
TTIC 31190: Natural Language Processing
Lecture 6: Neural Networks

Fall 2023



Announcement

• Final exam schedule out: Tuesday December 5, 3-5pm

• Pass/fail option available for this course

• Reminder: Assignment 1 due this Thursday



Schedule

Date Topic Instructor
W, 9/27 Introduction Freda
M, 10/2 Word Joe
W, 10/4 Distributional Semantics Joe
M, 10/9 Dataset & Classification Freda
W, 10/11 Classification Freda
M, 10/16 Neural Networks Freda

W, 10/18
Neural Networks & 
Sequence Labeling

Freda

M, 10/23 Sequence Labeling Freda
W, 10/25 Language Modeling Joe
M, 10/30 Seq2Seq Freda
W, 11/1 Seq2Seq & Syntax Freda

Date Topic Instructor
M, 11/6 Syntax Freda
W, 11/8 Semantics Joe
M, 11/13 Semantics Joe
W, 11/15 Pragmatics Freda
M, 11/20 Thanksgiving Break
W, 11/22 Thanksgiving Break

M, 11/27
LLM: Pretraining and 
Finetuning

Joe

W, 11/29
LLM: Prompting and 
Multilingualism

Freda

M, 12/4 Reading Period
TBD Final Exam



Recap

Modeling: Define score functionInference: solve arg max

Learning: choose parameter



This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers



What is a neural network?

• A neural network is a function
• It has inputs and outputs

• “Neural modeling” now is better thought of as dense representation learning



Classification with Neural Networks

Modeling: Neural NetworkInference: solve arg max

Learning: choose parameter

With a neural network—based function 𝑓𝐰, we input 𝐱 and collects a 
vector ො𝐲 = 𝑓𝐰 𝐱 ; score(𝐱, 𝑦; 𝐰) is defined by selecting the 
corresponding entry in ො𝐲.



Notations

a vector

entry 𝑖 in the vector

a matrix

entry (𝑖, 𝑗) in the matrix

a structured object

Entry 𝑖 in the structured object



Perceptron

activation
function

affine 
transform

Can be written as                        if one entry of     is constant. 



Perceptron: Learning

Predict the label

Update weights

gold 
standard

predicted 
label

learning 
rate



Perceptron: Learning

0 0



Perceptron: Learning

0 0 0

1 0



Perceptron: Learning

0 0 0

1 0 1

0 1



Perceptron: Learning

0 0 0

1 0 1

0 1 1

This is stochastic gradient descent!



Neural Layer: Generalized Perceptron

• A neural layer = affine transformation + nonlinearity

• Output is a vector (results from multiple independent perceptrons).

• Can have other activation functions for nonlinearity.

activation
function

affine  
transform



Neural Layer: Generalized Perceptron

• is the input

• The output is a vector with 𝑑2 entries

• and    are trainable parameters

• Multiple neural layers can be stacked together

layer indexhidden units 



Stacking Neural Layers

…

…

…

• Use output of one layer as input to the next

• Feed-forward and/or fully-connected layers

• Also called multi-layer perceptron (MLP)



Nonlinearities

• 𝑔 can be applied to each entry in a vector in an element-wise manner

• Common activation functions: tanh, sigmoid, and ReLU

• Why nonlinearities?

• Otherwise stacking neural layers results in a simple affine transform.



Nonlinearities: tanh



Nonlinearities: sigmoid



Nonlinearities: sigmoid and tanh

divide both sides by 𝑒𝑥 



Nonlinearities: sigmoid and tanh

divide both sides by 𝑒𝑥 



Nonlinearity: Rectified Linear Unit (ReLU)



Sentiment Classification with Neural Network

• Two-layer perceptron

• We empirically don’t pass the final layer into an activation function

• How can we get 𝐱 for a sentence?
• Average word embeddings

• More complicated neural network structures



Sentiment Classification with Neural Network

• Two-layer perceptron

• We empirically don’t pass the final layer into an activation function



Sentiment Classification with Neural Network



Training 

Maximize the probability of gold standard label

Also called cross entropy (between 𝐩 and the 1-hot gold standard 
distribution) loss.



Backpropagation 

• Chain rule: suppose                                   , then

Now we have            , how should we update           ?



Backpropagation 

• Caveat: after adding nonlinearity, there’s no guarantee on the 
convexity of the MLP
Using gradient-based methods can result in local optimum

• We are usually happy with the local optima in practice



Visualization of Model Architecture 

…



This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers



Convolutional Neural Networks

• Introduced for vision tasks; also used in NLP to extract feature vectors



Convolutional Neural Networks

• Introduced for vision tasks; also used in NLP to extract feature vectors

1 + 3 + 5 + 6 + 7 + 9 =  31



From 2D to 1D: Overview



Kernel/Filter

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters



Kernel/Filter

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters



Kernel/Filter

• Start from word embeddings

• Take dot product between filter and (stretched) word embeddings

parameters



Kernel/Filter

• What about a kernel/filter with a different size?



Kernel/Filter

• What about a kernel/filter with a different size?



Kernel/Filter: Pooling

• Each kernel/filter extracts one type of features

• However, a kernel’s output size depends on sentence length
A fixed dimensional vector is desirable for MLP inputs

• Solution: mean pooling/max pooling converts a vector to a scalar

• Final feature: concatenating pooling results of all filters

pooling



Convolutional Neural Networks

• Word order matters
Example (kernel size = 2):
a cat drinks milk → (a cat), (cat drinks), (drinks milk)
a milk drinks cat → (a milk), (milk drinks), (drinks cat)

• An n-gram “matches” with a kernel when they have high dot product

• Cannot capture long-term dependency

• Often used for character-level processing: filters look at character n-
grams



This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers



Recurrent Neural Networks

• Idea: apply the same transformation to tokens in time order



Recurrent Neural Networks

• Gradient update for

• Suppose       is the representation passed to the classifier

We can easily calculate  

• What about            ?



Recurrent Neural Networks

• What’s the problem with                                           ?

• Absolute value of entries grow exponentially w.r.t. sequence length

• What if we add nonlinearity (e.g., tanh/sigmoid)?

• Values (and therefore gradients) vanish exponentially



Long Short-Term Memory Networks

Designed to tackle the gradient vanishing problem 
[Hochreiter and Schmidhuber, 1997] 

• Forget gate: 

• Input gate: 

• Cell: 

• Update: 

• Output gate: 

• Hidden state: 

• Idea: keep entries in ෤𝐜𝑡 and 𝐡𝑡 in the range of −1, 1 .



Gated Recurrent Units

Fewer parameters; generally works quite well

• Update gate: 

• Reset gate: 



RNN: Practical Approaches

• Gradient clip: gradient sometimes goes very large even with LSTMs. 
Empirical solution: After calculating gradients, require the 𝐿2 norm to 
be at most 𝐶 (set by hyperparameters)

• At time step 𝑡, what matters to 𝐡𝑡 is mostly 𝐱𝑡′  where 𝑡′is close to 𝑡
[Khandelwal et al., ACL 2018]

• Bidirectional modeling typically results in more powerful features



Recursive Neural Networks

• Run constituency parser on sentence, and construct vector recursively

• All nodes share the same set of parameters [Socher et al., 2011&2013]



Recursive Neural Networks

• Tree LSTMs typically work well
(slight modification of LSTM cells needed)



Recursive Neural Networks

• Tree LSTMs typically work well
(slight modification of LSTM cells needed)

• Recursive neural networks with left-branching trees are basically 
equivalent to recurrent neural networks

• Syntactically meaningful parse trees are not necessary for good 
representations: instead, balanced trees work well for most tasks
[Shi et al., EMNLP 2018]



This Lecture (and the next)

• Neural networks
• Basics: Perceptron and multi-layer perceptron

• Convolutional neural networks

• Recurrent and recursive neural networks

• Attention

• Transformers
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