
TTIC 31190: Natural Language Processing
Lecture 3: Word Representations

Fall 2023

Announcements

• TA (Jiamin Yang) Tutorial Sessions & Office Hours
• Fridays 3 pm – 4 pm; TTIC Room 530
• This week and next: tutorials on Python programming (numpy, PyTorch, etc.)
• Office hour 4 pm – 5 pm

• Assignment 1 to be released today; due in two weeks

Recap

• Linguistic Morphology

• Lexical Semantics

• Word Tokenization

Linguistic Morphology

• morphology: study of how words are built from morphemes

• morphemes: meaning-bearing units in a language, often classified into
stems and affixes

• type/token ratio correlated with morphological richness of a language

• types of word formation: inflection, derivation, compounding

• morphological decomposition is sometimes hierarchical (unlockable)

Linguistic Morphology

• lemmatization: convert wordform to lemma (may depend on context)

• stemming: removing affixes from words to get stems (simple, rule-
based)

Lexical Semantics

• word sense: discrete representation of an aspect of a word’s meaning

• most common words have multiple senses
• though some sense distinctions are subtle

• semantic relationships among senses:
• synonymy: senses have same meanings, can be used interchangeably
• antonymy: senses are opposites in some dimension of meaning, otherwise

are similar
• hyponymy (and hypernymy): subclass (or superclass) relationship

Lexical Semantics

• word sense disambiguation (WSD): NLP task of determining intended
sense of a word based on its context

• methods use words from context of the ambiguous word
• unclear if useful for downstream tasks
• today often done implicitly as part of another task

Word Tokenization

• to do NLP on some text, we need to preprocess it:
• tokenize documents into sentences
• tokenize sentences into tokens

• rule-based tokenizers exist for many languages

• for writing systems without whitespace, tokenization becomes
complex (often treated as an NLP problem)

Word Tokenization

• useful terms: type, token, type/token ratio

• when adding data, number of types keeps increasing

• most types are extremely rare (Zipf’s law)

• Data-driven tokenizers: Byte Pair Encoding (BPE)
• splits words based on data, very common in deep learning

Question

How does ChatGPT (GPT-2 etc.) tokenize texts from different languages,
with a unified tokenizer and fixed vocabulary size?

Byte-level BPE (BBPE) “That’s great 👍👍”

GPT-2 vocabulary size: 50257

Digital Representations

How does a computer see?

Digital Representations

How does a computer see?

Digital Representations

How does a computer see?

Digital Representations

How does a computer read?

Birds are n’t real .

515 834 45 3435 9

Digital Representations

How does a computer read?

Birds are n’t real .

515 834 45 3435 9

Digital Representations

How does a computer read?

Birds are n’t real .

515 834 45 3435 9

“Raw” input is often uninteresting/unwieldy to work with.

Word Representations
Representing words in vector space that captures meaningful structure

How to represent a word

• Stems and affixes
• Dictionary definition
• Lemma and wordforms
• Senses
• Relationships between words and senses

Annotated Database for Lexical Semantics

• WordNet (Fellbaum, 1998): https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

All-Words WSD

WordNet

• hierarchically organized lexical database
• fine-grained sense inventories, relationships among senses
• originally developed for English; other languages now available
• English WordNet version 3.0 contains:

Category Unique Strings

Noun 117,798

Verb 11,529

Adjective 22,479

Adverb 4,481

How is “sense” defined in WordNet?

• synset (synonym set):
• set of near-synonyms, instantiates a sense or concept
• has a gloss (roughly, a definition)

• example: chump1 has gloss “a person who is gullible and easy to take
advantage of”

• chump1 belongs to a synset with 8 other senses:
fool2, gull1, mark9, patsy1, fall guy1, sucker1, soft touch1, mug2

• each of these senses has this same gloss
• not every sense of these words; gull2 is the aquatic bird

one form, multiple meanings  split form
• the three senses of fool belong to different synsets

multiple forms, one meaning  merge forms
• each synset contains senses of several different words

Ambiguity

WordNet has three synsets for the noun fool:

Variability

Hypernyms in WordNet

1. (n) {chump, fool, gull, mark, patsy, fall guy, sucker, soft touch, mug} (a person
who is gullible and easy to take advantage of)

2. (n) {victim, dupe} (a person who is tricked or swindled)
3. (n) {person, individual, someone, somebody, mortal, soul} (a human being)

4. (n) {organism, being} (a living thing that has (or can develop) the ability to act or function
independently)

5. (n) {living thing, animate thing} (a living (or once living) entity)
6. (n) {whole, unit} (an assemblage of parts that is regarded as a single entity)

7. (n) {object, physical object} (a tangible and visible entity; an entity that can
cast a shadow)

8. (n) {physical entity} (an entity that has physical existence)
9. (n) {entity} (that which is perceived or known or inferred to have its
own distinct existence (living or nonliving))

How to represent a word

• Until the ~2010s, in NLP, words == atomic symbols
• Nowadays, vector representations, word == vectors

Similar words are “nearby
in the vector space”

How to represent a word

[SLP3, Chapter 6]

cat chef chicken civic cooked council …

17 91 253 104 5 6001 …

cat chef chicken civic cooked council …

0.1

7.9

2.4

-1.3

0.5

-0.1

2.1

3.8

-0.1

5.3

-0.4

2.4

9.7

-1.0

3.2

0.1

0

-1.5

2.4

0.2

0.6

-1.3

0

3.4

-0.6

-0.5

-1.1

7.6

-3.1

4.2

“embeddings”

Motivations

Variability
multiple forms,
similar meaning

really reallly realllly

2.1

-7.9

8.4

-1.3

2.3

-6.1

7.8

-0.8

1.9

-6.8

7.7

-1.0

Representation Learning for Engineering

• Engineering: these representations are often useful for downstream
tasks!

Text ⇒ ⇒ Context Prediction

Images ⇒ ⇒ Object Classification

• Transfer learning:

Representation Learning for Engineering

• Engineering: these representations are often useful for downstream
tasks!

Text ⇒ ⇒ Context Prediction

Images ⇒ ⇒ Object Classification

Segmentation, VQA, ...

Classification, QA, …

• Transfer learning:

How to represent a word

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

better

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

winner cat champion𝑤𝑤 =

|𝑉𝑉|

…

|𝑉𝑉|

∊ 𝑉𝑉

How to represent a word

● “One-hot” representation of
words

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

better

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

winner cat champion𝑤𝑤 =

|𝑉𝑉|

…

|𝑉𝑉|

∊ 𝑉𝑉

How to represent a word

● “One-hot” representation of
words

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

better

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

winner cat champion𝑤𝑤 =

|𝑉𝑉|

…

|𝑉𝑉|

∊ 𝑉𝑉

|𝑉𝑉| could be very large!
(e.g. 50K)

How to represent a word

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

better

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

winner cat champion𝑤𝑤 =

|𝑉𝑉|

…

|𝑉𝑉|

∊ 𝑉𝑉

How to represent a word

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

better

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

winner cat champion𝑤𝑤 =

|𝑉𝑉|

…

|𝑉𝑉|

∊ 𝑉𝑉 Vectors are orthogonal!

Word Representation

• What is an ideal word representation?

• It should probably capture information about usage and meaning:
• Part of speech tags (noun, verb, adj., adv., etc.)
• The intended sense
• Semantic similarities (winner vs. champion)
• Semantic relationships (antonyms, hypernyms, etc.)

Features?

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

better

1

0

0

1

0

0

1

0

1

1

0

0

0

0

0

1

winner cat champion

|𝑉𝑉|

…

Is noun?

Is verb?

Is adj.?

Is animal?

…
?

Features?

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

1

0

1

1

0

0

0

0

0

1

…

Is noun?

Is verb?

Is adj.?

Is animal?

…

?

1

0

0

1

0

0

1

0

0

1

0

0

Features?

WordNet

Word Representation

• What is an ideal word representation?

• It should probably capture information about usage and meaning:
• Part of speech tags (noun, verb, adj., adv., etc.)
• The intended sense
• Semantic similarities (winner vs. champion)
• Semantic relationships (antonyms, hypernyms, etc.)

Distributional Semantics:
How much of this can we capture from context/data alone?

Main Idea

“The meaning of a word is its use in the language.”

[Ludwig Wittgenstein 1943]

“Usage”:
Words are defined by their environments
(the words around them)

Main Idea

Consider encountering a new word: tezgüino.

1. A bottle of tezgüino is on the table.
2. Everybody likes tezgüino.
3. Don’t have tezgüino before you drive.
4. We make tezgüino out of corn.

What do you think the tezgüino is?

loud
motor oil
tortillas
choices
wine

Main Idea

Consider encountering a new word: tezgüino.

1. A bottle of tezgüino is on the table.
2. Everybody likes tezgüino.
3. Don’t have tezgüino before you drive.
4. We make tezgüino out of corn.

What do you think the tezgüino is?

loud
motor oil
tortillas
choices
wine

Main Idea

Consider encountering a new word: tezgüino.

1. A bottle of tezgüino is on the table.
2. Everybody likes tezgüino.
3. Don’t have tezgüino before you drive.
4. We make tezgüino out of corn.

What do you think the tezgüino is?

loud
motor oil
tortillas
choices
wine

Distributional Hypothesis

• These representations encode distributional properties of each word
• The distributional hypothesis: words with similar meaning are used in

similar contexts.

“You shall know a word by the company it keeps.”
 ‒J.R.Firth (1957)
“The meaning of a word is its use in the language.”

[Ludwig Wittgenstein 1943]

“If A and B have almost identical environments we say that
they are synonyms.”

[Harris 1954]

Distributional Hypothesis

• How can we automate the process of constructing representations
of word meaning from its “company”?

• First solution: word-word co-occurrence counts

cat chef chicken civic cooked council

words we are computing vectors for:

the
cat

chicken
city

cook

context
words:

… , the club may also employ a chef to prepare and cook food items .

… is up to remy , linguini , and the chef colette to cook for many people …

… cooking program the cook and the chef with simon bryant , who is …

chef
the
cat

chicken
city

cook

0

0

0

0

0

… , the club may also employ a chef to prepare and cook food items .

… is up to remy , linguini , and the chef colette to cook for many people …

… cooking program the cook and the chef with simon bryant , who is …

chef
the
cat

chicken
city

cook

2

0

0

0

0

window size:

… , the club may also employ a chef to prepare and cook food items .

… is up to remy , linguini , and the chef colette to cook for many people …

… cooking program the cook and the chef with simon bryant , who is …

chef
the
cat

chicken
city

cook

3

0

0

0

3

window size:

the
cat

chicken
city

cook

24708

2336

23

116

12

cat chef chicken civic cooked council
the
cat

chicken
city

cook

7410

14

21

89

113

7853

23

1640

62

34

16486

0

1

943

6

316380

36

7

27033

51

3463

1

181

7

34

words we are computing vectors for:

context
words:

• once we have word vectors, we can compute similarities!
• many ways to define similarity of two vectors
• a simple way: dot product (also called inner product):

• dot product is large when the vectors have very large (or very negative)
values in the same dimensions

a vector

entry i in the vector

cat chef chicken civic cooked council

with dot product as similarity function, let’s find the
most similar words (“nearest neighbors”) to each word:

nearest
neighbors

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

cat chef chicken civic cooked council

with dot product as similarity function, let’s find the
most similar words (“nearest neighbors”) to each word:

nearest
neighbors

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

cat chef chicken civic cooked council

with dot product as similarity function, let’s find the
most similar words (“nearest neighbors”) to each word:

nearest
neighbors

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
cat

civic
chicken

chef
cooked

council
the
cat

chicken
city

cook

316380

36

7

27033

51

• dot product is large when vectors have large values in same dimensions,
doesn’t control for vector length

• vector length:

• cosine similarity:

this is the cosine of the angle between the two vectors!

a vector

entry i in the vector

cat chef chicken civic cooked council

now using cosine similarity:

nearest
neighbors

cat
chef

cooked
civic

council
chicken

chef
civic

cooked
council

cat
chicken

chicken
cooked

chef
civic

council
cat

civic
council

chef
cooked

cat
chicken

cooked
chef
civic

council
cat

chicken

council
civic
chef

cooked
cat

chicken

Any issue?

Raw frequency count is probably a bad representation!

Counts of common words are very large, but not very useful
• “the”, “it”, “they”
• Not very informative

Many ways proposed for improving raw counts

Any issue?

Raw frequency count is probably a bad representation!

Counts of common words are very large, but not very useful
• “the”, “it”, “they”
• Not very informative

Many ways proposed for improving raw counts
• TF-IDF
• PMI
• word2vec

TF-IDF

TF (Term Frequency) - IDF (Inverse Document Frequency)

TF-IDF

TF (Term Frequency) - IDF (Inverse Document Frequency)

• Information Retrieval (IR) workhorse!
• A common baseline model
• Sparse vectors
• Words are represented by (a simple function of) the counts of nearby

words

TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document
matrix

word

document

TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document
matrix

TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document
matrix

bag-of-words
(document representation)

word vector

TF-IDF Term-Document Matrix

• Consider a matrix of word counts across documents: term-document
matrix

word

document

≈ 0 for words like “the”

TF-IDF Term-Document Matrix

• IDF from 37 Shakespeare plays

TF-IDF Term-Document Matrix

• IDF from 37 Shakespeare plays

TF-IDF Variations

[Image: Wikipedia]

TF-IDF Usage

• TF-IDF was designed for and still excels at document retrieval
• The BM25 model (very similar to TF-IDF) is still a strong document

retrieval baseline!

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse, Dense, and Attentional Representations
for Text Retrieval. Transactions of the Association for Computational Linguistics, 9:329–345.

https://aclanthology.org/2021.tacl-1.20
https://aclanthology.org/2021.tacl-1.20

Pointwise Mutual Information (PMI)

Pointwise Mutual Information (PMI)

• consider two random variables, and

• do two events and occur together more often than if
they were independent?

• if they are independent, PMI = 0

PMI for Word Vectors

• for word vectors,
 is the center word
 is the context word

• each probability can be estimated using
counts we already computed!

 = co-occurrence count of x and y
 = total count

Top co-occurrence counts with “chicken”
14464 ,
 7853 the
 6276 and
 5931 .
 5213 a
 3963 of
 3282 in
 2520 to
 2438 "
 2339 is
 2127 with
 1818 (
 1745)
 1640 chicken
 1594 as

1525 or
1225 for
1061 ‘s
 940 fried
 906 on
 889 was
 869 that
 828 are
 777 by
 746 from
 710 it
 600 beef
 590 which
 557 also
 531 an

508 pork
500 meat
481 be
479 he
452 such
445 his
417 at
405 soup
389 made
384 rice
375 but
350 has
330 fish
325 other
318 this

Words with largest PMI with “chicken”
10.2 fried
 9.7 chicken
 9.3 pork
 9.0 beef
 8.7 soup
 7.8 sauce
 7.7 curry
 7.6 cooked
 7.5 lamb
 7.4 dish
 7.3 shrimp
 7.3 egg
 7.2 sandwich
 7.2 dishes
 7.2 meat

7.0 robot
6.9 burger
6.8 recipe
6.6 vegetables
6.6 potatoes
6.6 goat
6.5 eggs
6.4 cow
6.4 pizza
6.4 rice
6.3 ribs
6.3 tomatoes
6.2 cheese
6.2 duck
6.1 chili

6.1 pig
6.0 breeds
6.0 vegetable
6.0 potato
5.9 goose
5.9 dixie
5.9 kung
5.9 pie
5.8 menu
5.8 steamed
5.8 tastes
5.7 beans
5.7 butter
5.7 barn
5.7 breed

24708

2336

23

116

12

cat chef chicken civic cooked council
the
cat

chicken
city

cook

7410

14

21

89

113

7853

23

1640

62

34

16486

0

1

943

6

316380

36

7

27033

51

3463

1

181

7

34

words we are computing vectors for:

context
words:

the
cat

chicken
city

cook

0.1

7.9

2.4

-1.3

0.5

-0.1

2.1

3.8

-0.1

5.3

-0.4

2.4

9.7

-1.0

3.2

0.1

0

-1.5

2.4

0.2

0.6

-1.3

0

3.4

-0.6

-0.5

-1.1

7.6

-3.1

4.2

cat chef chicken civic cooked council

words we are computing vectors for:

context
words:

cat chef chicken civic cooked council

using counts:

nearest
neighbors

cat chef chicken civic cooked council
chef

cooked
civic

council

chicken

civic
cooked
council

cat

chicken

cooked
chef
civic

council

cat

council
chef

cooked
cat

chicken

chef
civic

council
cat

chicken

civic
chef

cooked
cat

chicken

cat chef chicken civic cooked council

using PMIs:

nearest
neighbors

cat

chef
cooked

civic
council

chicken
chef

civic

cooked

council
cat

chicken
chicken
cooked

chef

civic
council

cat

civic
council

chef

cooked

cat
chicken

cooked

chef

civic
council

cat

chicken
council

civic

chef
cooked

cat

chicken

Positive PMI (PPMI)

• some have found benefit by truncating PMI at 0 (“positive PMI”)

• negative PMI: words occur together less than we would expect, i.e.,
they are anticorrelated

• these anticorrelations may need more data to reliably estimate

• however, negative PMIs do seem reasonable!

Largest PMIs:

10.2 fried
 9.7 chicken
 9.3 pork
 9.0 beef
 8.7 soup
 7.8 sauce
 7.7 curry
 7.6 cooked
 7.5 lamb
 7.4 dish
 7.3 shrimp
 7.3 egg
 7.2 sandwich

0.003 climbed
 0.003 detailing
 0.002 turkish
 0.002 oaks
 0.001 productivity
 0.000 swing
-0.001 structures
-0.001 thirteenth
-0.001 commentators
-0.001 palmer
-0.002 obstacles
-0.003 horns
-0.003 burning

-4.6 users
-4.6 data
-4.7 discussion
-4.7 museum
-4.7 below
-4.8 editors
-4.8 railway
-4.8 committee
-4.8 elected
-4.9 championship
-5.0 archive
-5.3 edits
-6.1 deletion

Smallest PMIs:PMIs close to zero:

the
cat

chicken
city

cook

0.1

7.9

2.4

-1.3

0.5

-0.1

2.1

3.8

-0.1

5.3

-0.4

2.4

9.7

-1.0

3.2

0.1

0

-1.5

2.4

0.2

0.6

-1.3

0

3.4

-0.6

-0.5

-1.1

7.6

-3.1

4.2

cat chef chicken civic cooked council

words we are computing vectors for:

context
words:

• downside: large context word vocabulary needed for
good vectors (1,000 to 10,000)

• hard to work with high-dimensional vectors

• we can reduce dimensionality (SVD, etc.), but this is
difficult to scale to large vocabularies

word2vec

word2vec

• Learning representations with neural networks

word2vec

• Learning representations with neural networks

[Mikolov et al., 2013]

word2vec

• Learning representations with neural networks

• Instead of counting, train a classifier (neural network) to predict
context (e.g. neighboring words)

• Training is self-supervised: no annotated data required, just raw text
• Word embeddings learned via backpropagation

Neural Distributional SemanticsCount-based Distributional Semantics

Neural Word Embeddings
cat

dog
paw

great
good

printer
zoom

stonks
red

bandaid
cash

jumped
scintillating

.

.

.

.

.

The excited dog jumped over the annoyed cat

The fluffy Samoyed jumped over the backyard fence

The quick brown fox jumped over the lazy dog

Intuition: word embedding for “jumped” should be learned
(from random initialization) such that it can well-predict
surrounding context.

word2vec

• CBOW (Continuous Bag-of-Words): learn representations that predict
a word given context

• Skipgram: learn representations that predict the context given a word

word2vec

• CBOW (Continuous Bag-of-Words): learn representations that predict
a word given context

• Skipgram: learn representations that predict the context given a word

skipgram
Randomly initialized.
(To be learned via backprop)

skipgram
Randomly initialized.
(To be learned via backprop)

Just a (log) linear model!

softmax

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

Pick a window centered at a word and predict the
context (window size is a hyperparameter)

skipgram

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

skipgram

it is a far , far better rest that I go to , than I have ever known

Use the context to predict
the center word

CBOW (Continuous Bag-of-Words)

it is a far , far better rest that I go to , than I have ever known

Use the context to predict
the center word

CBOW (Continuous Bag-of-Words)

word2vec

[Mikolov et al. 2013]

skipgram w/ Negative Sampling

• Vocabulary size V: 50K – 30M
• Very expensive O(|V|)

skipgram w/ Negative Sampling

• Treat the target word and a neighboring context word as positive
examples

• Randomly sample other words outside of context to get negative
samples

• learn to distinguish between true pair and negative samples
with a binary classifier

• New objective

C = Negative Samples

skipgram w/ Negative Sampling

• Treat the target word and a neighboring context word as positive
examples

• Randomly sample other words outside of context to get negative
samples

• learn to distinguish between true pair and negative samples
with a binary classifier

• New objective

skipgram w/ Negative Sampling

• Treat the target word and a neighboring context word as positive
examples

• Randomly sample other words outside of context to get negative
samples

• learn to distinguish between true pair and negative samples
with a binary classifier

• New objective

(logistic) sigmoid:

skipgram w/ Negative Sampling

• Treat the target word and a neighboring context word as positive
examples

• Randomly sample other words outside of context to get negative
samples

• learn to distinguish between true pair and negative samples
with a binary classifier

• New objective

Much cheaper to compute: O(|C|)

Choosing negative samples

• According to unigram probabilities
• More common to choose from a flattened version

• From Mikolov et al. (2013):
• works well empirically (why?)
• Usually 2-20 sampled negative words

Contrastive Learning

• Learning to contrast positive vs. negative samples is a very powerful
idea!

oRepresentation learning

[SimCLR; Chen et al. 2020]

Contrastive Learning

• Learning to contrast positive vs. negative samples is a very powerful
idea!

oDensity estimation: Generative Adversarial Networks (GANs)

[Goodfellow et al. 2014]

Word2vec Embeddings

[https://projector.tensorflow.org/]

Word2vec Embeddings

• Regularities in the vector space correspond to regularities in language
space!

Word2vec Embeddings

[Mikolov et al. 2013]

Word Embeddings You can Download

• word2vec [Mikolov et al. 2013]:
https://code.google.com/archive/p/word2vec/

• GloVe [Pennington et al. 2014]:
 https://nlp.stanford.edu/projects/glove/

• fasttext [Bojanowsi et al. 2017]:
https://fasttext.cc/

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Extensions

• Neural word embeddings

• Multilingual?

• Social biases?

• Contextualized?

Extensions

“You shall know a word by the company it keeps”
anything?

Node2Vec
[Grover and Leskovec 2016]

Concept2Vec
[Choi et al. 2016]

World2Vec
[Facebook AI Research]

Summary (1/2)

• Annotated Database for Lexical Semantics -- WordNet

• Word vectors: the use of a vector of numbers to represent a word

• Distributional word vectors: the use of distributional statistics (e.g., word
co-occurrence counts) in defining word vectors

• Computing similarity of two vectors:
• dot product is a simple starting point
• cosine similarity accounts for vector length and works better for word vectors

Summary (2/2)

• Simple distributional word vectors: word-word co-occurrence counts

• Improving by reducing the influence of common context words
• TF-IDF (Term Frequency – Inverse Document Frequency)
• PMI (Pointwise Mutual Information)

• Learning representations from data: word2vec
• skipgram (w/ negative sampling)
• CBOW (Continuous Bag-of-Words)

	TTIC 31190: Natural Language Processing
	Announcements
	Recap
	Linguistic Morphology
	Linguistic Morphology
	Lexical Semantics
	Lexical Semantics
	Word Tokenization
	Word Tokenization
	Question
	Digital Representations
	Digital Representations
	Digital Representations
	Digital Representations
	Digital Representations
	Digital Representations
	Slide Number 17
	How to represent a word
	Annotated Database for Lexical Semantics
	All-Words WSD
	WordNet
	How is “sense” defined in WordNet?
	Slide Number 23
	Hypernyms in WordNet
	How to represent a word
	How to represent a word
	Slide Number 27
	Slide Number 28
	Motivations
	Representation Learning for Engineering
	Representation Learning for Engineering
	How to represent a word
	How to represent a word
	How to represent a word
	How to represent a word
	How to represent a word
	Word Representation
	Features?
	Features?
	Features?
	Word Representation
	Main Idea
	Main Idea
	Main Idea
	Main Idea
	Distributional Hypothesis
	Distributional Hypothesis
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Any issue?
	Any issue?
	TF-IDF
	TF-IDF
	TF-IDF Term-Document Matrix
	TF-IDF Term-Document Matrix
	TF-IDF Term-Document Matrix
	TF-IDF Term-Document Matrix
	TF-IDF Term-Document Matrix
	TF-IDF Term-Document Matrix
	TF-IDF Variations
	TF-IDF Usage
	Pointwise Mutual Information (PMI)
	Pointwise Mutual Information (PMI)
	PMI for Word Vectors
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Positive PMI (PPMI)
	Slide Number 81
	Slide Number 82
	word2vec
	word2vec
	word2vec
	word2vec
	Neural Word Embeddings
	word2vec
	word2vec
	skipgram
	skipgram
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	it is a far , far better rest that I go to , than I have ever known
	word2vec
	skipgram w/ Negative Sampling
	skipgram w/ Negative Sampling
	skipgram w/ Negative Sampling
	skipgram w/ Negative Sampling
	Slide Number 108
	skipgram w/ Negative Sampling
	Choosing negative samples
	Contrastive Learning
	Contrastive Learning
	Word2vec Embeddings
	Word2vec Embeddings
	Word2vec Embeddings
	Word Embeddings You can Download
	Extensions
	Extensions
	Summary (1/2)
	Summary (2/2)

