
TTIC 31190: Natural Language Processing
Lecture 3: Word Representations

Fall 2023



Announcements

• TA (Jiamin Yang) Tutorial Sessions & Office Hours
• Fridays 3 pm – 4 pm; TTIC Room 530
• This week and next: tutorials on Python programming (numpy, PyTorch, etc.)
• Office hour 4 pm – 5 pm

• Assignment 1 to be released today; due in two weeks



Recap

• Linguistic Morphology

• Lexical Semantics

• Word Tokenization



Linguistic Morphology

• morphology: study of how words are built from morphemes

• morphemes: meaning-bearing units in a language, often classified into 
stems and affixes

• type/token ratio correlated with morphological richness of a language

• types of word formation: inflection, derivation, compounding

• morphological decomposition is sometimes hierarchical (unlockable)



Linguistic Morphology

• lemmatization: convert wordform to lemma (may depend on context)

• stemming: removing affixes from words to get stems (simple, rule-
based)



Lexical Semantics

• word sense: discrete representation of an aspect of a word’s meaning

• most common words have multiple senses
• though some sense distinctions are subtle

• semantic relationships among senses:
• synonymy: senses have same meanings, can be used interchangeably
• antonymy: senses are opposites in some dimension of meaning, otherwise 

are similar
• hyponymy (and hypernymy): subclass (or superclass) relationship



Lexical Semantics

• word sense disambiguation (WSD): NLP task of determining intended 
sense of a word based on its context

• methods use words from context of the ambiguous word
• unclear if useful for downstream tasks
• today often done implicitly as part of another task



Word Tokenization

• to do NLP on some text, we need to preprocess it:
• tokenize documents into sentences
• tokenize sentences into tokens

• rule-based tokenizers exist for many languages

• for writing systems without whitespace, tokenization becomes 
complex (often treated as an NLP problem)



Word Tokenization

• useful terms: type, token, type/token ratio

• when adding data, number of types keeps increasing

• most types are extremely rare (Zipf’s law)

• Data-driven tokenizers: Byte Pair Encoding (BPE)
• splits words based on data, very common in deep learning



Question

How does ChatGPT (GPT-2 etc.) tokenize texts from different languages, 
with a unified tokenizer and fixed vocabulary size?

Byte-level BPE (BBPE) “That’s great 👍👍”

GPT-2 vocabulary size: 50257



Digital Representations

How does a computer see?
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Digital Representations

How does a computer read?

Birds  are  n’t  real  . 

515   834  45  3435  9
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Digital Representations

How does a computer read?

Birds  are  n’t  real  . 

515   834  45  3435  9

“Raw” input is often uninteresting/unwieldy to work with. 



Word Representations
Representing words in vector space that captures meaningful structure



How to represent a word

• Stems and affixes
• Dictionary definition
• Lemma and wordforms
• Senses
• Relationships between words and senses



Annotated Database for Lexical Semantics

• WordNet (Fellbaum, 1998): https://wordnet.princeton.edu/ 

https://wordnet.princeton.edu/


All-Words WSD



WordNet

• hierarchically organized lexical database
• fine-grained sense inventories, relationships among senses
• originally developed for English; other languages now available
• English WordNet version 3.0 contains:

Category Unique Strings

Noun 117,798

Verb 11,529

Adjective 22,479

Adverb 4,481



How is “sense” defined in WordNet?

• synset (synonym set): 
• set of near-synonyms, instantiates a sense or concept
• has a gloss (roughly, a definition)

• example: chump1 has gloss “a person who is gullible and easy to take 
advantage of”

• chump1 belongs to a synset with 8 other senses:
fool2, gull1, mark9, patsy1, fall guy1, sucker1, soft touch1, mug2

• each of these senses has this same gloss
• not every sense of these words; gull2 is the aquatic bird



one form, multiple meanings  split form
• the three senses of fool belong to different synsets 

multiple forms, one meaning  merge forms
• each synset contains senses of several different words 

Ambiguity

WordNet has three synsets for the noun fool:

Variability



Hypernyms in WordNet

1. (n) {chump, fool, gull, mark, patsy, fall guy, sucker, soft touch, mug} (a person 
who is gullible and easy to take advantage of)

2. (n) {victim, dupe} (a person who is tricked or swindled)
3. (n) {person, individual, someone, somebody, mortal, soul} (a human being)

4. (n) {organism, being} (a living thing that has (or can develop) the ability to act or function 
independently)

5. (n) {living thing, animate thing} (a living (or once living) entity)
6. (n) {whole, unit} (an assemblage of parts that is regarded as a single entity)

7. (n) {object, physical object} (a tangible and visible entity; an entity that can 
cast a shadow)

8. (n) {physical entity} (an entity that has physical existence)
9. (n) {entity} (that which is perceived or known or inferred to have its 
own distinct existence (living or nonliving))



How to represent a word

• Until the ~2010s, in NLP, words == atomic symbols
• Nowadays, vector representations, word == vectors

Similar words are “nearby 
in the vector space”



How to represent a word

[SLP3, Chapter 6]



cat    chef    chicken   civic   cooked  council …

17      91         253       104         5          6001     …
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Motivations

Variability
multiple forms, 
similar meaning
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Representation Learning for Engineering

• Engineering: these representations are often useful for downstream 
tasks!

Text   ⇒   ⇒ Context Prediction

Images ⇒      ⇒ Object Classification

• Transfer learning:



Representation Learning for Engineering

• Engineering: these representations are often useful for downstream 
tasks!

Text   ⇒   ⇒ Context Prediction

Images ⇒      ⇒ Object Classification

Segmentation, VQA, ... 

Classification, QA, …

• Transfer learning:



How to represent a word
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How to represent a word

● “One-hot” representation of 
words
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How to represent a word

● “One-hot” representation of 
words
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|𝑉𝑉| could be very large!
(e.g. 50K)



How to represent a word

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

better

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

winner cat champion𝑤𝑤 =

|𝑉𝑉|

…

|𝑉𝑉|

∊ 𝑉𝑉



How to represent a word
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Word Representation

• What is an ideal word representation?

• It should probably capture information about usage and meaning:
• Part of speech tags (noun, verb, adj., adv., etc.)
• The intended sense
• Semantic similarities (winner vs. champion)
• Semantic relationships (antonyms, hypernyms, etc.)



Features?
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Features?

WordNet



Word Representation

• What is an ideal word representation?

• It should probably capture information about usage and meaning:
• Part of speech tags (noun, verb, adj., adv., etc.)
• The intended sense
• Semantic similarities (winner vs. champion)
• Semantic relationships (antonyms, hypernyms, etc.)

Distributional Semantics:
How much of this can we capture from context/data alone?



Main Idea

“The meaning of a word is its use in the language.”

[Ludwig Wittgenstein 1943]

“Usage”:
Words are defined by their environments
(the words around them)



Main Idea

Consider encountering a new word: tezgüino.

1. A bottle of tezgüino is on the table.
2. Everybody likes tezgüino.
3. Don’t have tezgüino before you drive.
4. We make tezgüino out of corn.

What do you think the tezgüino is?

loud
motor oil
tortillas
choices
wine
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Distributional Hypothesis

• These representations encode distributional properties of each word
• The distributional hypothesis: words with similar meaning are used in 

similar contexts.

“You shall know a word by the company it keeps.” 
            ‒J.R.Firth (1957)
“The meaning of a word is its use in the language.” 

[Ludwig Wittgenstein 1943]

“If A and B have almost identical environments we say that 
they are synonyms.”

[Harris 1954]



Distributional Hypothesis

• How can we automate the process of constructing representations 
of word meaning from its “company”?

• First solution: word-word co-occurrence counts



cat     chef   chicken  civic   cooked  council

words we are computing vectors for:

the
cat

chicken
city

cook

context
words:
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• once we have word vectors, we can compute similarities!
• many ways to define similarity of two vectors
• a simple way: dot product (also called inner product):

• dot product is large when the vectors have very large (or very negative) 
values in the same dimensions

a vector

entry i in the vector
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most similar words (“nearest neighbors”) to each word:

nearest
neighbors

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
the
cat

chicken
city

cook

316380

36

7

27033

51



• dot product is large when vectors have large values in same dimensions, 
doesn’t control for vector length

• vector length: 

• cosine similarity:

this is the cosine of the angle between the two vectors!

a vector

entry i in the vector
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now using cosine similarity:
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Any issue?

Raw frequency count is probably a bad representation!

Counts of common words are very large, but not very useful
• “the”, “it”, “they”
• Not very informative

Many ways proposed for improving raw counts



Any issue?

Raw frequency count is probably a bad representation!

Counts of common words are very large, but not very useful
• “the”, “it”, “they”
• Not very informative

Many ways proposed for improving raw counts
• TF-IDF
• PMI
• word2vec



TF-IDF

TF (Term Frequency) - IDF (Inverse Document Frequency)



TF-IDF

TF (Term Frequency) - IDF (Inverse Document Frequency)

• Information Retrieval (IR) workhorse!
• A common baseline model
• Sparse vectors
• Words are represented by (a simple function of) the counts of nearby 

words



TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document 
matrix

word

document



TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document 
matrix



TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document 
matrix

bag-of-words
(document representation)

word vector



TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document 
matrix

word

document

≈ 0 for words like “the”



TF-IDF Term-Document Matrix

• IDF from 37 Shakespeare plays



TF-IDF Term-Document Matrix

• IDF from 37 Shakespeare plays



TF-IDF Variations

[Image: Wikipedia]



TF-IDF Usage

• TF-IDF was designed for and still excels at document retrieval
• The BM25 model (very similar to TF-IDF) is still a strong document 

retrieval baseline! 

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse, Dense, and Attentional Representations 
for Text Retrieval. Transactions of the Association for Computational Linguistics, 9:329–345.

https://aclanthology.org/2021.tacl-1.20
https://aclanthology.org/2021.tacl-1.20


Pointwise Mutual Information (PMI)



Pointwise Mutual Information (PMI)

• consider two random variables,      and 

• do two events               and               occur together more often than if 
they were independent?

• if they are independent, PMI = 0



PMI for Word Vectors

• for word vectors,
 is the center word
      is the context word 

• each probability can be estimated using 
counts we already computed!

                  = co-occurrence count of x and y
     = total count



Top co-occurrence counts with “chicken” 
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Words with largest PMI with “chicken”
10.2  fried
 9.7  chicken
 9.3  pork
 9.0  beef
 8.7  soup
 7.8  sauce
 7.7  curry
 7.6  cooked
 7.5  lamb
 7.4  dish
 7.3  shrimp
 7.3  egg
 7.2  sandwich
 7.2  dishes
 7.2  meat

7.0 robot
6.9 burger
6.8 recipe
6.6 vegetables
6.6 potatoes
6.6 goat
6.5 eggs
6.4 cow
6.4 pizza
6.4 rice
6.3 ribs
6.3 tomatoes
6.2 cheese
6.2 duck
6.1 chili

6.1 pig
6.0 breeds
6.0 vegetable
6.0 potato
5.9 goose
5.9 dixie
5.9 kung
5.9 pie
5.8 menu
5.8 steamed
5.8 tastes
5.7 beans
5.7 butter
5.7 barn
5.7 breed
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Positive PMI (PPMI)

• some have found benefit by truncating PMI at 0 (“positive PMI”)

• negative PMI: words occur together less than we would expect, i.e., 
they are anticorrelated

• these anticorrelations may need more data to reliably estimate

• however, negative PMIs do seem reasonable!



Largest PMIs:

10.2  fried
 9.7  chicken
 9.3  pork
 9.0  beef
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 7.8  sauce
 7.7  curry
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0.003  climbed
 0.003  detailing
 0.002  turkish
 0.002  oaks
 0.001  productivity
 0.000  swing
-0.001  structures
-0.001  thirteenth
-0.001  commentators
-0.001  palmer
-0.002  obstacles
-0.003  horns
-0.003  burning

-4.6  users
-4.6  data
-4.7  discussion
-4.7  museum
-4.7  below
-4.8  editors
-4.8  railway
-4.8  committee
-4.8  elected
-4.9  championship
-5.0  archive
-5.3  edits
-6.1  deletion

Smallest PMIs:PMIs close to zero:
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words we are computing vectors for:

context
words:

• downside: large context word vocabulary needed for 
good vectors (1,000 to 10,000)

• hard to work with high-dimensional vectors

• we can reduce dimensionality (SVD, etc.), but this is 
difficult to scale to large vocabularies



word2vec



word2vec

• Learning representations with neural networks



word2vec

• Learning representations with neural networks

[Mikolov et al., 2013]



word2vec

• Learning representations with neural networks

• Instead of counting, train a classifier (neural network) to predict
context (e.g. neighboring words)

• Training is self-supervised: no annotated data required, just raw text
• Word embeddings learned via backpropagation

Neural Distributional SemanticsCount-based Distributional Semantics



Neural Word Embeddings
cat

dog
paw

great
good

printer
zoom

stonks
red

bandaid
cash

jumped
scintillating

.

.

.

.

.

The excited dog jumped over the annoyed cat

The fluffy Samoyed jumped over the backyard fence

The quick brown fox jumped over the lazy dog
 

Intuition: word embedding for “jumped” should be learned 
(from random initialization) such that it can well-predict 
surrounding context.



word2vec

• CBOW (Continuous Bag-of-Words): learn representations that predict 
a word given context

• Skipgram: learn representations that predict the context given a word



word2vec
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skipgram
Randomly initialized.
(To be learned via backprop)



skipgram
Randomly initialized.
(To be learned via backprop)

Just a (log) linear model!

softmax



it is a far , far better rest that I go to , than I have ever known

skipgram



it is a far , far better rest that I go to , than I have ever known

Pick a window centered at a word and predict the 
context (window size is a hyperparameter)

skipgram
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word2vec

[Mikolov et al. 2013]



skipgram w/ Negative Sampling

• Vocabulary size V: 50K – 30M
• Very expensive O(|V|)



skipgram w/ Negative Sampling

• Treat the target word and a neighboring context word as positive 
examples

• Randomly sample other words outside of context to get negative 
samples

• learn to distinguish between true pair           and negative samples          
with a binary classifier

• New objective

C = Negative Samples
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(logistic) sigmoid:



skipgram w/ Negative Sampling

• Treat the target word and a neighboring context word as positive 
examples

• Randomly sample other words outside of context to get negative 
samples

• learn to distinguish between true pair           and negative samples          
with a binary classifier

• New objective

Much cheaper to compute: O(|C|)



Choosing negative samples

• According to unigram probabilities
• More common to choose from a flattened version

• From Mikolov et al. (2013):
•               works well empirically (why?)
• Usually 2-20 sampled negative words



Contrastive Learning

• Learning to contrast positive vs. negative samples is a very powerful 
idea!

oRepresentation learning

[SimCLR; Chen et al. 2020]



Contrastive Learning

• Learning to contrast positive vs. negative samples is a very powerful 
idea!

oDensity estimation: Generative Adversarial Networks (GANs)

[Goodfellow et al. 2014]



Word2vec Embeddings

[https://projector.tensorflow.org/]



Word2vec Embeddings

• Regularities in the vector space correspond to regularities in language 
space!



Word2vec Embeddings

[Mikolov et al. 2013]



Word Embeddings You can Download

• word2vec [Mikolov et al. 2013]:
https://code.google.com/archive/p/word2vec/

• GloVe [Pennington et al. 2014]:
   https://nlp.stanford.edu/projects/glove/

• fasttext [Bojanowsi et al. 2017]:
https://fasttext.cc/ 

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/


Extensions

• Neural word embeddings

• Multilingual?

• Social biases?

• Contextualized? 



Extensions

“You shall know a word by the company it keeps”
anything?

Node2Vec
[Grover and Leskovec 2016]

Concept2Vec
[Choi et al. 2016]

World2Vec
[Facebook AI Research]



Summary (1/2)

• Annotated Database for Lexical Semantics -- WordNet

• Word vectors: the use of a vector of numbers to represent a word

• Distributional word vectors: the use of distributional statistics (e.g., word 
co-occurrence counts) in defining word vectors

• Computing similarity of two vectors:
• dot product is a simple starting point
• cosine similarity accounts for vector length and works better for word vectors



Summary (2/2)

• Simple distributional word vectors: word-word co-occurrence counts

• Improving by reducing the influence of common context words
• TF-IDF (Term Frequency – Inverse Document Frequency)
• PMI (Pointwise Mutual Information) 

• Learning representations from data: word2vec
• skipgram (w/ negative sampling)
• CBOW (Continuous Bag-of-Words) 
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