TTIC 31190: Natural Language Processing

Lecture 7: Neural Networks and Sequence Labeling

Fall 2023

Announcement

* Assighment 1 due Thursday 11:59pm
* Assignment 2 will be out soon

Announcement

* TA session: review + quick introduction and discussion on papers 8-11
* Houlsby et al. Parameter-Efficient Transfer Learning for NLP. ICML 2019
(Parameter-efficient transfer learning)

* Song et al. Score-Based Generative Modeling through Stochastic Differential
Equations. ICLR 2021

(Diffusion models and how they are used in NLP)

* Borgeaud et al. Improving Language Models by Retrieving from Trillions of
Tokens. ICML 2022
(Retrieval augmented language models)

 Meng et al. Locating and Editing Factual Associations in GPT. NeurlPS 2022
(Model analysis and knowledge representation)

Recap

* Neural networks: perceptrons and multi-layer perceptrons (MLP)

Weights

Constant

Weighted
Sum

perceptron(x) = step (w'x+b)

I\

activation affine inputs—
function transform

Step Function

N

Recap

e Convolutional neural networks (CNNs)
* Dot product between stretched kernel and word vectors
* Pooling: convert a kernel’s output to a scalar
* Parallelize multiple kernels’ output to get a fixed-dimensional representation

w1
w2

Recap

* Recurrent neural networks (RNNs)

= Wi(xs;hy1]+Db
W

ht—l—l Xey1; | + b

Recap

* RNN: absolute values can grow or vanish exponentially w.r.t.
sequence length

* LSTM and GRU: gate mechanisms to preserve a stable value range

Recap

e Recursive neural networks (RVNN): apply same transformation at each
node

This Lecture

 Neural networks
e Attention
 Transformers

* Sequence labeling
* Tasks and problem formulation
* Hidden Markov models (next lecture)
e Conditional random fields (next lecture)

Attention

e Can be thought of as weighted sum; each token receives a weight

* From (unweighted) bag of words to (weighted) bag of words
* Each word receives a fixed weight
* Normalize the weights with softmax

weight,,

L .
vy, = softmax;;_, (weight,,) = Zk weiaht
Wy

ir=1°¢

k
X = Z Qyy, - emb(w;)
i=1

Parameterized Attention

* Word tokens with the same word type should probably receive
different weights in different sentences

* Implement attention with an MLP (example below)
1
= Z

a(w; | X) = softmax’,_, (MLP([emb(w;); X])) € R

k

X = Zoz(wq; | X) - emb(w;)

1=1

Self-Attentive RNNs

* The last hidden state of RNN could be bad feature. Why?

* At time step t, what matters to h; is mostly x,» where t'is close to t
[Khandelwal et al., ACL 2018] (Lecture 06)

a; = softmax_, (MLP(h;)) € R

AN

X = Z aih; Trainable parameters,
= Jointly trained w/ RNN parameters

Attention: Summary

e Attention: weighted sum over features
* Weights can be the output of some MLP, normalized by softmax

a; = softmax,_, (MLP(h;)) € R

X = g o h;
i=1

e Caveat: attention weights over RNN hidden states could be bad
indicators on which token is more important

This Lecture

 Neural networks
* Attention
 Transformers

* Sequence labeling
* Tasks and problem formulation
* Hidden Markov models (next lecture)
e Conditional random fields (next lecture)

Transformers

Attention Is All You Need

Google Brain
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones™

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*

Google Brain Google Research Google Research

Aidan N. Gomez" Lukasz Kaiser”
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin®
illia.polosukhin@gmail.com

Transformer Encoder

* Transformer: attention-based sentence encoding,

Qutput

Probabilities
and optionally, decoding
* |dea: every token has attention to every other token S
(r—>| AddF&ll\cljorm |\ W
e For sentence with tokens (w1, ..., wg) ovas || Q555 | v
d k x| ~»(Add &Nom) Adr\j:;:; Zrm
E = (emb(w1),..., emb(wg)) € R~ e | e
_ do X dq —
K=W.E W; &R Trainable | zois O B
Q=W qE W q do X dJ parameters e e
I I
d3 X d 1 Pue (sh%ﬂgtiitghn

V=W,E W,

Transformer Encoder

E = (emb(w), ..., emb(wy)) € R¥*F
K=W,E W;,eR"*"" KeR"*""
Q=W,E W, eR"*" QeR"*"
V=W,E W, cRBXh y cRE*k

c Rngk‘

k X k matrix, softmax over the
first dimension

Transformer Encoder

. K'
E = Vsoftmax (Q)

Vda
QT VT
felele)
lelele)
lelele)

OO0 QO]

Transformer Encoder

. K'
E = Vsoftmax (Q)

Vda
QT VT
O0O0| —
fele)le) g @
lelele) °

OO0 QO]

Transformer Encoder

. K'
E = Vsoftmax (Q)

Vda
QT VT
feiele)
lelele)
lelele)

OO0 QO]

Transformer Encoder

. K'
E = Vsoftmax (Q)

Vda
QT VT
feiele)
felele)
lelele)

OO0 QO]

Transformer Encoder

. K'
E = Vsoftmax (Q)

Vda
QT VT
feiele) —
fe)eole) g_@
lelele) ®

OO0 QO]

Transformer Encoder

(

~

E = Vsoftmax

feiele)

lelele)

lelele)

OO0 QO]

KT
Vda

3

K'Q

(0000
elelele
0000

(0000,

Transformer Encoder

~

E

= Vsoftmax (

softmax <K

fe¥e

(000
elele

O
O
O
O

NG
O\
O
O
O

)

'Q

/)

Transformer Encoder

3 T
E = Vsoftmax (K Q)
Vv da

* What is 4/ d, for?

* Consider (a, b): if each entry in both vector is drawn from a
distribution with zero mean and unit variance, what would happen if
the dimensionality grows?

* The variance of dot product grows.
softmax([1, —1]) = [.8808, .1192]
softmax([10, —10]) = [1,2.0612 x 1077

Recap: Variance

and Covariance

For independent zero-mean, unit-variance random variables X and Y

VarlXY] = E[X?Y?] — E*[XY]

= (Cov[X?,Y?] + E[X?][Y?]) — (Cov[X,Y] + E[X]E[Y])?

= E[X?|E[Y?] — E*[X]|E?

Y

= Var|X|VarlY |+ Var[X]
=1

E2Y] + VarlY]|E*[X]

Recap: Variance and Covariance

For independent zero-mean, unit-variance random variables X and Y
Varl XY]| =1

If we have 2n independent zero-mean, unit variance variables
X17Y17X27Y27 R 7Xn7Yn

Var[zn: X, Y] = z”: Varl X;Y;] =n
i=1 i=1

S

X;Y; - X;Y; — 1
Var[z Jn | = z Var| Jn | = Z - Varl X;Y;] =1
=1 i=1 i=1

1

Transformer Encoder

n n

" XY X.Y; 1
Var| — | = Var|—] = — Varl X;Y;] =1

- T
E = Vsoftmax <K Q)
Vda

The application of \/d, is theoretically motivated.
See also Xavier initialization: initialize a dot product parameter vector

. 3 3
with values drawn from U (—\/g, \/g)

Positional Encoding

dy Xk
E= (emb(w1)7"‘7€mb(wk)) c R t f Add & Norm)
K=W,E W,c RdQXdl FoFr?A?;jrd
Q=W,E W, cR%*h —
7 7 Nx Add & Norm
V=W,E W,eR 3 X ai Multi-Head
Attention
- K' T 7
E = Vsoftmax (Q) >)
V d2 Positional A
This is just complicated bag of words... =ncoding ®_(?
~ Input
Columns of E for “a cat” Embedding

T

= permutation of columns of E for “cat a” Inputs

Positional Encoding

| p p
P 21 — S111 23 » P 21 = COS 24
P2 (100007) P2 (100007)

* The choice of n = 10,000 is somewhat arbitrary, but it’s overall
theoretically motivated: The positional add-6 relation can be
represented by a linear transformation.

Vo, AM;, s.t. Pp+s = Msp, (VD)

* Proof idea: use the addition theorems on trigonometric functions
sin(a + B) = sinacos 8 + cos asin

cos(a +) = cosa.cos B — sin asin 3

Positional Encoding

E = (emb(w1),..., emb(wy)) + P € R&*F Prrri)
K=W,E W,c RdQXdl FoFr?A?;jrd
Q=W,E W, cR%*h —
dexd N Add & Norm
V=W,E W,eR 3 X ai Multi-Head
Attention
- K' .
E = Vsoftmax (\/d_Q) . e)
2 Positional
e (O
* Limitation: only fixed number of positions available S
* Another option: learnable positional encoding]

Inputs

Multi-Head Attention

E = (emb(w), ..., emb(wy)) + P € RI*F
K=W.,E W, c R%xdh
Q=W,:E W, cR"?*%
V=W,E W, cRBXh

. K'
E = Vsoftmax (Q)
Vv da

* We can parallelize multiple Wy, W, W,, with
different random initialization (and hope they
learn different ways to attend tokens.

Add & Norm

Feed
Forward

N x

\,

Add & Norm

Multi-Head
Attention

At

\.

J/

Positional
Encoding

D

Input
Embedding

T

Inputs

/
\

Stacking Transformer Layers

E = (emb(wy),. .., emb(wy)) + P € R¥1**
K=WE W;ecR®?"%

Q=W,E W, cR"?*%
V=W,E W, eR®*"

3

E = Vsoftmax (

KT
Vs

Add & Norm

Feed
Forward

N x

.

Add & Norm

Multi-Head
Attention

At

\\

J/

Positional
Encoding

D

Input
Embedding

T

Inputs

This Lecture

 Neural networks
* Attention
 Transformers

* Sequence labeling
* Tasks and problem formulation
* Hidden Markov models (next lecture)
e Conditional random fields (next lecture)

Linguistic Phenomena

* Words have structure (stems and affixes)

* Words have multiple meanings (senses) 2 word sense ambiguity
* Senses of a word can be homonymous or polysemous

* Senses have relationships:
* Synonymy, hyponymy (“is a”), meronymy (“part of”, “member of”)

* Variability/flexibility of linguistic expression
* many ways to express the same meaning
* word embeddings tell us when two words are similar

* Today: part-of-speech

Part-of-Speech Tagging

. proper proper _
determiner verb (past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’'s first product

o proper
modal verb det. adjective noun prep. noun punc.

would be a breakaway hit for Apple

Part-of-Speech Tagging

* Functional category of a word:
* noun, verb, adjective, etc.

* Dependent on context like word sense, but different from sense:
* Sense represents word meaning, POS represents word function

e Sense uses a distinct category of senses per word, POS uses same set of
categories for all words

* Arguably the simplest type of syntactic information

Universal Tag Set

* 12 categories: Noun, verb, adjective, adverb, pronoun,
determiner/article, adposition (preposition or postposition), numeral,
conjunction, particle, punctuation, other

* Foundation of the universal dependency hypothesis

root
det nsubyj l

TNYT

Eine Katze miaut
A cat meows

Part-of-Speech Tagging with an RNN

* |dea: breaking it down into k individual classification problems
Collect hidden states, then pass them into an MLP classifier

A cat meows
({1 @
IVILP parameters

POS(x;) = arg max score(x1.;, iy; W
Y

Span Extraction as Sequence Tagging

* Named entity recognition: recognizing names of real-world objects
from a sentence

O O O B-PERSON I-PERSON O O O
Some questioned if Tim Cook ’s first product

O O O O O O B-ORGANIZATION O
would be a breakaway hit for Apple

B=beginning, I=inside, O=outside

Span Extraction as Sequence Tagging

* Named entity recognition: recognizing names of real-world objects
from a sentence

* Alternative option: simple B-I-O tags, then predict fine grained labels
with span features

O O O B I O O O
Some questioned if Tim Cook ’s first product

O O O O O O B O
would be a breakaway hit for Apple

B=beginning, |=inside, O=outside

Sequence Tagging

* Feature vector can be produced by any model architecture, as long as
it’s a reasonable representation of the corresponding token

e What’s the limitation?

* |t doesn’t explicitly consider the underlying dependency among tags

* Example: it’s (nearly) impossible to have a determiner followed by another
determiner

* Example: model shouldn’t have an “O” tag followed by an

IIIII

Sequence Tagging: Problem Formulation

POS(x;) = arg max score(X, i, i; W)
Y

POS(x) = arg max score(x, y; W)

y‘\/
structured object
(sequence of tags)

Next Lecture

 Neural networks
* Attention
 Transformers

* Sequence labeling
* Part-of-speech tagging with neural networks
 Hidden Markov models
e Conditional random fields

	Slide 1: TTIC 31190: Natural Language Processing
	Slide 2: Announcement
	Slide 3: Announcement
	Slide 4: Recap
	Slide 5: Recap
	Slide 6: Recap
	Slide 7: Recap
	Slide 8: Recap
	Slide 9: This Lecture
	Slide 10: Attention
	Slide 11: Parameterized Attention
	Slide 12: Self-Attentive RNNs
	Slide 13: Attention: Summary
	Slide 14: This Lecture
	Slide 15: Transformers
	Slide 16: Transformer Encoder
	Slide 17: Transformer Encoder
	Slide 18: Transformer Encoder
	Slide 19: Transformer Encoder
	Slide 20: Transformer Encoder
	Slide 21: Transformer Encoder
	Slide 22: Transformer Encoder
	Slide 23: Transformer Encoder
	Slide 24: Transformer Encoder
	Slide 25: Transformer Encoder
	Slide 26: Recap: Variance and Covariance
	Slide 27: Recap: Variance and Covariance
	Slide 28: Transformer Encoder
	Slide 29: Positional Encoding
	Slide 30: Positional Encoding
	Slide 31: Positional Encoding
	Slide 32: Multi-Head Attention
	Slide 33: Stacking Transformer Layers
	Slide 34: This Lecture
	Slide 35: Linguistic Phenomena
	Slide 36: Part-of-Speech Tagging
	Slide 37: Part-of-Speech Tagging
	Slide 38: Universal Tag Set
	Slide 39: Part-of-Speech Tagging with an RNN
	Slide 40: Span Extraction as Sequence Tagging
	Slide 41: Span Extraction as Sequence Tagging
	Slide 42: Sequence Tagging
	Slide 43: Sequence Tagging: Problem Formulation
	Slide 44: Next Lecture

