TTIC 31190: Natural Language Processing

Lecture 6: Neural Networks

Fall 2023

Announcement

* Final exam schedule out: Tuesday December 5, 3-5pm
 Pass/fail option available for this course

* Reminder: Assignment 1 due this Thursday

Schedule

Date Topic Instructor Date Topic Instructor
W, 9/27 Introduction Freda M, 11/6 Syntax Freda
M, 10/2 Word Joe W, 11/8 Semantics Joe
W, 10/4 Distributional Semantics Joe M, 11/13 Semantics Joe
M, 10/9 Dataset & Classification Freda W, 11/15 Pragmatics Freda
W, 10/11 Classification Freda M, 11/20 Thanksgiving Break
M, 10/16 Neural Networks Freda W, 11/22 Thanksgiving Break

Neural Networks & LLM: Pretraining and
W, 10/18 Sequence Labeling Freda M, 11/27 Finetuning Joe
M, 10/23 Sequence Labelir-lg Freda W, 11/29 LLM:.I?rompjcing and Freda
W, 10/25 Language Modeling Joe Multilingualism
M, 10/30 Seq2Seq Freda M, 12/4 Reading Period
W,11/1 Seq2Seq & Syntax Freda TBD Final Exam

Recap

[Inference: solveargg Modeling: Define score function}

classify(x) = arg max score(X, y; W)

Y
[Learning: choose parameter

This Lecture (and the next)

* Neural networks
* Basics: Perceptron and multi-layer perceptron
* Convolutional neural networks
e Recurrent and recursive neural networks
* Attention
* Transformers

What is a neural network?

* A neural network is a function
* |t has inputs and outputs
* “Neural modeling” now is better thought of as dense representation learning

Dendrite Hidden
Axon terminal

\ /— ‘\\. Input N Output
, A \

Outputs p V2200 <> — @

Myelin sheat \ \\:\iﬂr =

T~ \\5\ /4’
Myelinated axon ~ @

Classification with Neural Networks

Inference: solve arg max Modeling: Neural Network

classify(x) = arg max score(X, y; W)

Y 4

[Learning: choose parameter
J

With a neural network—based function f,,, we input X and collects a

vector § = f,,(x); score(X, y; w) is defined by selecting the
corresponding entry in V.

Notations

a vector

entry i in the vector

a matrix

entry (i,) in the matrix
a structured object

Entry i in the structured object

Perceptron

perceptron(x) = step (WTX + b)

I\

activation affine
function transform

2

1 ifz>0

tep(z) = <
SeP(2) =90 42 <0

\

Can be written as step (WTX> if one entry of X is constant.

Perceptron: Learning

perceptron(x) = step (w ' x)

1 ifz>0

step(z) = <
p(2) 0 ifz<0

Predict the label §'¥) = perceptron(x¥)

N

learning gold predicted
rate standard label

Perceptron: Learning

perceptron(x) = step (w ' x) §'") = perceptron(x')

loss(w; x'", y) = (§() — yD)yw " x)

gj(i) y(i) sgn (loss(w))
0 0

Perceptron: Learning

perceptron(x) = step (w ' x) §'") = perceptron(x')

loss(w; x'", y) = (§() — yD)yw " x)

gj(i) y(i) sgn (loss(w))
0 0 0
1 0

Perceptron: Learning

perceptron(x) = step (w ' x) §'") = perceptron(x')

loss(w; x'", y) = (§() — yD)yw " x)

g9 | 4@ | sgn (loss(w))
0 0 0
1 0 1
0 1

Perceptron: Learning

perceptron(x) = step (w ' x) 7" = perceptron(x")

lOSS(W;X(i),y(i)) — (3)(73) _ y(i))WTX(’i) T -
Oloss(w; x(?) ()
g9 | 4@ | sgn (loss(w)) - -
0 0 0
1 0 1 This is stochastic gradient descent!
0 1 1

Neural Layer: Generalized Perceptron

* A neural layer = affine transformation + nonlinearity

perceptron(x) = step (WTX -+ b)

) A
activation affine
function transform

N "4

neural layer(x) = g (Wx + b)

e OQutput is a vector (results from multiple independent perceptrons).
* Can have other activation functions for nonlinearity.

Neural Layer: Generalized Perceptron

neural_layer(x) = g (Wx + b) R4 — R%
e x € R% is the input
* The output is a vector with d, entries
* W and b are trainable parameters

* Multiple neural layers can be stacked together

/Zu) — g (W<0>X n <o>)

hidden units layer index

Stacking Neural Layers

21 — g (Wm)X+ b<o>) z(2) ([OI000C

22 — g (W<1>Z<1> n b<1>)

* Use output of one layer as input to the next
* Feed-forward and/or fully-connected layers
 Also called multi-layer perceptron (MLP)

Nonlinearities

21 = (W<0>X n b<o>)

* g can be applied to each entry in a vector in an element-wise manner
 Common activation functions: tanh, sigmoid, and RelLU

* Why nonlinearities?

* Otherwise stacking neural layers results in a simple affine transform.

{1]T]+]

Nonlinearities: tanh

y = tanh (z) =

14

6213 _I_ 6—513

€£E _ e_w

X: 2.22044x10" y: 2.22044%x10*

Nonlinearities: sigmoid

{1 [T+

Nonlinearities: sigmoid and tanh

1
o(r) = l1+e*
et —e *
tanh (x) = — divide both sides by e*
1 —e 2%

Nonlinearities: sigmoid and tanh

1
o(r) = l1+e*
et —e *
tanh (x) = — divide both sides by e*
1= e 2%
14 e 27

=0(2z) — (1 —0(2x)) =20(2x) — 1

Nonlinearity: Rectified Linear Unit (ReLU)

y = ReLU(x) = max{0, =}

/

Sentiment Classification with Neural Network

* Two-layer perceptron
2 = g (W<0>X n b<o>)
s = Wzl 4 p)

 We empirically don’t pass the final layer into an activation function

 How can we get X for a sentence?

e Average word embeddings
* More complicated neural network structures

Sentiment Classification with Neural Network

* Two-layer perceptron

2 = g (W<0>X n b<o>)

 We empirically don’t pass the final layers tivation function

classify(x) = arg max score(x, y; W)
Y

score(x, 0; w)

score(x, 1; w)

Sentiment Classification with Neural Network

score(x,0;w) 7]

]) e
SCOI’G(X, 0; W) softmax /
S — :> p — .
score(x, 1; w) escore(x, Liw)
i Z _

7 — escore(x,();w) + escore(x,l;w)

Training

score(x,0) 7]

_ _ e
SCOI‘G(X, O) softmax A
S — p —

score(x, 1) escore(x;1)

: 7 _
Maximize the probability of gold standard label
6score(x,y;w)
loss = —log P(y | x) :—log(- >

Also called cross entropy (between p and the 1-hot gold standard
distribution) loss.

Backpropagation

dz dz %

e Chain rule: suppose y = f(x),z = g(y), then — = @ -

21 = ¢ (Wm)X n b<o>)
s = Wz L O
e’y
loss(s; = —1
08s(s; X, Y) 0g (-)

Oloss
0s

Now we have

 how should we update W (0)?

Oloss B Oloss Os 0Oz
OW©O) — 9s 9z(1) GW(0)

Backpropagation

e Caveat: after adding nonlinearity, there’s no guarantee on the
convexity of the MLP
Using gradient-based methods can result in local optimum

* We are usually happy with the local optima in practice

Visualization of Model Architecture

~ s — Wz 4 pO
\X/
AN

\RPSK]

ZON

21 = g (W<0>X n b<o>)

This Lecture (and the next)

* Neural networks
* Basics: Perceptron and multi-layer perceptron
* Convolutional neural networks
e Recurrent and recursive neural networks
* Attention
* Transformers

Convolutional Neural Networks

* Introduced for vision tasks; also used in NLP to extract feature vectors

feature maps feature maps Iayg ; Fs
16 @ 10x10 16@5x5 I

c. 5, - 120 py Output

feature maps feature maps 10
Input 6@ 28 x28 6@ 14x 14
32x 32
t\
— \
. T Full Gaussian
Convolutions Full

: .) i connection connection
Subsampling Convolutions Subsampling connection

Convolutional Neural Networks

* Introduced for vision tasks; also used in NLP to extract feature vectors

O[11(0O0 11011 2 e Gl
e
0f1]1 o|1|1| X|4|[5|6|—p
0] 1]0 1(0]1 71819
1110 Image patch Kernel
(Local receptive field) (filter)
il i Output
110(1]J]0|1]0O0

Input 1+3+5+6+7+9 = 31

From 2D to 1D;: Overview

wait

for

the
video

and

do
n't

LT
.....

"

rent

1t

n x k representation of
sentence with static and
non-static channels

Convolutional layer with
multiple filter widths and
feature maps

........
.......

Max-over-time Fully connected layer
pooling with dropout and

softmax output

Source: Y. Kim.(2014). Convolutional Neural Networks for Sentence Classification

Kernel/Filter

e Start from word embeddings Ep‘aﬁmeters

* Take dot product between filter and (stretched) word embeddings

Kernel/Filter

e Start from word embeddings Ep‘aﬁmeters

* Take dot product between filter and (stretched) word embeddings

Kernel/Filter

e Start from word embeddings Ep‘aﬁmeters

* Take dot product between filter and (stretched) word embeddings

Kernel/Filter

 What about a kernel/filter with a different size?

[OO000000O0000 |

Kernel/Filter

 What about a kernel/filter with a different size?

[OO000000O0000 |

Kernel/Filter: Pooling

* Each kernel/filter extracts one type of features

* However, a kernel’s output size depends on sentence length
A fixed dimensional vector is desirable for MLP inputs

e Solution: mean pooling/max pooling converts a vector to a scalar
* Final feature: concatenating pooling results of all filters

wi| OO
w2 CCCD

pooling

A

w3

Wy

Convolutional Neural Networks

* Word order matters
Example (kernel size = 2):
a cat drinks milk = (a cat), (cat drinks), (drinks milk)
a milk drinks cat = (a milk), (milk drinks), (drinks cat)

* An n-gram “matches” with a kernel when they have high dot product
e Cannot capture long-term dependency

e Often used for character-level processing: filters look at character n-
grams

This Lecture (and the next)

* Neural networks
* Basics: Perceptron and multi-layer perceptron
* Convolutional neural networks
* Recurrent and recursive neural networks
* Attention
* Transformers

Recurrent Neural Networks

* |dea: apply the same transformation to tokens in time order

Wixehei]+b hyyy = Wixey;hy| +b

Q)\
N L

Recurrent Neural Networks

* Gradient update for h; = Wix;;h; 1]+ b
* Suppose h;. is the representation passed to the classifier

Oloss
W il lculat
e can easily calculate Ohy
Oloss
* What about W ? Oloss Z Oloss Ohy

Oloss 81088 oh; 4
8ht N 8ht+1 8ht

Recurrent Neural Networks

* What's the problem with h, = W{x;;h; 1]+ b?
ht — WXt, ht—l] —|— b
= Wix;; (W[xs—1;hs 2] +b)] +b

e Absolute value of entries grow exponentially w.r.t. sequence length

* What if we add nonlinearity (e.g., tanh/sigmoid)?
 Values (and therefore gradients) vanish exponentially

Long Short-Term Memory Networks

Designed to tackle the gradient vanishing problem
[Hochreiter and Schmidhuber, 1997]

* Forget gate: f;, = o (Wyxy;hy—1] + by)

* Input gate: i, = o (W;[x4;hy_1] + by)

e Cell: ¢; = tanh (W, [x;; hy 1] + b,)

e Update: c; =t xci1 + 1 % ¢

* Qutput gate: o; = 0 (W, |xs;hy_1] + by)

* Hidden state:h; = o; x tanh(c;)

* |dea: keep entries in €; and h; in the range of (—1, 1).

Gated Recurrent Units

Fewer parameters; generally works quite well
* Update gate: z; = 0 (W, |xs;h; 1|+ b))
* Resetgate: r;, =0 (W, [x;;hi_1]+ b,)

ht — (1 — Zt) X ht—l + Zt % tanh (W[Xt, 'y *x ht—l] -+ b)

RNN: Practical Approaches

* Gradient clip: gradient sometimes goes very large even with LSTMs.
Empirical solution: After calculating gradients, require the L, norm to
be at most C (set by hyperparameters)

* At time step t, what matters to h; is mostly X, where t'is close to t
[Khandelwal et al., ACL 2018]

* Bidirectional modeling typically results in more powerful features

Recursive Neural Networks

* Run constituency parser on sentence, and construct vector recursively
* All nodes share the same set of parameters [Socher et al., 2011&2013]

emb(fell) emb(apart)

Recursive Neural Networks

* Tree LSTMs typically work well
(slight modification of LSTM cells needed)

f, = 0 (Wex; hye_ 1| + by) I, = 0 (Welhg; hy| +by)

i, =0 (W;[xs;he_1] + by) r, =0 (W,lhgh,]+b,)

¢; = tanh (W [x;;hy_1] + b,) SN C, = tanh (W,[hy; h,| + b,)
c, =1 xcp_q1 + 1 x ¢ c, =1,*xc,+r, *xc.+c,
o, =0 (W,[xs;he_1] + by) 0, = 0 (W,lhy;h,.] +b,)

h; = o; * tanh(c;) h,, = o, * tanh(c,,)

Recursive Neural Networks

* Tree LSTMs typically work well
(slight modification of LSTM cells needed)

* Recursive neural networks with left-branching trees are basically
equivalent to recurrent neural networks

 Syntactically meaningful parse trees are not necessary for good
representations: instead, balanced trees work well for most tasks
[Shi et al., EMNLP 2018]

This Lecture (and the next)

* Neural networks
* Basics: Perceptron and multi-layer perceptron
* Convolutional neural networks
e Recurrent and recursive neural networks
* Attention
* Transformers

	Slide 1: TTIC 31190: Natural Language Processing
	Slide 2: Announcement
	Slide 3: Schedule
	Slide 4: Recap
	Slide 5: This Lecture (and the next)
	Slide 6: What is a neural network?
	Slide 7: Classification with Neural Networks
	Slide 8: Notations
	Slide 9: Perceptron
	Slide 10: Perceptron: Learning
	Slide 11: Perceptron: Learning
	Slide 12: Perceptron: Learning
	Slide 13: Perceptron: Learning
	Slide 14: Perceptron: Learning
	Slide 15: Neural Layer: Generalized Perceptron
	Slide 16: Neural Layer: Generalized Perceptron
	Slide 17: Stacking Neural Layers
	Slide 18: Nonlinearities
	Slide 19: Nonlinearities: tanh
	Slide 20: Nonlinearities: sigmoid
	Slide 21: Nonlinearities: sigmoid and tanh
	Slide 22: Nonlinearities: sigmoid and tanh
	Slide 23: Nonlinearity: Rectified Linear Unit (ReLU)
	Slide 24: Sentiment Classification with Neural Network
	Slide 25: Sentiment Classification with Neural Network
	Slide 26: Sentiment Classification with Neural Network
	Slide 27: Training
	Slide 28: Backpropagation
	Slide 29: Backpropagation
	Slide 30: Visualization of Model Architecture
	Slide 31: This Lecture (and the next)
	Slide 32: Convolutional Neural Networks
	Slide 33: Convolutional Neural Networks
	Slide 34: From 2D to 1D: Overview
	Slide 35: Kernel/Filter
	Slide 36: Kernel/Filter
	Slide 37: Kernel/Filter
	Slide 38: Kernel/Filter
	Slide 39: Kernel/Filter
	Slide 40: Kernel/Filter: Pooling
	Slide 41: Convolutional Neural Networks
	Slide 42: This Lecture (and the next)
	Slide 43: Recurrent Neural Networks
	Slide 44: Recurrent Neural Networks
	Slide 45: Recurrent Neural Networks
	Slide 46: Long Short-Term Memory Networks
	Slide 47: Gated Recurrent Units
	Slide 48: RNN: Practical Approaches
	Slide 49: Recursive Neural Networks
	Slide 50: Recursive Neural Networks
	Slide 51: Recursive Neural Networks
	Slide 52: This Lecture (and the next)

