
TTIC 31190: Natural Language Processing
Lecture 6: Neural Networks

Fall 2023

Announcement

• Final exam schedule out: Tuesday December 5, 3-5pm

• Pass/fail option available for this course

• Reminder: Assignment 1 due this Thursday

Schedule

Date Topic Instructor
W, 9/27 Introduction Freda
M, 10/2 Word Joe
W, 10/4 Distributional Semantics Joe
M, 10/9 Dataset & Classification Freda
W, 10/11 Classification Freda
M, 10/16 Neural Networks Freda

W, 10/18
Neural Networks &
Sequence Labeling

Freda

M, 10/23 Sequence Labeling Freda
W, 10/25 Language Modeling Joe
M, 10/30 Seq2Seq Freda
W, 11/1 Seq2Seq & Syntax Freda

Date Topic Instructor
M, 11/6 Syntax Freda
W, 11/8 Semantics Joe
M, 11/13 Semantics Joe
W, 11/15 Pragmatics Freda
M, 11/20 Thanksgiving Break
W, 11/22 Thanksgiving Break

M, 11/27
LLM: Pretraining and
Finetuning

Joe

W, 11/29
LLM: Prompting and
Multilingualism

Freda

M, 12/4 Reading Period
TBD Final Exam

Recap

Modeling: Define score functionInference: solve arg max

Learning: choose parameter

This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers

What is a neural network?

• A neural network is a function
• It has inputs and outputs

• “Neural modeling” now is better thought of as dense representation learning

Classification with Neural Networks

Modeling: Neural NetworkInference: solve arg max

Learning: choose parameter

With a neural network—based function 𝑓𝐰, we input 𝐱 and collects a
vector ො𝐲 = 𝑓𝐰 𝐱 ; score(𝐱, 𝑦; 𝐰) is defined by selecting the
corresponding entry in ො𝐲.

Notations

a vector

entry 𝑖 in the vector

a matrix

entry (𝑖, 𝑗) in the matrix

a structured object

Entry 𝑖 in the structured object

Perceptron

activation
function

affine
transform

Can be written as if one entry of is constant.

Perceptron: Learning

Predict the label

Update weights

gold
standard

predicted
label

learning
rate

Perceptron: Learning

0 0

Perceptron: Learning

0 0 0

1 0

Perceptron: Learning

0 0 0

1 0 1

0 1

Perceptron: Learning

0 0 0

1 0 1

0 1 1

This is stochastic gradient descent!

Neural Layer: Generalized Perceptron

• A neural layer = affine transformation + nonlinearity

• Output is a vector (results from multiple independent perceptrons).

• Can have other activation functions for nonlinearity.

activation
function

affine
transform

Neural Layer: Generalized Perceptron

• is the input

• The output is a vector with 𝑑2 entries

• and are trainable parameters

• Multiple neural layers can be stacked together

layer indexhidden units

Stacking Neural Layers

…

…

…

• Use output of one layer as input to the next

• Feed-forward and/or fully-connected layers

• Also called multi-layer perceptron (MLP)

Nonlinearities

• 𝑔 can be applied to each entry in a vector in an element-wise manner

• Common activation functions: tanh, sigmoid, and ReLU

• Why nonlinearities?

• Otherwise stacking neural layers results in a simple affine transform.

Nonlinearities: tanh

Nonlinearities: sigmoid

Nonlinearities: sigmoid and tanh

divide both sides by 𝑒𝑥

Nonlinearities: sigmoid and tanh

divide both sides by 𝑒𝑥

Nonlinearity: Rectified Linear Unit (ReLU)

Sentiment Classification with Neural Network

• Two-layer perceptron

• We empirically don’t pass the final layer into an activation function

• How can we get 𝐱 for a sentence?
• Average word embeddings

• More complicated neural network structures

Sentiment Classification with Neural Network

• Two-layer perceptron

• We empirically don’t pass the final layer into an activation function

Sentiment Classification with Neural Network

Training

Maximize the probability of gold standard label

Also called cross entropy (between 𝐩 and the 1-hot gold standard
distribution) loss.

Backpropagation

• Chain rule: suppose , then

Now we have , how should we update ?

Backpropagation

• Caveat: after adding nonlinearity, there’s no guarantee on the
convexity of the MLP
Using gradient-based methods can result in local optimum

• We are usually happy with the local optima in practice

Visualization of Model Architecture

…

This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers

Convolutional Neural Networks

• Introduced for vision tasks; also used in NLP to extract feature vectors

Convolutional Neural Networks

• Introduced for vision tasks; also used in NLP to extract feature vectors

1 + 3 + 5 + 6 + 7 + 9 = 31

From 2D to 1D: Overview

Kernel/Filter

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters

Kernel/Filter

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters

Kernel/Filter

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters

Kernel/Filter

• What about a kernel/filter with a different size?

Kernel/Filter

• What about a kernel/filter with a different size?

Kernel/Filter: Pooling

• Each kernel/filter extracts one type of features

• However, a kernel’s output size depends on sentence length
A fixed dimensional vector is desirable for MLP inputs

• Solution: mean pooling/max pooling converts a vector to a scalar

• Final feature: concatenating pooling results of all filters

pooling

Convolutional Neural Networks

• Word order matters
Example (kernel size = 2):
a cat drinks milk → (a cat), (cat drinks), (drinks milk)
a milk drinks cat → (a milk), (milk drinks), (drinks cat)

• An n-gram “matches” with a kernel when they have high dot product

• Cannot capture long-term dependency

• Often used for character-level processing: filters look at character n-
grams

This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers

Recurrent Neural Networks

• Idea: apply the same transformation to tokens in time order

Recurrent Neural Networks

• Gradient update for

• Suppose is the representation passed to the classifier

We can easily calculate

• What about ?

Recurrent Neural Networks

• What’s the problem with ?

• Absolute value of entries grow exponentially w.r.t. sequence length

• What if we add nonlinearity (e.g., tanh/sigmoid)?

• Values (and therefore gradients) vanish exponentially

Long Short-Term Memory Networks

Designed to tackle the gradient vanishing problem
[Hochreiter and Schmidhuber, 1997]

• Forget gate:

• Input gate:

• Cell:

• Update:

• Output gate:

• Hidden state:

• Idea: keep entries in ෤𝐜𝑡 and 𝐡𝑡 in the range of −1, 1 .

Gated Recurrent Units

Fewer parameters; generally works quite well

• Update gate:

• Reset gate:

RNN: Practical Approaches

• Gradient clip: gradient sometimes goes very large even with LSTMs.
Empirical solution: After calculating gradients, require the 𝐿2 norm to
be at most 𝐶 (set by hyperparameters)

• At time step 𝑡, what matters to 𝐡𝑡 is mostly 𝐱𝑡′ where 𝑡′is close to 𝑡
[Khandelwal et al., ACL 2018]

• Bidirectional modeling typically results in more powerful features

Recursive Neural Networks

• Run constituency parser on sentence, and construct vector recursively

• All nodes share the same set of parameters [Socher et al., 2011&2013]

Recursive Neural Networks

• Tree LSTMs typically work well
(slight modification of LSTM cells needed)

Recursive Neural Networks

• Tree LSTMs typically work well
(slight modification of LSTM cells needed)

• Recursive neural networks with left-branching trees are basically
equivalent to recurrent neural networks

• Syntactically meaningful parse trees are not necessary for good
representations: instead, balanced trees work well for most tasks
[Shi et al., EMNLP 2018]

This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers

	Slide 1: TTIC 31190: Natural Language Processing
	Slide 2: Announcement
	Slide 3: Schedule
	Slide 4: Recap
	Slide 5: This Lecture (and the next)
	Slide 6: What is a neural network?
	Slide 7: Classification with Neural Networks
	Slide 8: Notations
	Slide 9: Perceptron
	Slide 10: Perceptron: Learning
	Slide 11: Perceptron: Learning
	Slide 12: Perceptron: Learning
	Slide 13: Perceptron: Learning
	Slide 14: Perceptron: Learning
	Slide 15: Neural Layer: Generalized Perceptron
	Slide 16: Neural Layer: Generalized Perceptron
	Slide 17: Stacking Neural Layers
	Slide 18: Nonlinearities
	Slide 19: Nonlinearities: tanh
	Slide 20: Nonlinearities: sigmoid
	Slide 21: Nonlinearities: sigmoid and tanh
	Slide 22: Nonlinearities: sigmoid and tanh
	Slide 23: Nonlinearity: Rectified Linear Unit (ReLU)
	Slide 24: Sentiment Classification with Neural Network
	Slide 25: Sentiment Classification with Neural Network
	Slide 26: Sentiment Classification with Neural Network
	Slide 27: Training
	Slide 28: Backpropagation
	Slide 29: Backpropagation
	Slide 30: Visualization of Model Architecture
	Slide 31: This Lecture (and the next)
	Slide 32: Convolutional Neural Networks
	Slide 33: Convolutional Neural Networks
	Slide 34: From 2D to 1D: Overview
	Slide 35: Kernel/Filter
	Slide 36: Kernel/Filter
	Slide 37: Kernel/Filter
	Slide 38: Kernel/Filter
	Slide 39: Kernel/Filter
	Slide 40: Kernel/Filter: Pooling
	Slide 41: Convolutional Neural Networks
	Slide 42: This Lecture (and the next)
	Slide 43: Recurrent Neural Networks
	Slide 44: Recurrent Neural Networks
	Slide 45: Recurrent Neural Networks
	Slide 46: Long Short-Term Memory Networks
	Slide 47: Gated Recurrent Units
	Slide 48: RNN: Practical Approaches
	Slide 49: Recursive Neural Networks
	Slide 50: Recursive Neural Networks
	Slide 51: Recursive Neural Networks
	Slide 52: This Lecture (and the next)

