TTIC 31190: Natural Language Processing

Lecture 8: Sequence Labeling

Fall 2023



Announcement

* Message from our grader Kangrui:

* It’s preferable to use Jupyter notebooks for assignments and submit the
exported .pdf report

* It’s fine to note your late-day usage in your report

* Freda will be out of town tomorrow
* Joe’s office hours: Tue 1:30-2:30 pm TTIC 4% floor open space (unchanged)
* Freda’s office hours this week: Thu 1:30-2:30 pm TTIC 4" floor open space



Recap: Transformers

 |dea: every token attends every other token in a sequence, and
transform (noncontextualized) word token embeddings into

contextualized word embeddings
E = (emb(wy), ..., emb(wy)) € RI1*¥

K=W,E W, cR2Xq K ¢ RExF
Q=W,E W, cR"?*% Q¢cR>*F
V=W,E W, cRBXh ycREBxk

. K'
E = Vsoftmax ( Q) c Rdsxk
Vv do




Contextualized Word Embeddings

 Each word has a fixed-dimensional vector
* The vector has information about other words in the sentence

E = (emb(w:), ..., emb(wy)) € R¥1**
K=W,E W, cR#*4 K ¢ R¥xF
Q=W,E W, ecR?*" QeR®*"
V=W,E W, cRbXh ycRBxk

. K'
E = Vsoftmax ( Q> c Rd3xk
Vv da




Recap: POS Tagging with Contextualized Word Embeddings

* Break down the problem to k independent classification problems.
(k: number of words in the sentence)

* Classify contextualized word embeddings with an NN (e.g., an MLP)

POS(w;) = arg max score(h;, y; w

R

contextualized word  POS tag
embedding of w;



This Lecture

 Hidden Markov Models

* Formulation and properties
* Learning: estimate the parameters
* Inference: finding the highest-scoring sequence of hidden variable values

 Conditional Random Fields



Sequence Labeling as Structured Prediction

Inference: solve arg max Modeling: define score function}

POS(x; w) = arg max score(X, y; W)

Y
[Learning: choose parameter

» Unlike classification, inference is no longer trivial (|Y|* possibilities!)

* Y: a sequence of POS tags



Sequence Labeling as Structured Prediction

Modeling: define score function }

POS(x; w) = arg max score(X, y; W)
Y




Hidden Markov Models

e Used in (conventional) NLP, speech processing, computational
biology, and many other areas

e Good starting point for learning graphical models

* TTIC 31180: Probabilistic Graphical Models is offered in Spring 2024



Recap: Independence

 Two random variables X and Y are independent if
P(X=x2,Y=9y =P X=x)PY =v)

for all values x and y

e We writethisas X 1Y



Recap: Conditional Independence

* Two random variables X and Y are conditionally independent given a
third variable Z if

PX=x,Y=y|Z=2)=PX=zx|Z=2)PY =y |Z=2)

for all values x,y and z
* We writethisas X L Y | Z

* Example: Height and vocabulary are independent conditioned on age.



Recap: Conditional Independence

* Two random variables X and Y are conditionally independent given a
third variable Z if

P X=x,Y=y|Z=2)=PX=x|Z=2)PY =y | Z=2)
for all values x,y and z
P(z,y,z) = P(z)P(z,y | 2)
= P(2)P(x | z)P(y | 2)

N

should be P(y | x,z) w/o
conditional independence




Markov Chain

* Stochastic model: a sequence of possible events

* Probability of each event depends only on the state
attained in the previous event

P(Xt | X17X27°'°7Xt—1) — P(Xt ‘ Xt—l)
Xt 1 Xt—27 s 7X1 ‘ Xt—l

Andrey Markov

* Example: board games played with dice
e At each move, a player rolls the dice and move their piece some steps forward
* X; = position of the piece after t rolls



Markov Assumption

Plw | wi, ..., we—q) = Pwy | we—1)
P(table | a cat is sitting on the) = P(table | the)
This is obviously imperfect: we should consider longer dependencies
But we can model sentence probability with fewer parameters

k
P(wy,...,wx) = Plwi) | [ Plwe | w, ... wi—1)

t=2

k
= P(w1) | [ P(ws | wi—1)

t=2



Hidden Markov Models

* Modeling joint probability of the observable sequence X4, ..., X and
hidden variables Y3, ..., Y3, with the following assumptions

XtJ—Xlw"aXt—laYlw")l/;f—l ’1/1*,
}/%J—Xlw"aXt—laYlw")l/;f—Z ’ }/t—l

* An instantiation of Bayesian network: graphical model representing
conditional dependency with a directed acyclic graph (DAG)



Bayesian Networks

* Distances are not meaningful

« A1l B|(C < AandB are disconnected after removing nodes
corresponding to variables in C and all connected edges



Bayesian Networks

* Distances are not meaningful

« A1l B|(C < AandB are disconnected after removing nodes
corresponding to variables in C and all connected edges




Hidden Markov Models

22
—P(Y1)P(X1 | 1) | [ P(Ve | Yio1) P(X, | V2)



Hidden Markov Models for POS Tagging

* Y;: part-of-speech tags, X;: words

k
P(Xh s 7X/€7Y17 R 7YI€)ZP(Y1)P(X1 ‘ Yl) HP(}Q ’ l/;5—1)P(->(t ’ 1/;5)
t:2/ f
transition emission
@ e e @ probability probability

e @ e @ The transition and emission

probabilities can be estimated
by counting.




This Lecture

 Hidden Markov Models

* Formulation and properties
* Learning: estimate the parameters
* Inference: finding the highest-scoring sequence of hidden variable values

 Conditional Random Fields



Sequence Labeling as Structured Prediction

POS(x; w) = arg max score(X, y; W)

Y
[Learning: choose parameter




Hidden Markov Models: Parameter Estimation

* We will denote the transition probability by P and emission
probability by Pg

count(y’, y) count(x, y)

Pp(r|y) =

Pr(yly') =

count(y’) count(y)

count(noun, verb)

Pr(verb | noun) = count (noun)

count(cat, noun)

Pp(cat | noun) = count(noun)



Stopping Probability

* Y;: part-of-speech tags, X;: words
Let Pr( Yy | Yo ) = P(Y;)

k
p(@.y) =[] Prye | ver)Po(a: | )

t=1

A |

p(x,y) = | [ Pry: [ yi—1)Pe(x: | yi) Pr

t=1

(e0s)

o\

| Yk)

End of sentence symbol

* Purpose: have all sentences’ probability sum up to

1.



Stopping Probability
D pry)=> > ﬁpﬂyt | ye—1)Pr (2t | ye)

T1:k Y1:k 1.k Y1:k t=1

Y YYPE (k| yr)Pr(yr | yr—1 HPT Y | ye—1)Pr(xe | Yt)

L1:k—1 Y1:k Tk




Stopping Probability
> plxy) = ZZﬁPT(yt | ye—1)Pr (2t | ye)

T1:k Y1:k T1.k Y1:k t=1
k—1
- S: SIS:PE(Q%  Ue)Pr(yk | yr-1) H Pr(ye | yi—1)Pe(z: | yt)
T1:k—1 Y1:k| Tk t=1

Apply distributivity of
multiplication over addition



Stopping Probability
> D plw,y) = ZZﬁPT(yt | ye—1)Pe (2t | ye)

1.k Y1:k 1.k Y1:k t=1

= > > Pu(wr | ye)Pr(ye | ye—1 HPT Y | yi—1)Pe(xs | Yt)

L1:k—1 Y1:k Tk

k—1

= S: S:PT(yk | Yk—1) H Pr(y: | yt—1)Pe(t | yt)

T1:k—1 Y1:k t=1




Stopping Probability
Y Y ey =) > ﬁ Pr(y: | y1—1)Pu(ze | yi)

1.k Y1:k 1.k Y1:k t=1

S‘ S‘S‘PE (@ | yr)Pr(yr | Yr—1) HPT (v | ye—1)Pe(2t | ye)

L1:k—1 Y1:k Tk

k—1
= > > Prlyklye—1) || Pr(we | ye—1)Pe(ze | ve)
L1:k—1 Y1:k t=1

= > > Prly | yr-1) HPT v | ye—1)Pe(zs | y2)

L1:k—1 Y1:k—1 Yk

=...=1




Stopping Probability
> ) p(xy) =1

L1:k Y1:k

* This means sequences with any fixed length k have a total probability
to 1.

k
p(@,y) = | | Pr(ye | ye-1)Pa(z: | ye)Pr({cos) | yx)

t=1

Pr((eos) | y) = count(y, (eos))

count(y)



This Lecture

 Hidden Markov Models

* Formulation and properties
* Learning: estimate the parameters
* Inference: finding the highest-scoring sequence of hidden variable values

 Conditional Random Fields



Sequence Labeling as Structured Prediction

Inference: solve arg max
POS(x; w) = arg max score(X, y; W)
Yy

* Given a sentence, what is the highest-scoring POS tag sequence?

e Y: a sequence of POS tags
» Unlike classification, inference is no longer trivial (|Y|* possibilities!)



Hidden Markov Model: Inference

* Find the highest-scoring y

Score(m y; W)« joint probability

H (Pr(ye | ye—1)Pr (2 | y¢)) Pr({eos) | yx)

=log Pr({eos) | yx) + ZlOg Pr(ys | yi—1) + log Pe(x: | yt)
t=1

Computation difficulty comes
from this part



Hidden Markov Model: Inference

* Dynamic programming: recursively break down the problem into
subproblems with the same formulation
k

arg max log Pr({eos) | yx) + Zlog Pr(y: | yi—1) +log Pe(x: | y:)
Yi,---,Yk t—=1

Can be done by Part to be broken down
enumerating values of Y,



Hidden Markov Model: Inference

* Dynamic programming: recursively break down the problem into
subproblems with the same formulation

k
> og Pr(y: | yi—1) +log Pr(z | y)
t=1

k—1
+H> log Pr(y: | ye—1) + log P (¢ | y:)

t=1




Hidden Markov Model: Inference

* Dynamic programming: recursively break down the problem into
subproblems with the same formulation

k
rgax Zlog Pr(y: | yi—1) + log P (x: | y¢)
bR

— max (PT(yk | yx—1) +log Pe(xy | yi)
k

Y1:k—1

k—1 ‘
+max > "log Pr(y; | yi—1) + log Pg(w; | yt))
t=1




Hidden Markov Model: Inference

* Dynamic programming: recursively break down the problem into
subproblems with the same formulation

k
max Zlog Pr(y: | ye—1) + log Pr(x: | y¢)

!
%%%X (PT(yk | yi.—1) +log Pe(xk | yi) Not a well-formed equation
k—1 :
+£}?§1;10g Pr(y: | y¢—1) +log Pe(x: | yt))




Hidden Markov Model: Inference

* Dynamic programming: define state of subproblem
k

Jk.y : maximum value of Zlog Pr(y: | y¢—1) + log Pr(x: | yt)
with Yk =y =1

k

max log Pr({eos) | ¥i) + Zlog Pr(y: | yi—1) +1og Pe(x: | yt)
Y1:k t=1

— myax log Pr((eos) | Y =y) + fr.y



Hidden Markov Model: Inference

* Dynamic programming: define state of subproblem
k

Jk.y : maximum value of Zlog Pr(y: | y¢—1) + log Pr(x: | yt)
with Yk =y =1

frly|= maxlog Pr(y | y') + log Pr(Xk | y) + fr—1,

/X

Yy Yi—1




Hidden Markov Model: Inference

* Recall that our goal is to predict the highest scoring y
k

fx.y : maximum value of Zlog Pr(y: | y¢—1) + log Pr(x: | yt)
with Y, =y t=1

fie.y = maxlog Pr(y | y') +log Pp(zk | y) + fr—1,y

Gr,y = argmaxlog Pr(y | y') +log Pp(xk | y) + fr-1y

~—

Which y’ gives the optimal f} ,,



Viterbi Algorithm

* Input: observation (sequence of words) € = x1, ..., Tk

* Output: the highest—sc}:{oring POS tagsarg max P(y | x)
Y

Tl {P%Zl@gpir’ Yt | Yi—1) +1og Pe(z: | yt)
k

fty ¢ —oforally
fortin [1..k]:
foryinY:
fory’inY:

fry = maX(ft,y: log Pr(y | y') +logPg(X; | y) +ft—1:y')
if ft,y is updated in the above line: g; ,, = y'

Time complexity: O(k|Y|%)
Memory complexity: O(k|Y|)



Viterbi Algorithm: Example

Py 1 yo)

start

0

1

0.5

0.5

Emission Transition
probability probability
y\X a b Ve—1\Vt 0 1
0 0.6 0.4 0 0.9 0.1
1 0.2 0.8 1 0.1 0.9

P({eos) | y)

 Observationx =a, b

(eos)

0

1

0.5

0.5

* What is the most probable sequence of hidden variables y?




Viterbi Algorithm: Example

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 0.5
1 0.2 0.8 1 0.1 0.9 (eos) | 0 1

0.5 | 05

k
Jry {/ﬂa};ZbgPT(yt | yt—1) +log Pg (¢ | yt)
Y =1




Viterbi Algorithm: Example

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 05 | 05
1 0.2 0.8 1 0.1 0.9 (eos) | 0 1

0.5 | 05

k
Jry glaEZIOgPT(yt | yt—1) + log Pg(x+ | yt)
=

t=1

f1,0 =1og P(Y1 =0) +log Pr(X1 = a| Y1 = 0)
= —1.204



Viterbi Algorithm: Example

k
Jry {/nau;z:logPT(yt | yt—1) + log Pg(x+ | yt)
Y =1

—1.204

B

= —2.303

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 05
1 0.2 0.8 1 0.1 0.9 (eos) 0 1

0.5 | 0.5

fio=logP(Y1 =1)+log Pp(X; =a| Y, =1)




Viterbi Algorithm: Example

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 05
1 0.2 0.8 1 0.1 0.9 (eos) | 0 1

0.5 | 05

k
Jry ¥1a§210gPT(yt | yt—1) + log Pg(x+ | yt)
g

t=1
fo—
—1.204

f2,0 — max(—oo,logPT(O ‘ O) T 1OgPE(b ‘ O) T fl,O)
— —2.226

—2.303



Viterbi Algorithm: Example

k
Jry ¥1a§210gPT(yt | yt—1) + log Pg(x+ | yt)
Y =1

—1.204

—2.303

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 05
1 0.2 0.8 1 0.1 0.9 (eos) 0 1

0.5 | 0.5

f2.0 = max (—oo,log Pr(0 | 0) +log Pg(b| 0) + f1.0)

—2.226
max ( f2,0,log Pr(0 | 1) +1log Pg(b|0) + fi1,1)
— max (—5.522, —2.226) — —2.226

J2.0



Viterbi Algorithm: Example

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 05
1 0. 2 0.8 1 0.1 0.9 (eos) | 0 1

0.5 | 05

Jhy maleogPT Yt | yi—1) + log Pr(w; ‘ Ut )

—1. 2()4 /

f2.0 = max (—oo,log Pr(0 | 0) +log Pg(b| 0) + f1.0)

—2.226
max ( f2,0,log Pr(0 | 1) +1log Pg(b|0) + fi1,1)
— max (—5.522, —2.226) — —2.226

J2.0

—2.303



Viterbi Algorithm: Example

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 0.5
1 0.2 0.8 1 0.1 0.9 (eos) 0 1

0.5 | 0.5

k
Jry ¥1a§210gPT(yt | yt—1) + log Pg(x+ | yt)
Y =1

f2,1 = max (—o0,log Pr(1 | 0) +1log Pg(b| 1) + f1,0)

—3.730




Viterbi Algorithm: Example

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 0.5
1 0.2 0.8 1 0.1 0.9 (eos) 0 1

0.5 | 0.5

k
Jry {/ﬂaﬁzlogPT(yt | yt—1) +log Pg (¢ | yt)
Y =1

fo1 = max (—oo,log Pr(1|0)+log Pr(b| 1)+ fi0)

—3.730
max (fg’l,log PT(l ‘ 1) + 1OgPE(b ‘ 1> + fl,l)

= max (—3.730, —2.631) = —2.631

J2.1




Viterbi Algorithm: Example

Jhy maleogPT Yt | yi—1) +log Pp(xy | y¢)

—1. 2()

e 5996

oy

—2.303

y\x a b Vi—1\V¢ 0 1 start | O 1
0 0.6 0.4 0 0.9 0.1 0.5 | 0.5
1 0. 2 0.8 1 0.1 0.9 (eos) 0 1

0.5 | 0.5

fo1 = max (—oo,log Pr(1|0)+log Pr(b| 1)+ fi0)

—3.730
max (fg’l,log PT(l ‘ 1) + 1OgPE(b ‘ 1> + fl,l)

= max (—3.730, —2.631) = —2.631

J2.1



Viterbi Algorithm: Example

a b Vi—1\V¢ 0 1 start | O
0.6 0.4 0 0.9 0.1 0.5
0.2 0.8 1 0.1 0.9 (eos) | 0

0.5

t=1

f2.0 -
fo.1

k
fhy - {/ﬂa};ZbgPT(yt | yt—1) +log Pg (¢ | yt)
k;: S

- log P({eos) | 0) = —2.919
- log P({eos) | 1) = —3.324




Viterbi Algorithm: Example

a b Vi—1\V¢ 0 1 start | O
0.6 0.4 0 0.9 0.1 0.5
0.2 0.8 1 0.1 0.9 (eos) | 0

0.5

t=1

f2.0 -
fo.1

k
fhy - {/ﬂaﬁzlogPT(yt | yt—1) +log Pg (¢ | yt)
k;: S

- log P({eos) | 0) = —2.919
- log P({eos) | 1) = —3.324




This Lecture

 Hidden Markov Models

* Formulation and properties
* Learning: estimate the parameters
* Inference: finding the highest-scoring sequence of hidden variable values

e Conditional Random Fields



Conditional Random Fields

Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data

John Lafferty’™
Andrew McCallum*'
Fernando Pereira**

*WhizBang! Labs—Research, 4616 Henry Street, Pittsburgh, PA 15213 USA
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA
!Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

LAFFERTY@CS.CMU.EDU
MCCALLUM@WHIZBANG.COM
FPEREIRA(@WHIZBANG.COM

Abstract

We present conditional random fields, a frame-
work for building probabilistic models to seg-
ment and label sequence data. Conditional ran-
dom fields offer several advantages over hid-
den Markov models and stochastic grammars
for such tasks, including the ability to relax
strong independence assumptions made in those
models. Conditional random fields also avoid
a fundamental limitation of maximum entropy
Markov models (MEMMSs) and other discrimi-

mize the joint likelihood of training examples. To define
a joint probability over observation and label sequences,
a generative model needs to enumerate all possible ob-
servation sequences, typically requiring a representation
in which observations are task-appropriate atomic entities,
such as words or nucleotides. In particular, it is not practi-
cal to represent multiple interacting features or long-range
dependencies of the observations, since the inference prob-
lem for such models is intractable.

This difficulty is one of the main motivations for looking at
conditional models as an alternative. A conditional model




Conditional Random Fields

* Model a probability distribution with an undirected graph

* Variables are partitioned to two groups X and Y

* Models P(Y | X)

* Markov property: a variable in Y only depends on its neighbors




(Linear) Conditional Random Fields

* Model a probability distribution with an undirected graph
score(x,y; w) =w ' f(x,y) szfz x,Yy)

escore(a:,y,w) score(x,y;w)

(&
P(y ’ CB?W) — Zy’ escore(x,y’;w) ~ Z(:L')

* The feature function is usually defined among x¢, V¢, V¢4



Conditional Random Fields: Learning

* (Stochastic) gradient descent

score(x,y;w) score(x,y;w)

& _ (&
Zy/ escore(w,y’;w) o Z(ZB)

Ply|z;w) =

L(w; {w“),y“)}) = —) log P(y" | 2" w)



Conditional Random Fields: Learning

* (Stochastic) gradient descent

score(x,y;w) score(x,y;w)

e &
Ply | z;w) = =
Wlww) = e~ Z()

L(w; {w“),y(“}) = —) log P(y") | 2; w)

* The gradient can be efficiently calculated with dynamic programming
(See Collins’ notes for details)



Conditional Random Fields: Inference

score(ax,y;w) score(x,y;w)

€ €

(y ’ L W) Z 6score(az y'iw) Z(iB)

score(x,y; W) = szfz xr,y) filx,y)=d(vs,ye-1,91)
* Given w, find argmax P(y | «)
Yy
@ @ @ @ * Equivalent to finding
ORNOBONCO ey
Yy

* Viterbi algorithm!



summary

* Hidden Markov Models
* Formulation and properties
* Learning: estimate the parameters
* Inference: finding the highest-scoring sequence of hidden variable values

* Conditional Random Fields
* Learning: gradient descent
* Inference: Viterbi algorithm
* Reading: Michael Collins’ notes on CRF
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