TTIC 31190: Natural Language Processing

Lecture 7: Neural Networks and Sequence Labeling

Fall 2023



Announcement

* Assighment 1 due Thursday 11:59pm
* Assignment 2 will be out soon



Announcement

* TA session: review + quick introduction and discussion on papers 8-11
* Houlsby et al. Parameter-Efficient Transfer Learning for NLP. ICML 2019
(Parameter-efficient transfer learning)

* Song et al. Score-Based Generative Modeling through Stochastic Differential
Equations. ICLR 2021

(Diffusion models and how they are used in NLP)

* Borgeaud et al. Improving Language Models by Retrieving from Trillions of
Tokens. ICML 2022
(Retrieval augmented language models)

 Meng et al. Locating and Editing Factual Associations in GPT. NeurlPS 2022
(Model analysis and knowledge representation)



Recap

* Neural networks: perceptrons and multi-layer perceptrons (MLP)
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Recap

e Convolutional neural networks (CNNs)
* Dot product between stretched kernel and word vectors
* Pooling: convert a kernel’s output to a scalar
* Parallelize multiple kernels’ output to get a fixed-dimensional representation

w1
w2




Recap

* Recurrent neural networks (RNNs)

= Wi(xs;hy1]+Db
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Recap

* RNN: absolute values can grow or vanish exponentially w.r.t.
sequence length

* LSTM and GRU: gate mechanisms to preserve a stable value range



Recap

e Recursive neural networks (RVNN): apply same transformation at each
node




This Lecture

 Neural networks
e Attention
 Transformers

* Sequence labeling
* Tasks and problem formulation
* Hidden Markov models (next lecture)
e Conditional random fields (next lecture)



Attention

e Can be thought of as weighted sum; each token receives a weight

* From (unweighted) bag of words to (weighted) bag of words
* Each word receives a fixed weight
* Normalize the weights with softmax
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Parameterized Attention

* Word tokens with the same word type should probably receive
different weights in different sentences

* Implement attention with an MLP (example below)
1
= Z

a(w; | X) = softmax’,_, (MLP([emb(w;); X])) € R

k

X = Zoz(wq; | X) - emb(w;)

1=1



Self-Attentive RNNs

* The last hidden state of RNN could be bad feature. Why?

* At time step t, what matters to h; is mostly x,» where t'is close to t
[Khandelwal et al., ACL 2018] (Lecture 06)

a; = softmax_, (MLP(h;)) € R

AN

X = Z aih; Trainable parameters,
= Jointly trained w/ RNN parameters



Attention: Summary

e Attention: weighted sum over features
* Weights can be the output of some MLP, normalized by softmax

a; = softmax,_, (MLP(h;)) € R

X = g o h;
i=1

e Caveat: attention weights over RNN hidden states could be bad
indicators on which token is more important



This Lecture

 Neural networks
* Attention
 Transformers

* Sequence labeling
* Tasks and problem formulation
* Hidden Markov models (next lecture)
e Conditional random fields (next lecture)



Transformers

Attention Is All You Need
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Transformer Encoder

* Transformer: attention-based sentence encoding,

Qutput
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and optionally, decoding
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Transformer Encoder

E = (emb(w), ..., emb(wy)) € R¥*F
K=W,E W;,eR"*"" KeR"*""
Q=W,E W, eR"*" QeR"*"
V=W,E W, cRBXh y cRE*k

c Rngk‘

k X k matrix, softmax over the
first dimension



Transformer Encoder
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Transformer Encoder
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Transformer Encoder
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Transformer Encoder
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Transformer Encoder
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Transformer Encoder
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Transformer Encoder

~

E

= Vsoftmax (

softmax <K

fe¥e

(000
elele

O
O
O
O

NG
O\
O
O
O

)

'Q

/)




Transformer Encoder

3 T
E = Vsoftmax (K Q)
Vv da

* What is 4/ d, for?

* Consider (a, b): if each entry in both vector is drawn from a
distribution with zero mean and unit variance, what would happen if
the dimensionality grows?

* The variance of dot product grows.
softmax([1, —1]) = [.8808, .1192]
softmax([10, —10]) = [1,2.0612 x 1077




Recap: Variance

and Covariance

For independent zero-mean, unit-variance random variables X and Y

VarlXY] = E[X?Y?] — E*[XY]

= (Cov[X?,Y?] + E[X?][Y?]) — (Cov[X,Y] + E[X]E[Y])?

= E[X?|E[Y?] — E*[X]|E?

Y

= Var|X|VarlY |+ Var[X]
=1

E2Y] + VarlY]|E*[X]



Recap: Variance and Covariance

For independent zero-mean, unit-variance random variables X and Y
Varl XY]| =1

If we have 2n independent zero-mean, unit variance variables
X17Y17X27Y27 R 7Xn7Yn

Var[zn: X, Y] = z”: Varl X;Y;] =n
i=1 i=1

S

X;Y; - X;Y; — 1
Var[z Jn | = z Var| Jn | = Z - Varl X;Y;] =1
=1 i=1 i=1

1



Transformer Encoder

n n
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The application of \/d, is theoretically motivated.
See also Xavier initialization: initialize a dot product parameter vector

. 3 3
with values drawn from U (—\/g, \/g)




Positional Encoding

dy Xk
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Positional Encoding

| p p
P 21 — S111 23 » P 21 = COS 24
P2 (100007 ) P2 (100007 )

* The choice of n = 10,000 is somewhat arbitrary, but it’s overall
theoretically motivated: The positional add-6 relation can be
represented by a linear transformation.

Vo, AM;, s.t. Pp+s = Msp, (VD)

* Proof idea: use the addition theorems on trigonometric functions
sin(a + B) = sinacos 8 + cos asin

cos(a + ) = cosa.cos B — sin asin 3



Positional Encoding

E = (emb(w1),..., emb(wy)) + P € R&*F Prrri)
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* Limitation: only fixed number of positions available S
* Another option: learnable positional encoding ]

Inputs



Multi-Head Attention

E = (emb(w), ..., emb(wy)) + P € RI*F
K=W.,E W, c R%xdh
Q=W,:E W, cR"?*%
V=W,E W, cRBXh

. K'
E = Vsoftmax ( Q)
Vv da

* We can parallelize multiple Wy, W, W,, with
different random initialization (and hope they
learn different ways to attend tokens.
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Stacking Transformer Layers

E = (emb(wy),. .., emb(wy)) + P € R¥1**
K=WE W;ecR®?"%

Q=W,E W, cR"?*%
V=W,E W, eR®*"

3

E = Vsoftmax (

KT
Vs

Add & Norm

Feed
Forward

N x

.

Add & Norm

Multi-Head
Attention

At

\\

J/

Positional
Encoding

D

Input
Embedding

T

Inputs



This Lecture

 Neural networks
* Attention
 Transformers

* Sequence labeling
* Tasks and problem formulation
* Hidden Markov models (next lecture)
e Conditional random fields (next lecture)



Linguistic Phenomena

* Words have structure (stems and affixes)

* Words have multiple meanings (senses) 2 word sense ambiguity
* Senses of a word can be homonymous or polysemous

* Senses have relationships:
* Synonymy, hyponymy (“is a”), meronymy (“part of”, “member of”)

* Variability/flexibility of linguistic expression
* many ways to express the same meaning
* word embeddings tell us when two words are similar

* Today: part-of-speech



Part-of-Speech Tagging

. proper proper _
determiner verb (past) prep. noun noun poss. adj. noun

Some questioned if Tim Cook ’'s first product

o proper
modal verb det. adjective noun prep. noun  punc.

would be a breakaway hit for Apple



Part-of-Speech Tagging

* Functional category of a word:
* noun, verb, adjective, etc.

* Dependent on context like word sense, but different from sense:
* Sense represents word meaning, POS represents word function

e Sense uses a distinct category of senses per word, POS uses same set of
categories for all words

* Arguably the simplest type of syntactic information



Universal Tag Set

* 12 categories: Noun, verb, adjective, adverb, pronoun,
determiner/article, adposition (preposition or postposition), numeral,
conjunction, particle, punctuation, other

* Foundation of the universal dependency hypothesis

root
det nsubyj l

TNYT

Eine Katze miaut
A cat  meows



Part-of-Speech Tagging with an RNN

* |dea: breaking it down into k individual classification problems
Collect hidden states, then pass them into an MLP classifier

A cat meows
({1 @
IVILP parameters

POS(x;) = arg max score(x1.;, iy; W
Y



Span Extraction as Sequence Tagging

* Named entity recognition: recognizing names of real-world objects
from a sentence

O O O B-PERSON I-PERSON O O O
Some questioned if Tim Cook ’s first product

O O O O O O B-ORGANIZATION O
would be a breakaway hit for Apple

B=beginning, I=inside, O=outside



Span Extraction as Sequence Tagging

* Named entity recognition: recognizing names of real-world objects
from a sentence

* Alternative option: simple B-I-O tags, then predict fine grained labels
with span features

O O O B I O O O
Some questioned if Tim Cook ’s first product

O O O O O O B O
would be a breakaway hit for Apple

B=beginning, |=inside, O=outside



Sequence Tagging

* Feature vector can be produced by any model architecture, as long as
it’s a reasonable representation of the corresponding token

e What’s the limitation?

* |t doesn’t explicitly consider the underlying dependency among tags

* Example: it’s (nearly) impossible to have a determiner followed by another
determiner

* Example: model shouldn’t have an “O” tag followed by an

IIIII



Sequence Tagging: Problem Formulation

POS(x;) = arg max score(X, i, i; W)
Y

POS(x) = arg max score(x, y; W)

y‘\/
structured object
(sequence of tags)



Next Lecture

 Neural networks
* Attention
 Transformers

* Sequence labeling
* Part-of-speech tagging with neural networks
 Hidden Markov models
e Conditional random fields
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