TTIC 31190: Natural Language Processing
Lecture 9: Language Modeling

Fall 2023

Announcements

* Freda’s office hour this week
* Thu 1:30-2:30 pm, TTIC 4th floor open space

* TA (Jiamin Yang) Tutorial Sessions & Office Hours
* Fridays 3 pm—4 pm; TTIC Room 530
* This week: HMM & CRF
e Office hour4 pm -5 pm

* Assignment 2 due on Nov 2, 11:59 pm

Recap

* Neural Networks

Multi Layer Perceptron (MLP)
Convolutional neural network (CNN)
Recurrent neural network (RNN)
Transformer (Attention Is All You Need)

* Sequence Labeling (structured prediction)
* Hidden Markov Model (HMM)
e Conditional Random Field (CRF)

“You shall know a word by the company it keeps.”

J.R. Firth, A Synopsis of Linquistic Theory, 1957

A bottle of tezglino is on the table.
Everybody likes tezguino.

Don’t have tezguino before you drive.
We make tezguino out of corn.

Tezguino ?

CBOW (Continuous Bag-of-Words): learn representations that
predict a word given context

mm word2vec

A bottle of tezguino is on the table.

A bottle of tezglino is on the table.
Everybody likes tezguino.

Don’t have tezguino before you drive.
We make tezguino out of corn.

A bottle of is on the table.
Everybody likes

Don’t have before you drive.
We make out of corn.

Language Modeling

Language Modeling

* The Shannon game [Shannon 1951]:

How well can you predict the next
letter?

(1) THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG

TR, R~ K, I, —_— | SN
(1) READING LAMP ON THE DESK SHED GLOW ON
T il - IR D--=«==D----SHED-GL0--0--
(1) POLISHED WOOD BUT LESS ON THE SHABBY RED CARPET
(2) P-L-8-----0---BU--L-8--0-=cv=-8H--=--RB--0 ------

Prediction and Entropy of Printed English
By C. E. SHANNON
(Manuseript Received Sept. 15, roso)

A pew method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experimenis in prediction are given, and some propertics of an ideal predictor are
developed.

Claude Shannon

Al |

- |
30 Apr 1916 — 24 Feb 2001

Language Modeling

Prediction and Entropy of Printed English

* The Shannon game [Shannon 1951]: ek =

(Manuseript Received Sept. 15, roso)

How we" ca n you prEd iCt the nEXt A new method of estimating the entropy and redundancy of a language is

described. This method exploits the kuuwli‘ed of the language statistics pos-

I ett e r? sessed by those who speak the language, and depends on experimental results
. in prediction of the next letter when the preceding text is known. Results of

experiments in prediction are given, and some properties of an ideal predictor are

developed.

A new method of estimating the entropy and redundancy of a language is described. This
method exploits the knowledge of the language statistics possessed by those who speak
the language, and depends on experimental results in prediction of the next letter when the
preceding text i1s known. Results of experiments in prediction are given, and some properties

of an

] I

Language Modeling

3. PreEpicTiON OF ENGLISH

The new method of estimating entropy exploits the fact that anyone

{1} THE R["]H “5 NOT VERY LI'E'H-T A SMALL DBLﬂHﬂ' speaking a language possesses, implicitly, an enormous knowledge of the

L e 2 i (N . SN e b statistics of the language. Familiarity with the words, idioms, clichés and
{E } ROOD- --- HﬂT v 1 EH OBL grammar enables him to fill in missing or incorrect letters in proof-reading,

D LAM P bl DESE GLOW ON or to complete an unfinished phrase in conversation. An experimental demon-
“'] Bﬂ ING ﬂH HE EHEB stration of the extent to which English is predictable can be given as follows:
{ﬂ] HE.'.I. ---------- ﬂ------II----EEEII-ELl]--l]-- Select a short passage unfamiliar to the person who is to do the predicting.

He is then asked to guess the first letter in the passage. If the guess is correct

{1] P[“JIEHED H'IJDD H“T LEEE [IH TEE SHABBY EED E.HEP!T he is so informed, and proceeds to guess the second letter. If not, he is told

the correct first letter and proceeds to his next guess. This is continued
{E} F- ol U"'EU' B e '-'EE sa=e=ril "E ------ through the text. As the experiment progresses, thegzubject writes down the
correct text up to the current point for use in predicting future letters. The
result of a typical experiment of this type is given below. Spaces were in-
cluded as an additional letter, making a 27 letter alphabet. The first line is

1z An experimental demonstration of the extent to which English is predictable can be givenas the original text; the second line contains a dash for each -letter‘ EUT'NCﬂF
follows: Select a short passage unfamiliar to the person who is to do the predicting. He is guesl;s:eidijln the case of incorrect guesses the correct Ietter ia copled in the
seco ne.

then asked to guess the first letter in the passage. If the guess is correct he is so informed,
and proceeds to guess the second letter. If not, he is told the

O

“I challenge the claim that next-token prediction cannot
surpass human performance. On the surface, it looks like it
cannot. It looks like if you just learn to imitate, to predict what
people do, it means that you can only copy people. But here is
a counter argument for why it might not be quite so. If your
base neural net is smart enough, you just ask it — What would
a person with great insight, wisdom, and capability do?”

“It's actually a much deeper question than it seems. Predicting
the next token well means that you understand the underlying
reality that led to the creation of that token. It's not|statistics{’

va Sutskever(OpenAl Chief ScientistEBuildi \ thig nigSpies, ¥ 0
[i \ ' Copy link
- : \ / ;
= - > .. Y Y | ’ o’ -~
- . ‘ 4 v.d o 4

Ilya

Crid

Watch on @3 Youlub

5 ke“v ot

F

.8 llya Sutskever (OpenAl Chief Scientist) - Building AGI, Alignr
o Mar 27 - Dwarkesh Podcast

@ Save on Spotify

[Src: https://www.dwarkeshpatel.com/p/ilya-sutskever#details]

Language Models

* Language Model: a probability distribution over strings in a

language.
P(z)
L —=TL1,L2y...,Tnm

Language Models

* Language Model: a probability distribution over strings in a
language.

P(I'm not a cat) = 0.0000004
P(He is hungry) = 0.000025

P(Dog the asd@sdf 1124 17) ~ 0

Language Models

* Language Model: a probability distribution over strings in a
language.

" TGhe GREAT
. GATSBY

P

WIKIPEDIA

The Free Encyclopedia

b\ F-ScorT-FiTzcERalp |

e 48

Language Modeling

* Language Modeling: the task of estimating this distribution
from data

* Define a statistical model Py(x) with parameters ¢

* Maximize likelihood

K
6 = argmax Z log Py(z'*))
O k=1

Language Modeling

* Language Modeling: assign probabilities to token sequences
* Why?

* machine translation:
* P(turn the camera off) > P(put the camera out)

* speech recognition:
* P(be back soonish) > P(be bassoon dish)

* spelling/grammar correction:

* The office is about fifteen minuets from my house
* P(about fifteen minutes from) > P(about fifteen minuets from)

e assistive writing, dialogue systems, question answering, etc.!

Impact of size of language model training data (in words) on quality of
Arabic-English statistical machine translation system

Impact on size of language model training data (in words) on quality of
Arabic-English statistical machine translation system

53.5
52.5
51.5
50.5 B AE BLEU[%]
49.5
48.5 - +weblm =
/ LM trained on
47.3 219B words of

;.,:"') ﬁ;:} hﬁ T -f"ﬁ'

x

Google

ca. 2007

1800
Google
E Switch Transformer
21440 1.6T
@
£
£1080 ® ;
& NLP model size and computation are increasing exponentially OpenAd
o GPT:3
£ 720 8% Microsoft 1}05
N TNLG
7 B .
[} G 9 | nviDia ’
8 360 Google OpenAI Google OpenAl Megatronl M-
s Transformer GPT BERT GPT-2 838
0.058 0.11B 0.34Bh:6B"
0 o POTTTT T LLey AL 1 S
2017 2018 2019 2020
Year

Nowadays: large language models

NLP’s Moore’s Law: Every year model size increases by 10x

LANGUAGE MODEL SIZES TO MAR/2023

Luminous
2008

GLM-130B

ChatGLM-6B

PaLM-Coder

Minerva GPT-4

Med-PaLM \ i Undisclosed
o

Flan-PaLM

2021 .

Flan-U-PaLM
Med-PaLM 2

6 5408
arameters
lab/i 2
Available s
e \ 'Chinchil[a Flamingo
. 80B"

O Closed : B N 708

® Chinchilla scale

¢ LifeArchitect.ai/models

Language Models are Everywhere

Google

(=
)

where can |

where can | - Google Search

where can i watch monday night football
where can i watch the other zoey

where can i watch the summer i turned pretty
where can i watch the astros game

where can i print for free

where can i buy stamps

where can i watch yellowstone

where can i watch the bear

where can i watch the office

WWDC rehearsal

WWDC rehearsal

Tomorrow we're supposed to talk
about the screen content.
The meeting was \

-::'-;——-——B:T‘w—'—__""—

‘ P —
< Eddy

What's up Craigster?

How'd it go?

8] The meeting was

QWERTYUIOP

ASDFGHUJKL

ZXCVBNM

return
123 Q space

.=

Language Models are Everywhere

= =1 =mall CFERL & E;ﬂ_
b Comgoe c A - | m
: Primary 2% Socin ‘ I_Ir.:_“:ra'!_'-:ﬁ m “ iipaates

o [)
W Slamed Sallt Kulla Trip io Cairngorms Matlonal Park - Flanning fer & wip in July. Are you imterested i 1005 AR ﬂ'
ﬁ Snoozed Brianna, Jobs Surf Sunday?- Gre e el al Jacks &1 Bam, thes? 000 &k
» miparian
- - Luiks, e, Anastasia Basl Japan
= Wk Dandel Wickery Bool Chuby - Jecmueline Brozek o
- (X Hick Kortendick Woke Pres Tacn Tuestday

Tim Graer Wk Bus

Karem, Mamadith, James - Hiking this 3

Apissa, Meradih, Jaimes Mike's surpe

Song Chi Cooking cla

Carneran, Tyler, Dyles Fictures fro

B raG
Mizra Sain My roadinip
e o0 D46 A

-

Language Modeling

* Goal: compute the probability of a sequence of words:
P(x1.,) = P(x1, 22, ..., Tp)
* Related task: probability of next word:
P(xy | 21,22, x3)
* A model that computes either of these:

P(x1.,) or P(zg|z1,29,....,28_1)

is called a language model (LM)

[SLP3: Chapter 3]

Language Modeling

* Building language models
* Generating from a language model
* Evaluating a language model

* Count-based language models * Neural language models
* MLE estimation * Feed-forward models
* Smoothing * RNN models

e Attention models

Language Modeling

How do we model?

P(ZEl;n)

Chain Rule

* Chain rule of probability

P(A, B)

P(BIA) = “pra

P(A, B) = P(A)P(B | A)

* In general to a sequence

P(x1, X2, %3, ..., xn) = P(x1)P(x2 | x1)P(x3 | x1, %x2)...P(xn | X1, ..., Xn—1)

Chain Rule

 Factor joint probability into product of conditional probabilities:

P(x1.,) = P(x1,22,...,2,) = HP(% 1, T2, ..., Ti_1)
i=1

* We have not yet made any independence assumptions

[SLP3: Chapter 3]

Chain Rule

 Factor joint probability into product of conditional probabilities:

P(x1.,) = P(x1,22,...,2,) = HP(% 1, T2, ..., Ti_1)
i=1

* For example, “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) x P(sat|the cat)
x P(on|the cat sat) * P(the|the cat sat on)

+P(mat|the cat sat on the)

[SLP3: Chapter 3]

Important Detail: Modeling Length

* a language model assigns probabilities to token sequences @

e T can be any length, so the probabilities should sum to 1 across all possible
sequences of all possible lengths

e usually length is modeled by including a “stop symbol”</s> at the
end of the sequence and using “stopping probabilities”

* a “start symbol”<s>is also assumed to be at the beginning
* our language model with start/stop symbols:

n
P((El;n) = P(</S> ‘ <s8>,x1,Z9,... ,ZCn) HP(ZEZ ‘ <s>,x1,T9, ... ,xi_l)
1=1

Why Stopping Probabilities?

e our language model:
mn

P(wlzn) — P(</S> ‘ <8>,%1,%2,... 7$n) HP(QZL ‘ <8>,T1,%2,... 7372'—1)
1=1

3% Plan) —1

n=— 1:131n

e consider removing stopping probabilities:

 we need to ensure:

P(.’,Bl;n) — HP([IZ‘Z ‘ <s8>,X1,T9,... ,CCZ'_l)
1=1

Without Stopping Probabilities

e without stopping probabilities, sums of probabilities for all possible
length-1 and length-2 sequences:

1
length = 1: >: >: P(xi.,) = Z Pz |<s>) =1

n=1x1., eV
2
ength=2: Y Y P(xin)= Y » Plx|<s>a)P('|<s>) =1
n=2=x1:n T/ €V xEV
* uh oh... 2

n=1 L1:n

With Stopping Probabilities

* With the stop symbol

inf

Z Z P(.’Bl;n,< /S >)

n=1 ml:n,</s>

* Signal to stop during generation
* E.g. machine translation, automatic summarization

Other Ways of Modeling Length

e alternatively, we can model the length n explicitly (e.g., using a zero-
truncated Poisson distribution):

P(z1y) = P(n) [[P(w: | <s> a1, ..., 25-1)
1=1

Estimating Language Model Probabilities

<s>/ do not like green eggs and ham </s>

P(ham | <s>I do not like green eggs and)

* let’s use maximum likelihood estimation (MLE):

count(<s>I do not like green eggs and ham)

P(ham | <s>I do not like green eggs and) = count(<s>I do not like green eggs and)

* problem: we’ll never have enough data!

Estimating Language Model Probabilities

* Suppose we have a vocabulary of size V, how many sequences of
length n do we have?

An*V

B) n'

C) V" Typical English vocabulary ~ 40k words
D) V/n

Even sentences of length <= 11 results in more than 4 * 10750 sequences.
Too many to count! (# of atoms in the earth ~ 10750)

Markov Assumption

* Independence assumption: the next word only
depends on the most recent past

* Reduces the number of £stimated parameters in
exchange for modeling capacity

Most recent k words‘

Andrey Markov

Markov Assumption

* Independence assumption: the next word only
depends on the most recent past

1

| Most recent k words |

P(z; | <s> x1,...,2i—2,%i—1) = P(x; | Ti—p,. .., Ti—2, Ti—1)

st -k =
15t order Markov: k=1 P(mat|the cat sat on the) ~ P(mat|the)

nd K=
2" order Markov: k = 2 P(mat|the cat sat on the) ~ P(mat|on the)

P(ham | <s>I do not like green eggs and) ~ P(ham | eggs and)

n-gram Language Models

* n =1 :unigram language model
P(I)P(do) P(not)P(like) P(green) P(eggs) - - -

 n = 2 : bigram language model

P(1|<s>)P(do | I)P(not | do)P(like | not) - - - P(ham | and) P(</s> | ham)

e n = 3 : trigram language model
P(I|<s><s>)P(do | <s>I)P(not |1 do)--- P(ham | eggs and)P(</s> | and ham)

n-gram Language Models

* unigram language model

* Example sentences generated by a unigram model trained on
financial news:

fifth an of futures the an incorporated a a the inflation most dollars quarterinis
mass

thrift did eighty said hard ‘m july bullish
that or limited the

n-gram Language Models

* bigram language model

* Example sentences generated by a bigram model trained on financial
news:

texaco rose one in this issue is pursuing growth in a boiler house said mr. gurria

mexico ’s motion control proposal without permission from five hundred fifty five
yen

outside new car parking lot of the agreement reached
this would be a record november

n-gram Language Models

—~To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

~Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live

2 king. Follow.
gram —What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 "t1s done.

gram —This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;
gram It cannot be but so.
Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All

characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

[SLP3: Chapter 3]

Estimating Bigram Probabilities

* maximum likelihood estimate (IMLE)

count(z’, x)

Pl|a) = count(z’)

[SLP3: Chapter 3]

An Example

training data: MLE estimator:

<s>/am Sam </s> count(x’, x)

Pz |2') =
<s>Samlam</s>

<s> I do not like green eggs and ham </s>

count(x’)

a few estimated bigram probabilities:
P(I]|<s>) = P(am | I) = P(Sam | am) =
P(Sam | <s>) = P(do |I) = P(</s> | am) =

[SLP3: Chapter 3]

Generating from a Language Model

Generating from a Language Model

* Bigram model

* Generate the first word w; ~ P(z1]| <s >)

e Generate the second word w2 ~ P(z2|z1) Sampling
* Generate the third word w3 ~ P(z3|z2) Solyphonic
o however P~0000018
the of a to in (p=.0003) __ _
0.06 0.03 |0.02 [0.02]0.02 cor H Al
: | I | | I see | (T2 l %
.06 .09 .11 .13 .15 .66 .99
0 1

[SLP3: Chapter 3]

Generating from a Language Model

* Trigram model

* Generate the first word w1 ~ P(z1]| <s>)
* Generate the second word ws ~ P(x3]| <s>,x1)

* Generate the third word w3 ~ P(x3|z1, x2)

Generating from a Language Model

release millions See ABC accurate President of Donald Will

Unigram cheat them a CNN megynkelly experience @ these word
out- the
Bigram Thank you believe that @ ABC news, Mississippi tonight

and the false editorial | think the great people Bill Clinton

Trigram We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV
* Typical LMs are not sufficient to handle long-range dependencies

“The computer(s) that | just put into the machine
room on the fifth flooris (are) crashing.”

Generating from a Language Model

* GPT-4 generations Prefix / Prompt

An experimental demonstration of the extent to which English is predictable can be given as
follows: Select a short passage unfamiliar to the person who is to do the predicting. He is
then asked to guess the first letter in the passage. If the guess is correct he is so informed,
and proceeds to guess the second letter. If not, he is told the

correct letter and proceeds to guess the next one, and so on. After the passage is

completed, the proportion of correct guesses is noted.

Modern language models can take much longer context!

Generating from a Language Model (more)

* Greedy search: choose the most likely word at every step
To predict the next word given the previous two words W1, W2 :

wy = arg max P(w | wy, wy)
weV

P {(“park”, “today™ | 5)=0.12

The boy went to the __

/
V\
/

[src: https://blog.aIIena|.org/a-gu|de-to-Ianguage-model-sampling-in-allennlp-3b1239274bc3]

P (“procery”, “store” | 8) = 0,135

Generating from a Language Model (more)

* Top-k vs. top-p sampling

. S = The boy went to the ___ . S = The boy went to the
0.8- 0.8 -
_ - _ p=0.75
@0.6 k = 4 Uﬁo.e
= =
e 0.4- *o04-

- Il - Il--_——
0.0 - --_—_ 0.0 -

park store grocery beach restaurant ... park store grocery beach restaurant ...
Next token [W] Next token [W]

Top-k sampling Top-p sampling

[src: https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3]

Evaluating Language Models

Evaluating Language Models

Extrinsic (task-based) evaluation

e use language model in a system for some task, see if performance
Improves

* downsides:
 can be time-consuming depending on task/system

* changing the language model might require changing how it’s used in the
system in order to improve performance

{ December 13, 2018
ﬁ Ankur Gandhe
Alowa Alexa research Alexa science

Evaluating Language Models

Intrinsic evaluation
e compute probability of held-out data
e standard metric: perplexity

* downside:
* may not correlate with system performance on downstream tasks

Probability of Held-out Data

 probability of held-out sentences:

H P(xz)

* let’s work with log-probabilities:

log; Hp(w(i)) = Z log, P(w(i))

 divide by number of words M (including stop symbols) in held-out

sentences: 1 .
V7 Z log, P(w(z))

Probability = Perplexity

* average token log-probability of held-out data:

1 .
0= i Z log, P(x'V)
* perplexity: '
ppl _ 2 Cross entropy

* the lower the perplexity, the better the model

Perplexity (PPL)

* Measure how well a language model (LM) predicts the true data

Perplexity = P(wq,wa, ..., wn)_lm]

e What is the intuition behind it?

Perplexity as Branching Factor

* given a vocabulary)/, consider this bigram language model:

1
Yu,v, P(u | v) = v N =[Vu{<s>}

 perplexity of any sequence under this model?

1
¢ = i log, P(x1, %2, ...,Tp—1,</8>)

1 Mo
=~ el y

1 1\ M 1
:Mlogz N = log, N

ppl=2"*f =N

Perplexity Example

* train: 38 million tokens (Wall Street Journal text)
* test: 1.5 million tokens
e vocabulary size: 19,979

m

perplexity:

* though vocabulary size is ~20K, trigram model is (roughly) considering
109 choices per position on average

[SLP3: Chapter 3]

TEST PERPLEXITY

75

50

25

N-gram
Order

Perplexity Example

Unigram Bigram Trigram

Perplexity

(test)

Zaremba et al. (2014) - LSTM (large)

962 170 109

Recurrént-highway networks

Jan'15% Jul "15 Jan '16

AWD-LS Tﬁ"-i—"-mn_rmuaus cache pointer
AWD-LSTM=Ma5 + dynamic eval

LPT-2
-‘F_‘——-EER_T_'\EﬂrH"-'“ CAS

GPFT=3.{Zero-Shot)
-

T~ GPT-3 175B:
Jul "16 Jan'17 Jul"17 Jan"18 Jul'l8 Jan 19 Jul "19 Jan ‘20 Jul "20 Jan"21 ppl —_— 20_5

Other models - Models with lowest Test perplexity

[Src: https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word]

training data:

<s>lam Sam </s>
<s>Samlam</s>
<s>/ do not like green eggs and ham </s>

test data:

<s> | like green eggs and ham </s>

problem: P(like | I) =0

probability of test sequence is 0, so log-probability is —oo,
so perplexity is oo

Smoothing

Smoothing

* instead of MLE, which leads to zeros, use a different estimation
method that leads to “smoother” distributions (fewer zeros)

Smoothing

* instead of MLE, which leads to zeros, use a different estimation
method that leads to “smoother” distributions (fewer zeros)

Psmooth (5[5 ’ I)

dM I
do I
was Il

like 1IN

Ny
green i

Smoothing

* Handle sparsity by making sure all probabilities are non-zero in our
model

* Additive: Add a small amount to all probabilities
* Interpolation: Use a combination of different granularities of n-grams

* Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

“Add-1" estimation

* just add 1 to all counts!
* also called Laplace smoothing

* MLE estimate: count(z’. x
PMLE(QS ‘ ZIZ‘/) — (7)

count(x’)

e Add-1 estimate:
count(x’, x) 4+ 1
count(g;’) + ‘V 4— vocabulary size

e simple and avoids zeros, but doesn’t work as well as other methods

Praa—1(x | ") =

[SLP3: Chapter 3]

“Add-1" estimation

* (Berkeley restaurant corpus) Out of 9222 sentences
* Raw bigram counts

1 want | to eat chinese food | lunch spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

[SLP3: Chapter 3]

“Add-1" estimation

* (Berkeley restaurant corpus) Out of 9222 sentences
* Smoothed bigram counts

1 want | to eat chinese food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

[SLP3: Chapter 3]

“Add-1" estimation

* (Berkeley restaurant corpus) Out of 9222 sentences

* Smoothed bigram probabilities

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025 | 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026(0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 | 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039 | 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056 | 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

[SLP3: Chapter 3]

Backofft and Interpolation

use multiple n-gram sizes in the same language model

backoff:

e use trigram model if its probability is nonzero
e otherwise, use bigram model if its probability is nonzero
e otherwise, use unigram

interpolation:
* mixture of unigram, bigram, and trigram models

interpolation tends to work better

[SLP3: Chapter 3]

Linear Interpolation

 estimate unigram/bigram/trigram models using MLE, then combine
them:

Pine(x | 2, 2") = M Pyre(x) + Ao Pyre(z | ") + AsPyre(x | 2, 2")
N0V Y A=1

* lambdas can be estimated using development data Z

 they can also be a function of the context

Pii(x |2, 2") = (2, 2" Pyre(x) + Mo (2, 2" YPyre(x | ") + A3(2’, 2"\ Pyre(z | ', 2")

* intuitively, may want As3(z’, 2”) to be larger if count(z’, ") is large

Kneser-Ney Smoothing

* widely used and effective

* a few components:
e absolute discounting
* interpolation with continuation probabilities

* best variant seems to be “modified Kneser-Ney” -- see Chen and
Goodman (1998)

[SLP3: Chapter 3]

Absolute Discounting

Bigram countin Bigram count in
training set heldout set

0 0.0000270
I 0448

2 125

3 224

4 323

5 421

6 523

7 621

8 7.21

9 8.26

FTUICIRRY For all bigrams in 22 million words of AP newswire of count 0, 1, 2,....9, the
counts of these bigrams in a held-out corpus also of 22 million words.

observed bigrams have counts that are overestimated

unobserved bigrams have counts that are underestimated

Absolute Discounting

e subtract d from each numerator count

 use original counts for denominator
max (0, count(z’, x) — d)
> . count(z’,v)

* so there’s some “missing probability mass”

PAbsDisc(x ‘ 37/) — |)\(iE/)P(ZE)

* lambda function is defined to make things normalize correctly

[SLP3: Chapter 3]

Continuation Probabilities

V4

* “I can’t see without my reading
e suppose we are interpolating bigram and unigram distributions here
* “Kong” is more common than “glasses”

but “Kong” almost always follows “Hong”

“glasses” is more likely to follow a variety of previous words!

* unigram probability is most useful when we haven’t seen bigram

* instead of unigram P (), use P, i vation ()

/

How likely is x? How likely is x to appear as a novel
continuation?

Continuation Probabilities

* how likely is x to be a novel continuation?

P.ontinuation () o< [{z : count(z’, z) > 0}
N)

Y
number of word types that appeared before x

* normalize by total number of bigram types:

{2’ : count(a’,) > 0}
{{z’, x') : count(z’, z") > O}

Pcontinuation (.CE) —

Kneser-Ney Smoothing

* Interpolated Kneser-Ney:

max (0, count(x’, x) — d)
> . count(z’,v)

}%KN(17’1¥):: | A(Z/)}%onﬁnuaﬂon(JQ

 again, lambda function is defined to make things normalize correctly

* this is the bigram version; recursive versions exist for higher orders

[SLP3: Chapter 3]

Huge Web-scale n-grams

* Google n-gram release, August 2006

All Our N-gram are Belong to You

THURSDAY, AUGUST 03, 2006
FPosted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects, such as statistical
machine translation, speech recognition, spelling correction, entity detection, information extraction, and others. While
such models have usually been estimated from training corpora containing at most a few billion words, we have been

decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are
publishing the counts for all 1,176,470,663 five-word seguences that appear at least 40 times. There are 13,588,391
unigue words, after discarding words that appear less than 200 times.

https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html

Huge Web-scale n-grams

* Google n-gram release, August 2006

All Our N-gram are Belong to You

The following is an example of the 4-gram data in this corpus:
THURSDAY, AUGUST 03, 2004

FPosted by Alex Franz and Thorsten Brants, Google Machine Translation Team
serve as the lncoming 92
decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of ru Serve as the incubator 99
serve as the lndependent 794

publishing the counts for all 1,176,470,663 five-word seguences that appear at least 40 times. There .

serve as the index 223

unique words, after discarding words that appear less than 200 times. o
serve as the indication 72

File sizes: approx. 24 GB compressed (gzip'ed) text files serve as the indicator 120

serve as the indicators 45

serve as the i1ndispensable 111

Number of tokens: 1,824,988,267,229 cerve as the indispensible 40
Number of sentences: 95,119,665,584 serve as the individual 234
Number of unigrams: 13,588,391 serve as the industrial 52
Number of bigrams: 314,843,401 serve as the industry 607
Number of trigrams: 977,069,902 serve as the info 42

Number of fourgrams: 1,313,818,354

Number of fivegrams: 1,176,470, 663 https://blog.research.google/2006/08/all-our-n-gram-are-belong-to-you.html

Huge Web-scale n-grams

* How to deal with, e.g., Google N-gram corpus

* Pruning
* Only store N-grams with count > threshold.
* Remove singletons of higher-order n-grams
* Entropy-based pruning

* Efficiency
* Efficient data structures like tries
* Bloom filters: approximate language models

» Store words as indexes, not strings
* Use Huffman coding to fit large numbers of words into two bytes

* Quantize probabilities (4-8 bits instead of 8-byte float)

Smoothing for Web-scale Models
* “Stupid backoff” (Brants et al., 2007):

(PMLE(CE 2’ 2" if count(a’, 2", x) > 0

Sz |z, 2" =«
(]) (0.45(z | ") otherwise

Closed Vocabulary

* smoothing avoids zeros for unknown n-
grams (n > 1), not unknown words!

* if there are unknown words in the test
data, smoothing does not help

* probability of test data is still zero

* we must know the full vocabulary
ahead of time (for both training and
held-out datal)

Open Vocabulary

create an unknown word symbol
II<UNK>H

at training time:
— replace some rare words with <UNK>

— then estimate probabilities as though
<UNK> is a normal word

at test time:
— replace unknown words with <UNK>

 when comparing open-vocabulary language models, make sure the
vocabularies match!

e world’s best language model (every word is <UNK>):

P(<UNK> | <s>) =1
P(<UNK> | <UNK>) = 0.97
P(</s> | <UNK>) = 0.03

Language Modeling Toolkits

 SRILM
http://www.speech.sri.com/projects/srilm/

* KenLM
https://kheafield.com/code/kenim/

Next Token Prediction Solves Al?

« Next Token Prediction SOLVES Al Says OpenAl Founder P

[]
Next Token Prediction SOLVES Al Says OpenAl Founder YouTube (4

@ YouTube - Dwarkesh Patel - Mar 29, 2023

Q Dwarkedh PatDMh Patel
® € Lunar Society

nextitoken well

https://www.youtube.com/watch?v=MJUGTWb8xRo

Language Modeling

* Building language models
* Generating from a language model
* Evaluating a language model

* Count-based language models * Neural language models
* MLE estimation * Feed-forward models
* Smoothing * RNN models

e Attention models

Summary

* language modeling:
* compute probabilities of token sequences
* length of sequence must be modeled probabilistically (usually with a stop

symbol at the end)
* typically, use chain rule to factor joint into product of conditionals, one for each

token in order from left to right:
n

P(wl;n) = P(</S> ‘ <s>,T1,x2,... ,mn) HP(CEZ ’ <s>,T1,x2,... ,CCi_l)
1=1

Summary

* n-gram language models:

* let each conditional probability depend on only the most recent n-1 tokens, e.g.,

trigram:

P(ham | <s>I do not like green eggs and) ~ P(ham | eggs and)

e we can use maximum likelihood estimation to estimate n-gram
probabilities from data, e.g., for a bigram model:

count(x’, x)

Pl|e) = count(zx’)

Summary

 evaluation of language models
e extrinsic: use model in a system for a downstream task
* intrinsic: compute probability of held-out data (standard metric: perplexity)

* perplexity:
e compute ¢ = average log-probability of held-out tokens, perplexity is 2—¢
* lower perplexity = better language model
* can be interpreted as effective number of choices per position on average

Summary

Smoothing

* add-1 estimation: add 1 (or some small number) to all counts, then normalize

* backoff: if high order n-gram has been seen, use its probability, otherwise “back
off” to lower order n-grams

* interpolation: weighted mixture of n-gram models of various sizes:
Pipi(z | 2", 2") = M Pure(z) + AoPure(z | 27) + AsPure(z | 2/, ")

* weights can depend on context

Summary

Smoothing

absolute discounting:
* observed n-grams have counts that are overestimated
e unobserved n-grams have counts that are underestimated
* subtract a constant from counts, normalize using interpolation with a lower order n-
gram model

continuation probabilities:
* captures how likely it is for a word to form a novel continuation of the preceding words
* likely more helpful than simple unigram probabilities when interpolating with a bigram model

Kneser-Ney smoothing:
* combines absolute discounting and continuation probabilities via interpolation

stupid backoff:

* simple, scales well to very large corpora

Summary

* closed vs. open vocabulary language modeling
 when comparing language models, be mindful of vocabularies!

	TTIC 31190: Natural Language Processing
	Announcements
	Recap
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Language Modeling
	Language Modeling
	Language Modeling
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88

