• compute probability of held-out data
• standard metric: perplexity
• downside:

• may not correlate with system performance on downstream tasks

Evaluating Language Models

• probability of held-out sentences:

• let’s work with log-probabilities:

• divide by number of words M (including stop symbols) in held-out
sentences:

Probability of Held-out Data

• average token log-probability of held-out data:

• perplexity:

• the lower the perplexity, the better the model

Probability → Perplexity

????
Cross entropy

• Measure how well a language model (LM) predicts the true data

• What is the intuition behind it?

Perplexity (PPL)

• given a vocabulary , consider this bigram language model:

• perplexity of any sequence under this model?

Perplexity as Branching Factor

• train: 38 million tokens (Wall Street Journal text)
• test: 1.5 million tokens
• vocabulary size: 19,979

• though vocabulary size is ~20K, trigram model is (roughly) considering
109 choices per position on average

Perplexity Example

n-gram order: unigram bigram Trigram

perplexity: 962 170 109

[SLP3: Chapter 3]

Perplexity Example

[Src: https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word]

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

training data:

probability of test sequence is 0, so log-probability is ,
so perplexity is !

test data:
<s> I like green eggs and ham </s>

problem: !

Smoothing

• instead of MLE, which leads to zeros, use a different estimation
method that leads to “smoother” distributions (fewer zeros)

Smoothing

am

was
do

like
is

green

• instead of MLE, which leads to zeros, use a different estimation
method that leads to “smoother” distributions (fewer zeros)

Smoothing

am

was
do

like
is

green

• Handle sparsity by making sure all probabilities are non-zero in our
model

• Additive: Add a small amount to all probabilities

• Interpolation: Use a combination of different granularities of n-grams

• Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

Smoothing

• just add 1 to all counts!
• also called Laplace smoothing
• MLE estimate:

• Add-1 estimate:

• simple and avoids zeros, but doesn’t work as well as other methods

“Add-1” estimation

vocabulary size

[SLP3: Chapter 3]

• (Berkeley restaurant corpus) Out of 9222 sentences
• Raw bigram counts

“Add-1” estimation

[SLP3: Chapter 3]

• (Berkeley restaurant corpus) Out of 9222 sentences
• Smoothed bigram counts

“Add-1” estimation

[SLP3: Chapter 3]

• (Berkeley restaurant corpus) Out of 9222 sentences
• Smoothed bigram probabilities

“Add-1” estimation

[SLP3: Chapter 3]

• use multiple n-gram sizes in the same language model

• backoff:
• use trigram model if its probability is nonzero
• otherwise, use bigram model if its probability is nonzero
• otherwise, use unigram

• interpolation:
• mixture of unigram, bigram, and trigram models

• interpolation tends to work better

Backoff and Interpolation

[SLP3: Chapter 3]

• estimate unigram/bigram/trigram models using MLE, then combine
them:

• lambdas can be estimated using development data
• they can also be a function of the context

• intuitively, may want to be larger if is large

Linear Interpolation

• widely used and effective

• a few components:
• absolute discounting
• interpolation with continuation probabilities

• best variant seems to be “modified Kneser-Ney” -- see Chen and
Goodman (1998)

Kneser-Ney Smoothing

[SLP3: Chapter 3]

Absolute Discounting

observed bigrams have counts that are overestimated
unobserved bigrams have counts that are underestimated

• subtract d from each numerator count
• use original counts for denominator

• so there’s some “missing probability mass”
• lambda function is defined to make things normalize correctly

Absolute Discounting

[SLP3: Chapter 3]

• “I can’t see without my reading _______”
• suppose we are interpolating bigram and unigram distributions here
• “Kong” is more common than “glasses”
• but “Kong” almost always follows “Hong”
• “glasses” is more likely to follow a variety of previous words!

• unigram probability is most useful when we haven’t seen bigram
• instead of unigram , use

Continuation Probabilities

How likely is x? How likely is x to appear as a novel
continuation?

• how likely is x to be a novel continuation?

• normalize by total number of bigram types:

Continuation Probabilities

number of word types that appeared before x

• Interpolated Kneser-Ney:

• again, lambda function is defined to make things normalize correctly

• this is the bigram version; recursive versions exist for higher orders

Kneser-Ney Smoothing

[SLP3: Chapter 3]

• Google n-gram release, August 2006

Huge Web-scale n-grams

https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html

• Google n-gram release, August 2006

Huge Web-scale n-grams

https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html

• How to deal with, e.g., Google N-gram corpus
• Pruning

• Only store N-grams with count > threshold.
• Remove singletons of higher-order n-grams

• Entropy-based pruning
• Efficiency

• Efficient data structures like tries
• Bloom filters: approximate language models
• Store words as indexes, not strings

• Use Huffman coding to fit large numbers of words into two bytes
• Quantize probabilities (4-8 bits instead of 8-byte float)

Huge Web-scale n-grams

• “Stupid backoff” (Brants et al., 2007):

Smoothing for Web-scale Models

• smoothing avoids zeros for unknown n-
grams (n > 1), not unknown words!

• if there are unknown words in the test
data, smoothing does not help

• probability of test data is still zero

• we must know the full vocabulary
ahead of time (for both training and
held-out data!)

• create an unknown word symbol
“<UNK>”

• at training time:
– replace some rare words with <UNK>
– then estimate probabilities as though

<UNK> is a normal word

• at test time:
– replace unknown words with <UNK>

Closed Vocabulary Open Vocabulary

• when comparing open-vocabulary language models, make sure the
vocabularies match!

• world’s best language model (every word is <UNK>):

• SRILM
 http://www.speech.sri.com/projects/srilm/

• KenLM
https://kheafield.com/code/kenlm/

Language Modeling Toolkits

• Next Token Prediction SOLVES AI Says OpenAI Founder ?
Next Token Prediction Solves AI?

https://www.youtube.com/watch?v=MJUGTWb8xRo

Language Modeling

• Building language models
• Generating from a language model
• Evaluating a language model

• Count-based language models
• MLE estimation
• Smoothing

• Neural language models
• Feed-forward models
• RNN models
• Attention models

Summary
• language modeling:

• compute probabilities of token sequences

• length of sequence must be modeled probabilistically (usually with a stop
symbol at the end)

• typically, use chain rule to factor joint into product of conditionals, one for each
token in order from left to right:

Summary
• n-gram language models:

• let each conditional probability depend on only the most recent n-1 tokens, e.g.,
trigram:

• we can use maximum likelihood estimation to estimate n-gram
probabilities from data, e.g., for a bigram model:

• evaluation of language models
• extrinsic: use model in a system for a downstream task
• intrinsic: compute probability of held-out data (standard metric: perplexity)

• perplexity:
• compute = average log-probability of held-out tokens, perplexity is
• lower perplexity  better language model
• can be interpreted as effective number of choices per position on average

Summary

Smoothing
• add-1 estimation: add 1 (or some small number) to all counts, then normalize

• backoff: if high order n-gram has been seen, use its probability, otherwise “back
off” to lower order n-grams

• interpolation: weighted mixture of n-gram models of various sizes:

• weights can depend on context

Summary

Smoothing
• absolute discounting:

• observed n-grams have counts that are overestimated
• unobserved n-grams have counts that are underestimated
• subtract a constant from counts, normalize using interpolation with a lower order n-

gram model
• continuation probabilities:

• captures how likely it is for a word to form a novel continuation of the preceding words
• likely more helpful than simple unigram probabilities when interpolating with a bigram model

• Kneser-Ney smoothing:
• combines absolute discounting and continuation probabilities via interpolation

• stupid backoff:
• simple, scales well to very large corpora

Summary

• closed vs. open vocabulary language modeling
• when comparing language models, be mindful of vocabularies!

Summary

	TTIC 31190: Natural Language Processing
	Announcements
	Recap
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Language Modeling
	Language Modeling
	Language Modeling
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88

