

TTIC 31190: Natural Language Processing

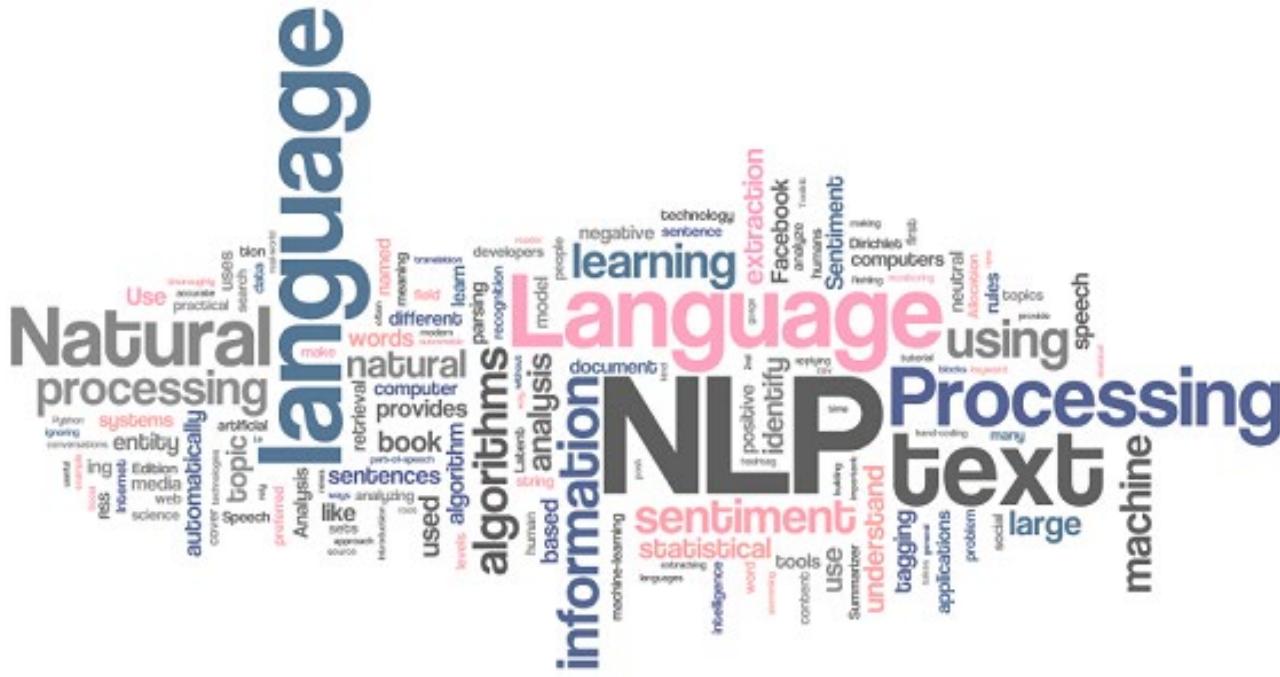
Lecture 2: Words

Fall 2023

Announcements

- Prerequisite Quiz Papers
- TA (Jiamin Yang) Tutorial Sessions & Office Hours
Fridays 3 pm – 4 pm; OH afterwards 4 pm – 5 pm; TTIC Room 530
- Instructor Office Hours
Tuesdays 1:30 pm – 2:30 pm; location: TTIC 4th floor lobby
- Assignment 1 to be released this week; due in two weeks

Words



What is a word?

“A single distinct **meaningful** element of speech or writing, used with others (or sometimes alone) to form a sentence and typically shown with a space on either side when written or printed.”

(Oxford Languages)

Lexical Semantics

What is a word?

- The things that are in the dictionary?

What makes a *word* a real word?

The word *word* has a wide range of meanings and uses in English. Yet one of the most often looked for pieces of information regarding *word* is not something that would be found in its definition. Instead, it is some variant of the question, What makes a word a real word?

One of the most prolific areas of change and variation in English is vocabulary; new words are constantly being coined to name or describe new inventions or innovations, or to better identify aspects of our rapidly changing world. Constraints of time, money, and staff would make it impossible for any dictionary, no matter how large, to capture a fully comprehensive account of all the words in the language. And even if such a leviathan reference was somehow fashioned, the dictionary would be obsolete the instant it was published as speakers and writers continued generating new terms to meet their constantly changing needs.

What is a word?

- The things that are in the dictionary?

Most general English dictionaries are designed to include only those words that meet certain criteria of usage across wide areas and over extended periods of time (for more details about how words are chosen for dictionary entry, read "How does a word get into a Merriam-Webster dictionary?" in our FAQ). As a result, they may omit words that are still in the process of becoming established, those that are too highly specialized, or those that are so informal that they are rarely documented in professionally edited writing. But the words left out are as real as those that gain

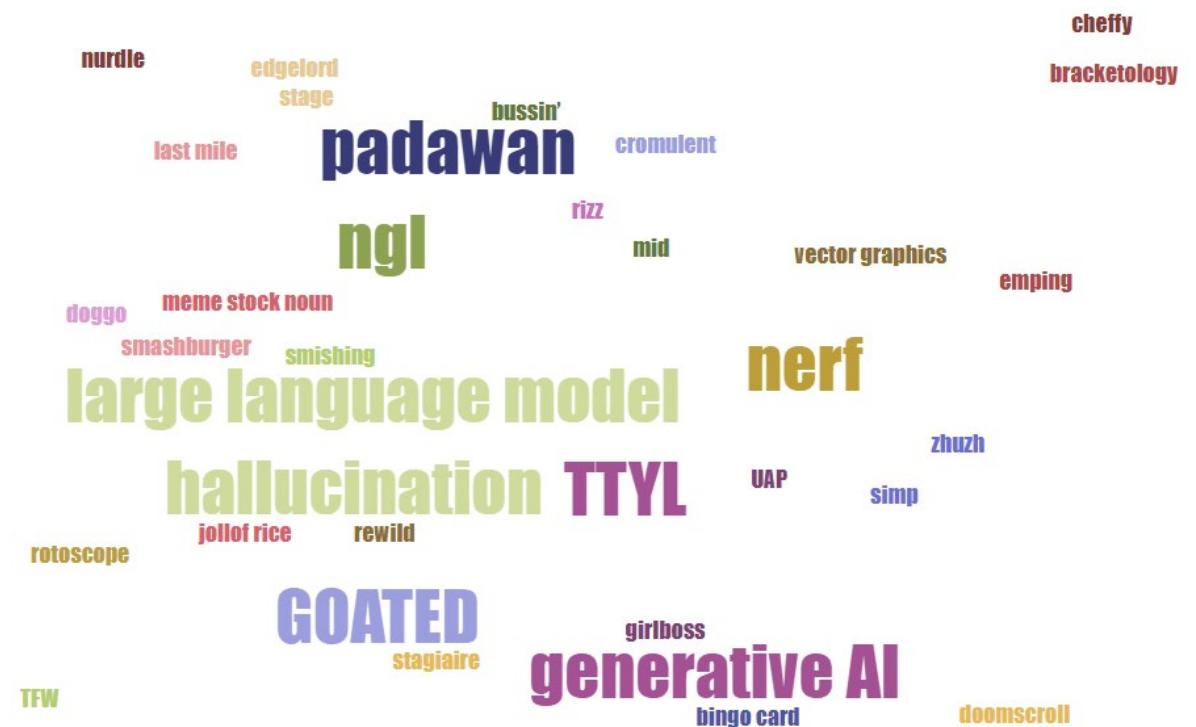
What is a word?

- The things that are in the dictionary?

Merriam-Webster Adds 690 New Words to the Dictionary (September 2023 Update)

□ September 28, 2023 by [Gary Price](#)

From the [M-W Website](#):



[Src: Merriam-Webster]

What is a word?

- The things that are in the dictionary?
- The things between spaces and punctuation?

I wish I didn't have to work.

I wish I did not have to work.

He's given up his job.

Jimmy's Pizza Café is expensive!

Did you achieve the state-of-the-art results?

Asian Language Writing Systems

This is Korean: 안녕하세요

This is Chinese: 你好

This is Thai: สวัสดีครับ

This is Japanese: こんにちは

This is also Japanese: グッドモーニング

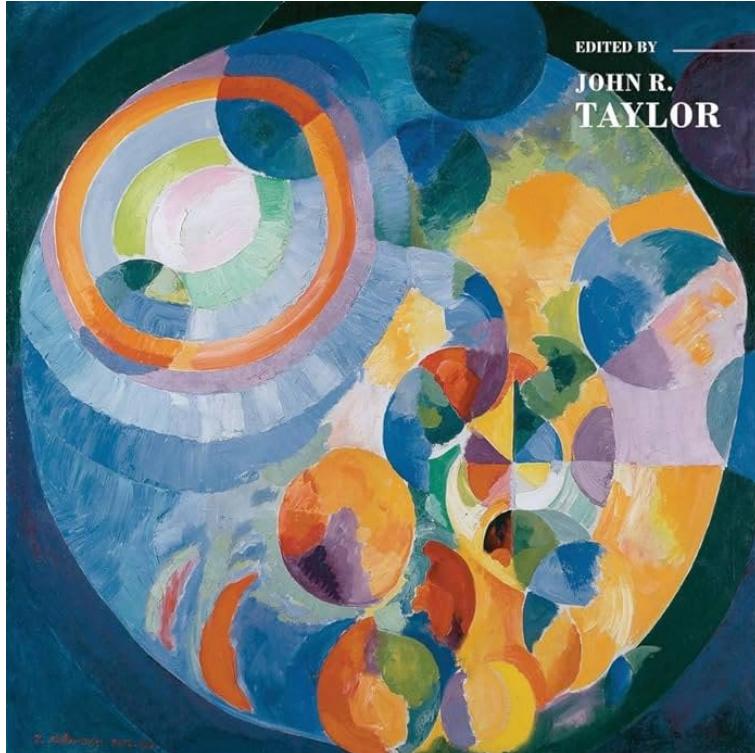
And this is also Japanese: 猛烈宇宙交響曲

Tokenization

What is a word?

- The things that are in the dictionary?
- The things between spaces and punctuation?
- The smallest unit that can be uttered in isolation?
 - You could say this word in isolation: *Unimpressively*
 - This one too: *impress*
 - But probably not these in isolation, unless you were talking about [morphology](#):
 - *un*
 - *ive*
 - *ly*

What is a word?



≡ The Oxford Handbook of
THE WORD

- 42 chapters
- Nearly 900 pages
- Covers a lot of different aspects of what makes a word word, “to anyone who shares a fascination with words”

This Lecture

- Linguistic Morphology
 - The study of internal structures of words
- Lexical Semantics
 - The study of meanings of words
- Word Tokenization
 - The process of splitting texts into “words” (tokens)

“Bender Rule”

“Always name the language(s) you’re working on.”

 @emilymbender@dair-community.social on Mastodon
@emilymbender · [Follow](#)

Dear Computer Scientists,

“Natural Language” is **not** a synonym for “English”.

That is all.

-Emily

12:32 PM · Nov 26, 2018

 1K [Reply](#) [Share](#)

[Read 14 replies](#)

 Alex O'Connor (gone to mastodon) · Jun 3, 2019
@uberalex · [Follow](#)
Replies to @emilymbender and @seb_ruder
Is there a formal statement of the Bender rule? Asking for future use.

 @emilymbender@dair-community.social on Mastodon
@emilymbender · [Follow](#)

“Always name the language(s) you’re working on.”

That’s really the bare minimum. I’d really like to encourage people to go much further and do data statements:
aclweb.org/anthology/pape...

7:57 PM · Jun 3, 2019

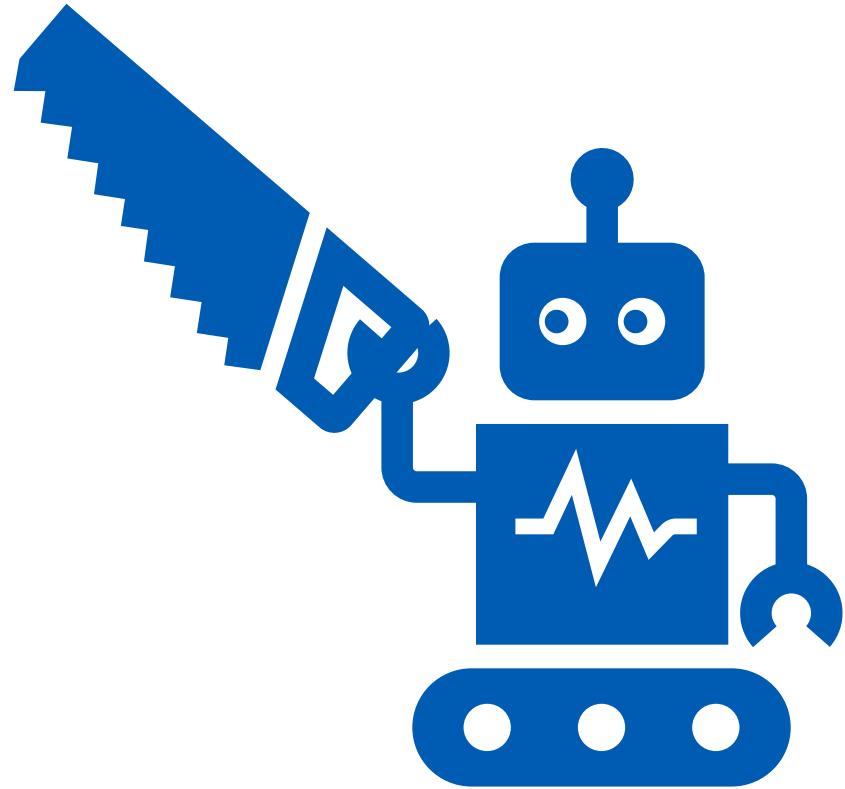
 39 [Reply](#) [Share](#)

[Read 1 reply](#)

colder

replayed

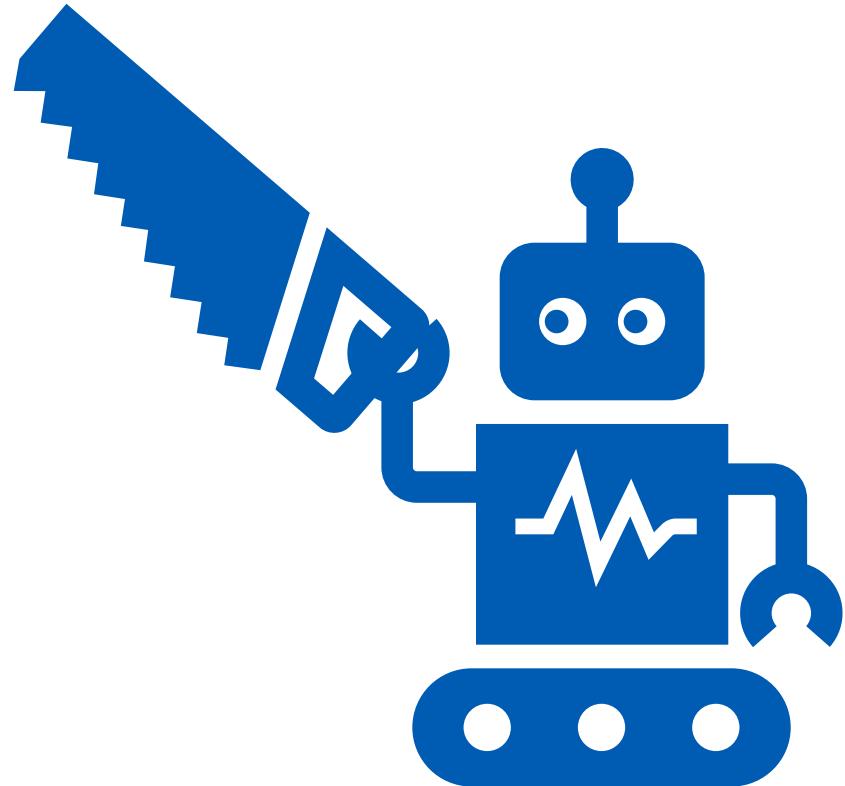
gameplay



cold|er

re|play|ed

game|play



Morphology

The study of how words are built from smaller meaning-bearing units

morpheme: the smallest meaning-bearing unit in a language

types of morphemes:

stem: a core meaning-bearing unit

affix: a piece that attaches to a stem, adding some function or meaning
(prefix, suffix, infix, and circumfix)

	stem	affixes
colder	cold	-er
cats	cat	-s
replayed	play	re-, -ed

Kinds of Word Formation

- **inflection**: modifying a word with an affix to change its grammatical function (tense, number, etc.)
 - result is another form of the same word

book → books walk → walked
- **derivation**: adding an affix to a word to create a new word
- great → greatly great → greatness
- **compounding**: combining two words
- lawsuit, keyboard, bookcase

Kinds of Word Formation

Chinese: **isolating language** (Vietnamese, Thai language, etc.)

- Each word form consists typically of a single morpheme
- Little morphology other than **compounding**

➤ Inflection

们: 我们, 你们, 他们

mén: wǒmén, nǐmén, tāmén

plural: we, you (pl.), they

➤ Chinese is a champion in the realm of compounding --- up to 80% of Chinese words are actually compounds

➤ Derivation

艺术家 yì shù jiā, artist

高	地	高
gāo	ground, land земля	gāodì highland возвышенность
+	档	高
	grade, quality сорт, качество	gāodàng high quality высококачественный
	速	高
	speed скорость	gāosù high speed скоростной

Morphological Decomposition

- usually, morphological decomposition is simply splitting a word into its morphemes:

walked = walk + ed

greatness = great + ness

- but it can actually be a hierarchical structure

unbreakable = un + (break + able)

Morphological Decomposition

- ambiguity in hierarchical morphological decomposition?
rare, but it does happen

example: unlockable

(un + lock) + able: “able to be unlocked”

un + (lock + able): “not able to be locked”

Morphology in NLP

- NLP problems that address morphology:

lemmatization

stemming

Word Normalization: putting words/tokens in a standard format

Terminology

- **lemma**

- canonical/dictionary form of a word
- words with same lemma have same stem, part of speech, rough semantics

- **wordform**

- full inflected or derived form of a word as it appears in text

wordform	lemma
run	run
ran	run
running	run

Lemmatization

- **lemmatization**: convert wordform to lemma

am, is, are → be

car, cars, car's, cars' → car

the boy's cars are different colors

the boy car be different color

- mostly about finding the correct dictionary entry, but this may depend on the context

Stemming

- **stemming**: reduce words to their stems (approximately) by removing affixes
 - usually implemented with language-specific, manually-designed rules
 - commonly used in information retrieval
 - example:

Caillou is an average, imaginative four-year-old boy with a love for forms of transportive machinery such as rocket ships and airplanes.

Caillou is an **averag imagin** four year old **boi** with a love for **form** of **transport machineri** such as rocket **ship** and **airplan**

Porter's Algorithm (the most common English stemmer)

Step 1a

sses	→	ss	caresses	→	caress
ies	→	i	ponies	→	poni
ss	→	ss	caress	→	caress
s	→	Ø	cats	→	cat

Step 1b

(*v*) ing	→	Ø	walking	→	walk
			sing	→	sing
(*v*) ed	→	Ø	plastered	→	plaster

3

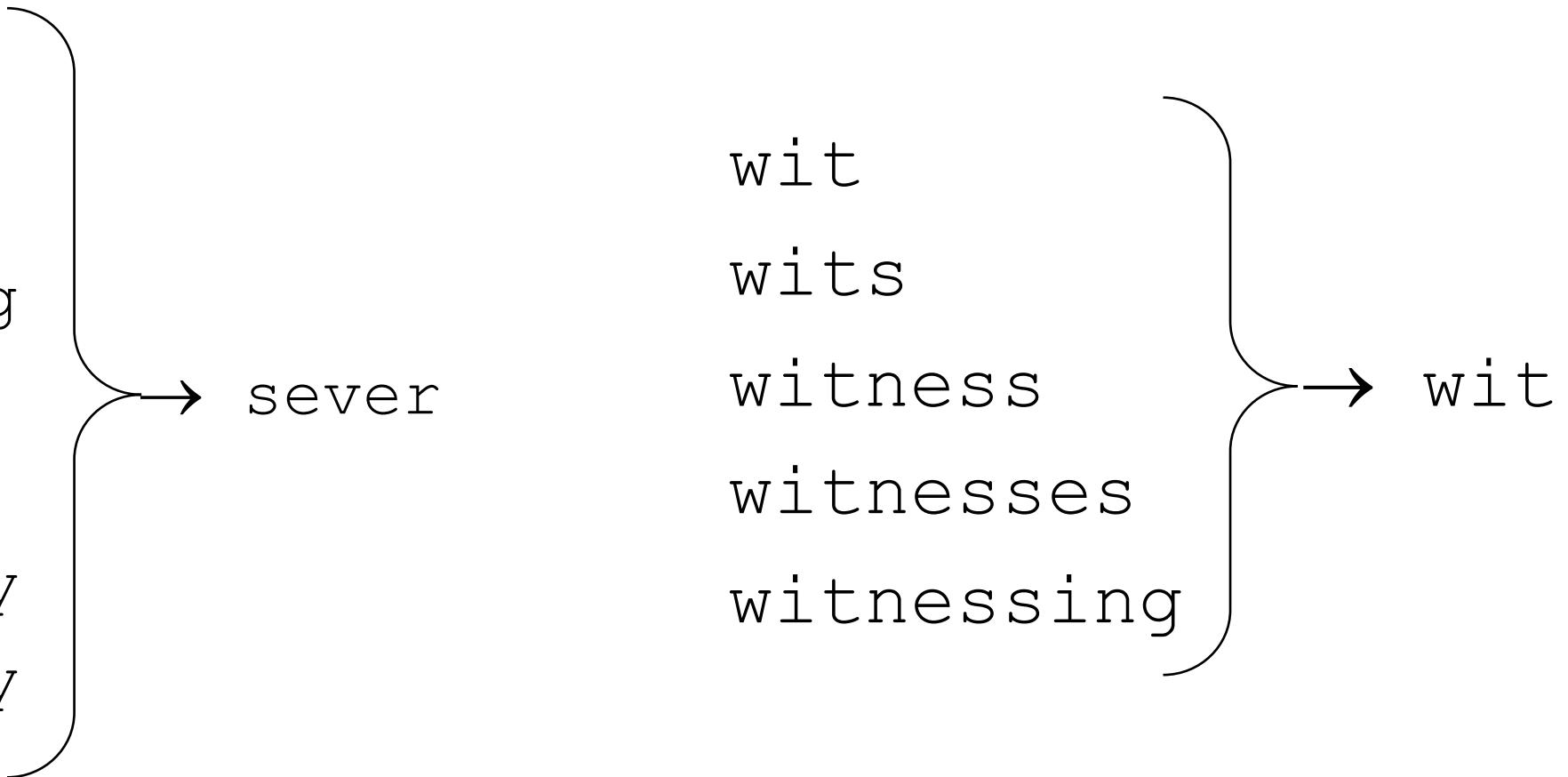
Idiosyncrasies of the Porter Stemmer

sever
severed
severing
several
severe
severely
severity

sever

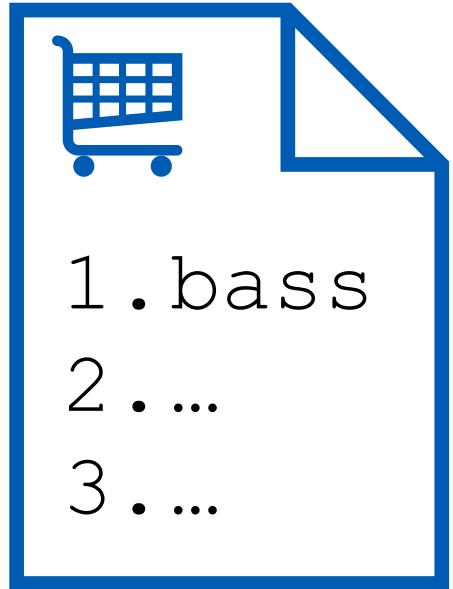
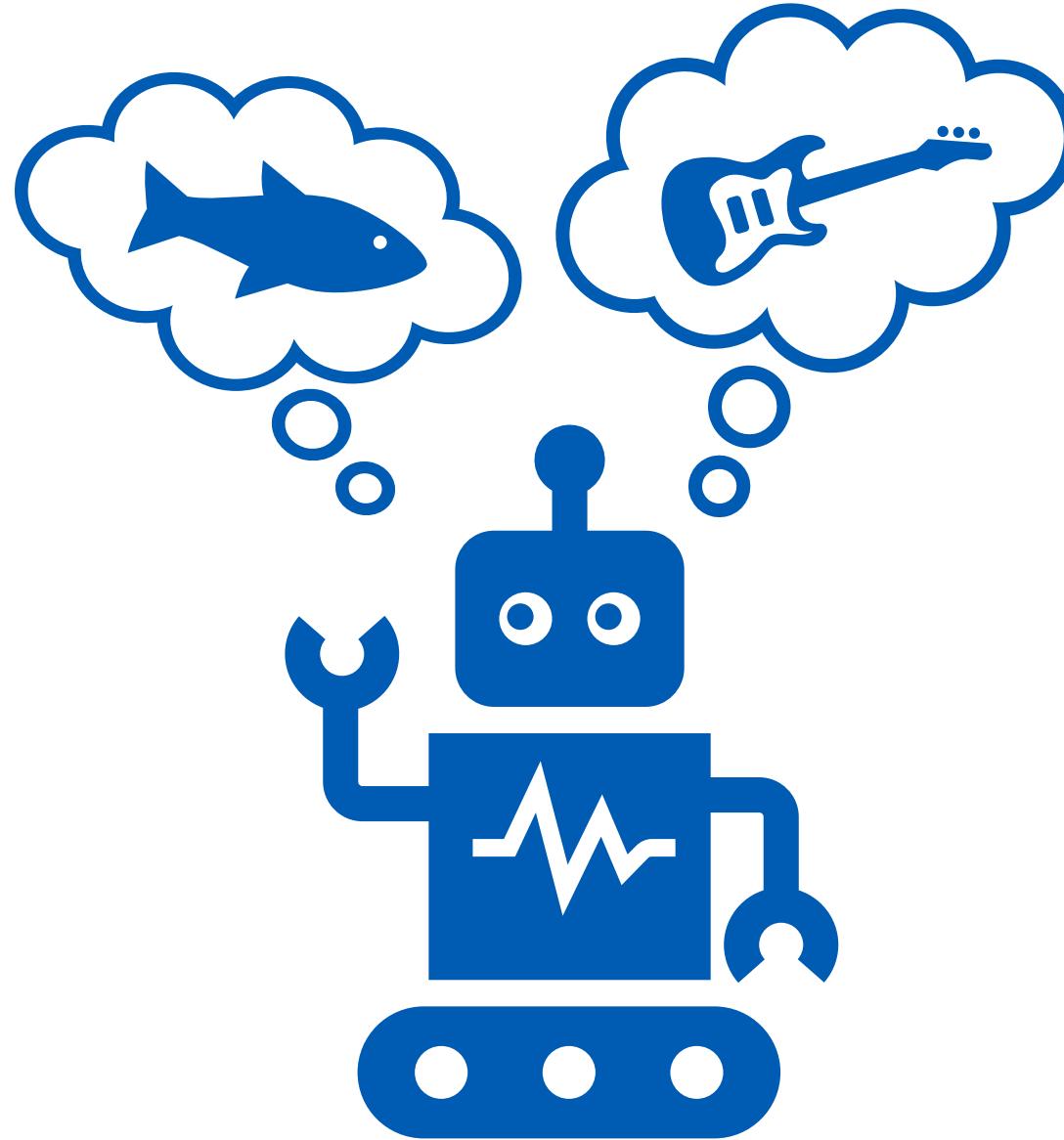
wit
wits
witness
witnesses
witnessing

wit



Lemmatization vs. Stemming

- Lemmatization
 - viewed as an NLP task
 - solved with dictionary look-up, possibly with machine learning
- Stemming uses manually-defined rules
 - simple and fast, but limited due to reliance on rules
 - may conflate words erroneously
- Both may remove information
 - To mitigate, combine lemma/stem form with original form, use both!



Lexical Semantics

The study of meanings of words

Variability

multiple forms,
similar meaning

sing, sang, sung, singing

↓
lemmatizer

↓
sing

Ambiguity

one form,
multiple meanings

Google

how do I convert to

how do i convert to **judaism**

how do i convert to **islam**

how do i convert to **catholicism**

how do i convert to **pdf**

Press Enter to search.

large language model noun

plural **large language models**

: a **language model** that utilizes deep (see **DEEP entry 1 sense 8**) methods on an extremely large data set as a basis for predicting and constructing natural-sounding text

GPT-3 was a *large language model* built by OpenAI that could write impressively human-like poems, sonnets, jokes, and even code samples.

— Dale Markowitz

About five years ago, companies like Google, Microsoft and OpenAI began building **neural networks** that learned from huge amounts of digital text called *large language models* ...

— Cade Metz

→ abbreviation *LLM*

deep 1 of 3 adjective

deeplink

[Synonyms of *deep*](#) >

1 : extending far from some surface or area: such as

a : extending far downward

| a *deep* well

| a *deep* chasm

b (1) : extending well inward from an outer surface

| a *deep* gash

| a *deep*-chested animal

(2) : not located superficially within the body

| *deep* pressure receptors in muscles

c : extending well back from a surface accepted as front

| a *deep* closet

d : extending far laterally from the center

| *deep* borders of lace

e **sports** : occurring or located near the outer limits of the playing area

| hit to *deep* right field

2 : having a specified extension in an implied direction usually downward or backward

| a shelf 20 inches *deep*

| cars parked three-*deep*

3 **a** : difficult to penetrate or comprehend: [RECONDITE](#)

| *deep* mathematical problems

| *deep* discussions on the meaning of life

b : [MYSTERIOUS, OBSCURE](#)

| a *deep* dark secret

c : grave or [lamentable](#) in nature or effect

| in *deepest* disgrace

d : of [penetrating](#) intellect: [WISE](#)

| a *deep* thinker

e : intensely engrossed or immersed

| She was *deep* in her book.

f : characterized by [profundity](#) of feeling or quality

| a *deep* sleep

also : [DEEP-SEATED](#)

| *deep* religious beliefs

4 **a** **of color** : high in saturation and low in lightness

| a *deep* red

5 **a** : situated well within the boundaries

| a house *deep* in the woods

b : remote in time or space

| found *deep* in rural England

c : being below the level of consciousness

| *deep* neuroses

d : covered, enclosed, or filled to a specified degree → usually used in combination

| ankle-*deep* in mud

6 : [LARGE](#)

| *deep* discounts

7 : having many good players

| a *deep* bullpen

8 **computing** : having or using many repetitions of algorithmic processing

| *deep* learning

| a *deep* neural network

lemma

deep 1 of 3 adjective

'dēp

Synonyms of *deep*

- 1 : extending far from some surface or area: such as
 - a : extending far downward
 - | a *deep* well
 - | a *deep* chasm
 - b (1) : extending well inward from an outer surface
 - | a *deep* gash
 - | a *deep*-chested animal
 - (2) : not located superficially within the body
 - | *deep* pressure receptors in muscles
 - c : extending well back from a surface accepted as front
 - | a *deep* closet
 - d : extending far laterally from the center
 - | *deep* borders of lace
 - e **sports** : occurring or located near the outer limits of the playing area
 - | hit to *deep* right field

senses

- 2 : having a specified extension in an implied direction usually downward or backward

- | a shelf 20 inches *deep*
- | cars parked three-*deep*

- 3 a : difficult to penetrate or comprehend : **RECONDITE**

- | *deep* mathematical problems
- | *deep* discussions on the meaning of life

- b : **MYSTERIOUS, OBSCURE**

- | a *deep* dark secret

- c : grave or **lamentable** in nature or effect

- | in *deepest* disgrace

- d : of **penetrating** intellect : **WISE**

- | a *deep* thinker

- e : intensely engrossed or immersed

- | She was *deep* in her book.

- f : characterized by **profundity** of feeling or quality

- | a *deep* sleep

also : **DEEP-SEATED**

- | *deep* religious beliefs

- 4 a : of color : high in saturation and low in lightness

- | a *deep* red

- 5 a : situated well within the boundaries

- | a house *deep* in the woods

- b : remote in time or space

- | found *deep* in rural England

- c : being below the level of consciousness

- | *deep* neuroses

- d : covered, enclosed, or filled to a specified degree → usually used in combination

- | ankle-*deep* in mud

- 6 : **LARGE**

- | *deep* discounts

- 7 : having many good players

- | a *deep* bullpen

- 8 : **computing** : having or using many repetitions of algorithmic processing

- | *deep* learning

- | a *deep* neural network

definition

Word Sense

- **sense** (or **word sense**): a discrete representation of an aspect of a word's meaning
- one lemma bank can have multiple senses:

sense 1: ...a **bank₁** can hold the investments in a custodial account

sense 2: ...as agriculture burgeons on the east **bank₂** the river will shrink even more

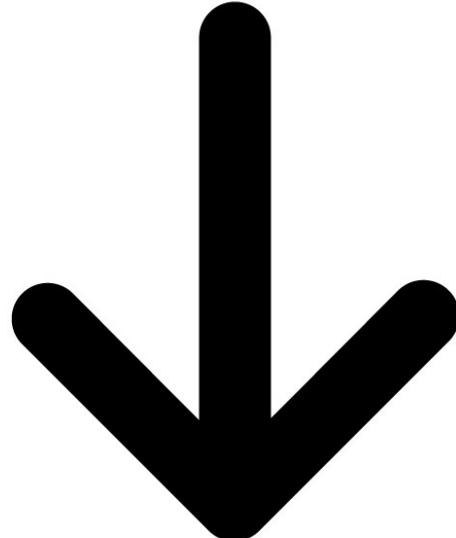
- ways to categorize the patterns of multiple meanings of words:

homonymy: the multiple meanings are unrelated (coincidental?)

down

soft fine feathers

being or moving lower in position or less in some value



- ways to categorize the patterns of multiple meanings of words:

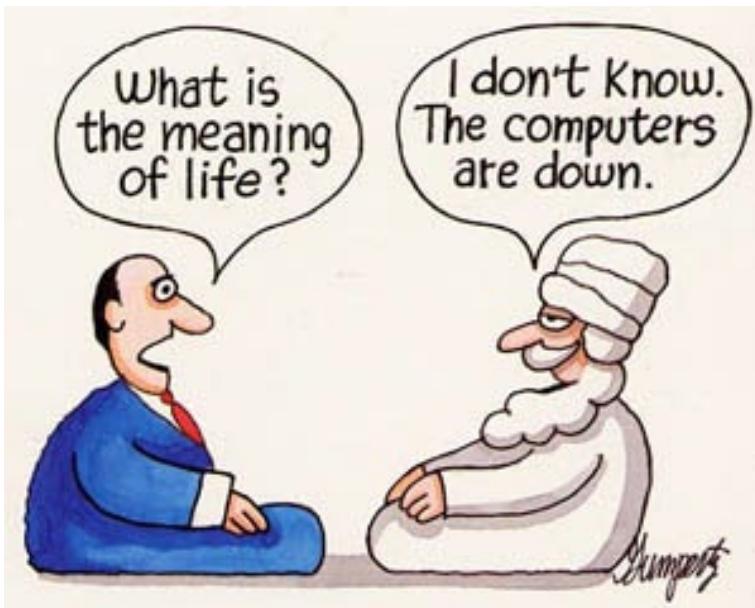
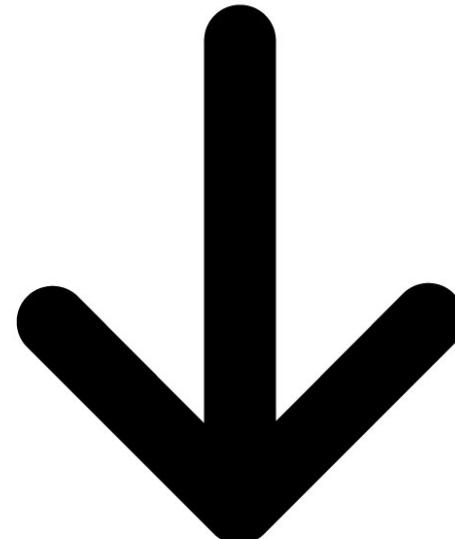
homonymy: the multiple meanings are unrelated (coincidental?)

polysemy: the multiple meanings are related

down

in an inactive or
inoperative state

being or moving lower in
position or less in some value



Related Senses

- 1: The **bank₁** was constructed in 1875 out of local red brick.
- 2: I withdrew money from the **bank₂**.

- are these the same sense?
 - **sense 2**: “a financial institution”
 - **sense 1**: “the building belonging to a financial institution”
- many non-rare words have multiple senses, but sometimes the senses are very similar

Synonyms

- informally: words with same meaning in some or all contexts
 - filbert / hazelnut
 - couch / sofa
 - big / large
 - water / H_2O
- two words are synonyms if they can be substituted for each other in all situations

Synonyms

- few (or no) examples of perfect synonymy
 - even if many aspects of meaning are identical
 - still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.
- examples:
 - water / H_2O
 - big / large
 - brave / courageous

Synonymy is a relation
between **senses** rather than words

- consider the words **big** and **large**

- are they **synonyms**?

How **big** is that plane?

Would I be flying on a **large** or small plane?

- how about here:

Miss Nelson became a kind of **big** sister to Benjamin.

?Miss Nelson became a kind of **large** sister to Benjamin.

Antonym

- **antonyms**: senses that are opposites with respect to one feature of meaning
 - dark/light short/long
 - fast/slow rise/fall
 - hot/cold up/down
 - in/out
- otherwise, they are very similar!
- can be difficult to distinguish synonyms and antonyms with data-driven methods (e.g., distributional word vectors)

Hyponymy and Hypernymy

- sense A is a **hyponym** of sense B if A is more specific, denoting a subclass of B
 - car is a hyponym of vehicle
 - mango is a hyponym of fruit
- conversely: **hypernym** (“hyper is super”)
 - vehicle is a hypernym of car
 - fruit is a hypernym of mango

Word Sense Disambiguation (WSD)

- given:
 - an ambiguous word in context
 - a fixed inventory of potential word senses
- choose the correct sense based on the context

All-Words WSD

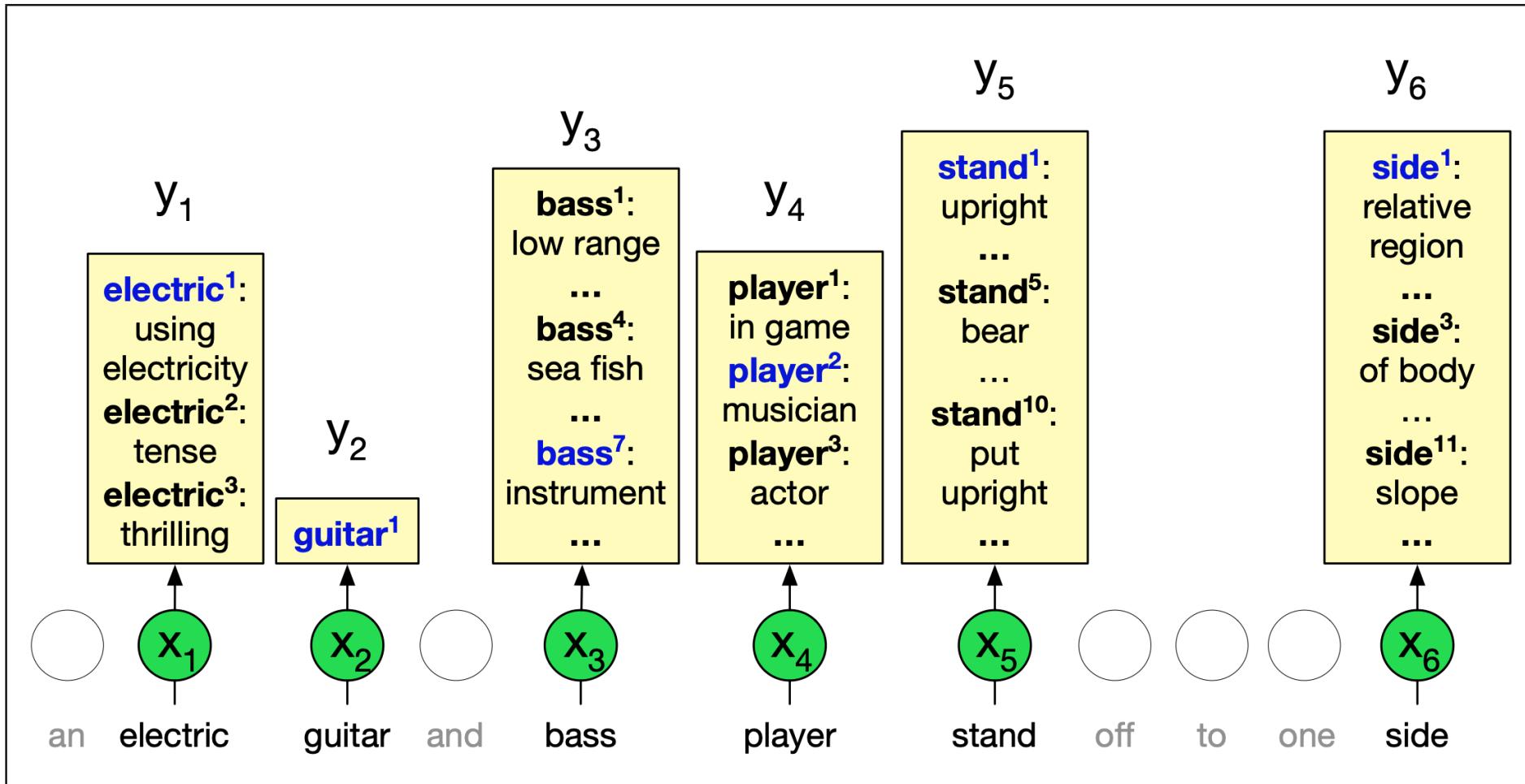


Figure 19.8 The all-words WSD task, mapping from input words (x) to WordNet senses (y). Only nouns, verbs, adjectives, and adverbs are mapped, and note that some words (like *guitar* in the example) only have one sense in WordNet. Figure inspired by [Chaplot and Salakhutdinov \(2018\)](#).

How to solve WSD?

Intuition from Warren Weaver (1955):

“If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine... the meaning of the words...

But if one lengthens the slit in the opaque mask, until one can see not only the central word in question but also say N words on either side, then if N is large enough one can unambiguously decide the meaning of the central word”

Example

- using a window of size 3 around the central word **bass**:

*An **electric guitar** and **bass** player stand off to one side not really part of the scene*

Role of WSD?

- many WSD systems have been developed since the 1990s
- researchers hoped that WSD systems would be useful for tasks like machine translation, question answering, sentiment analysis, etc.
- unclear if a separate system is needed
- trend today: end-to-end modeling that disambiguates word sense as part of translation, question answering, etc.

What is a word?

“Oh!” said Lydia stoutly, “I am not afraid; for though I am the youngest, I’m the tallest.”

(Austen, 1813)

“Oh!”	not	the
said	afraid;	youngest,
Lydia	for	I’m
stoutly,	though	the
“I	I	tallest.”
am	<u>am</u>	

Word Tokenization

Segmenting running text into “words” (tokens)

“Oh!” said Lydia stoutly, “I am not afraid; for though I am the youngest, I’m the tallest.”

tokenization: convert sequence of characters into sequence of tokens

tokenizer

“ Oh ! ” said Lydia stoutly , “ I
am not afraid ; for though I am the youngest , I ’m the tallest . ”

- most tokenizers are rule-based
- several conventions:

	Penn Treebank	Moses
don't	do n't	don 't
aren't	are n't	aren 't
can't	ca n't	can 't
won't	wo n't	won 't

- important to be consistent across NLP systems, match tokenization of external tools/resources
- see `nltk.tokenize` (also for sentence tokenization)

- Chinese, Japanese, Thai: no spaces between words
- Tokenization becomes highly non-trivial!

姚明进入总决赛

“Yao Ming reaches the finals”

- Multiple conventions:

姚明 进入 总决赛

Chinese Treebank

“YaoMing reaches finals”

姚 明 进入 总 决赛

Peking University

“Yao Ming reaches overall finals”

Example from Chen et al. (2017), cited in Jurafsky & Martin (SLP3)

- tokenization usually only *adds* whitespace
- might we also want to remove whitespace?

names:

New York → NewYork ?

non-compositional compounds:

hot dog → hotdog ?

" Oh ! " said Lydia stoutly , " I
am not afraid ; for though I — am
the youngest , I 'm the tallest . "

3 i	1 !	1 oh
2 ,	1 .	1 said
2 —	1 ;	1 stoutly
2 am	1 afraid	1 tallest
2 the	1 for	1 though
2 "	1 lydia	1 youngest
2 "	1 not	1 'm

3	i	1	!	1	oh
2	,	1	.	1	said
2	_	1	;	1	stoutly
2	am	1	afraid	1	tallest
2	the	1	for	1	though
2	"	1	lydia	1	youngest
2	"	1	not	1	' m

type: a unique word (an entry in a vocabulary or dictionary)

token: an instance of a type in the text

3	i	1	!	1	oh
2	,	1	.	1	said
2	_	1	;	1	stoutly
2	am	1	afraid	1	tallest
2	the	1	for	1	though
2	"	1	lydia	1	youngest
2	"	1	not	1	' m

two types of counts:

type count = 21

token count = 29

useful statistic: **type/token ratio**

(here, $21/29 = 0.724$)

How does the type/token ratio change when adding more data?

Corpora

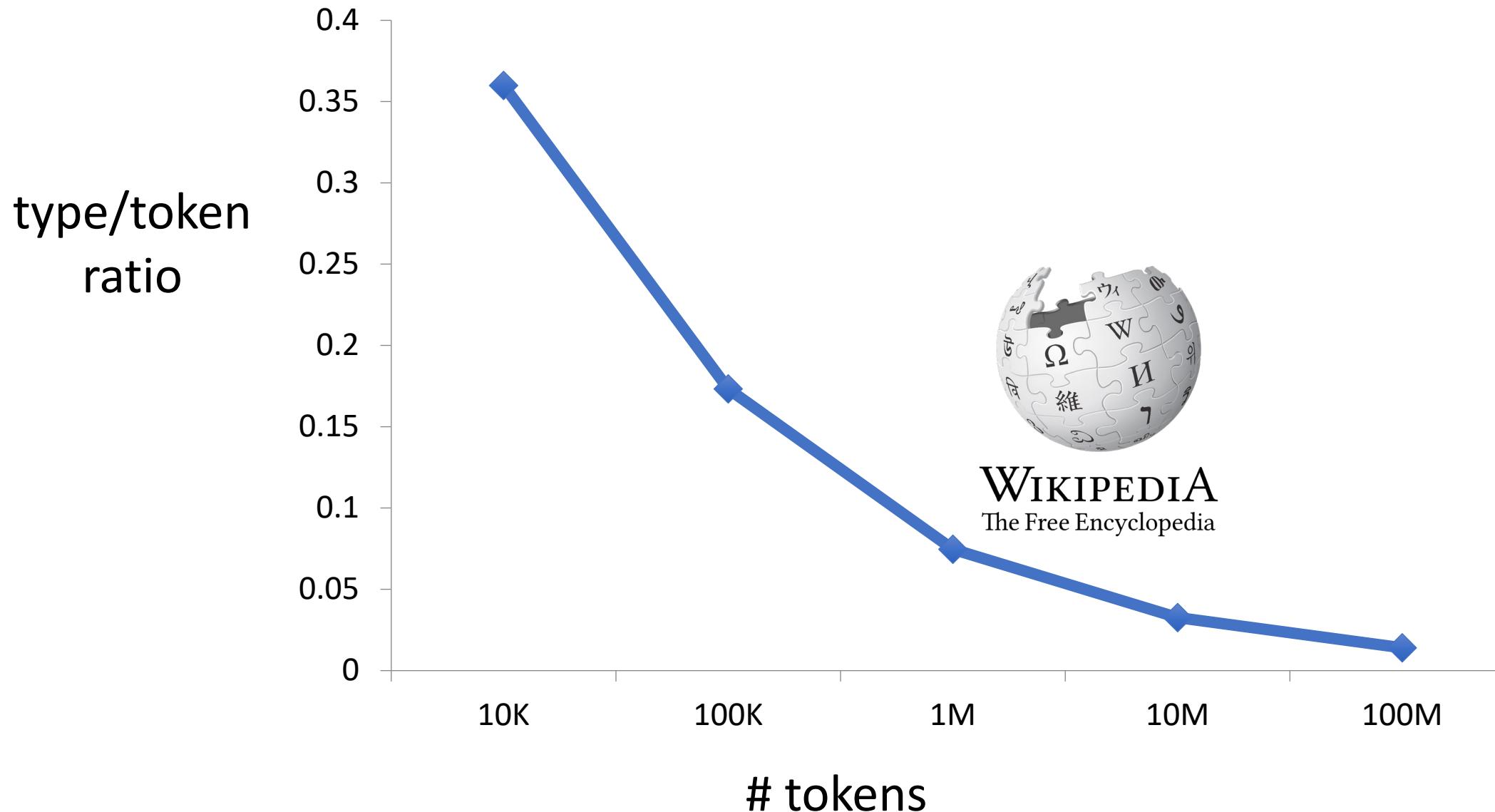
Words don't appear out of nowhere ---

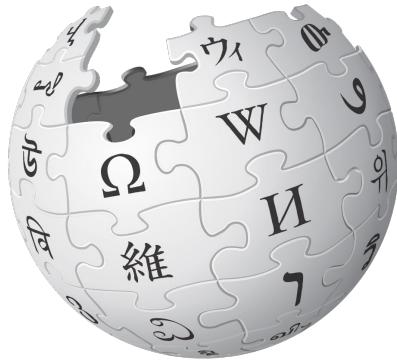
corpus (plural **corpora**): a computer-readable collection of text or speech.

A text produced by

- One or more specific writers
- At a specific time
- In a specific place
- Of a specific language
- For a specific function

more data → lower type/token ratio





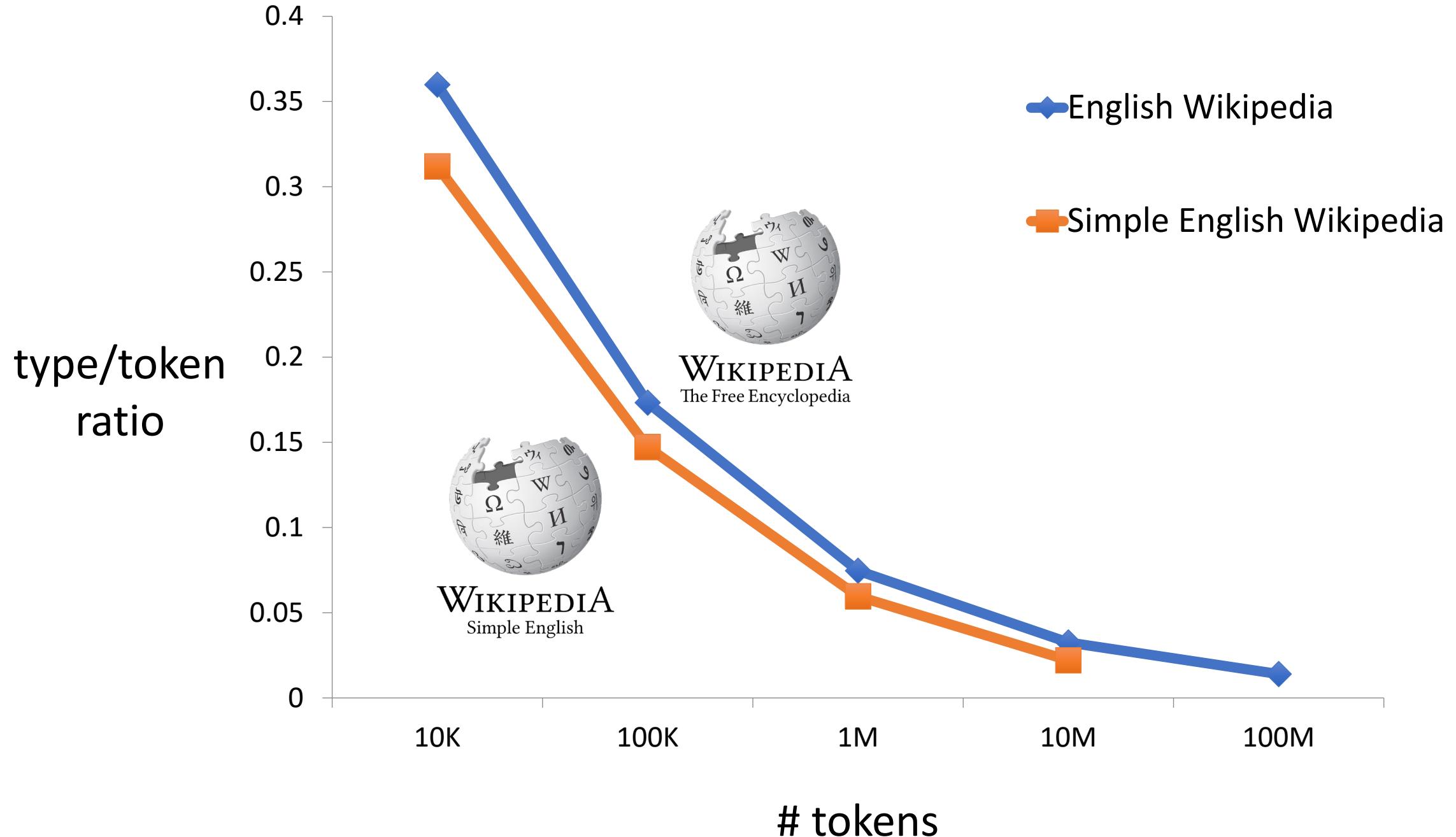
WIKIPEDIA
The Free Encyclopedia

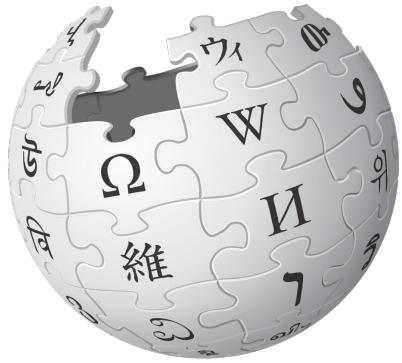
vs.



WIKIPEDIA
Simple English

Which has a higher type/token ratio?

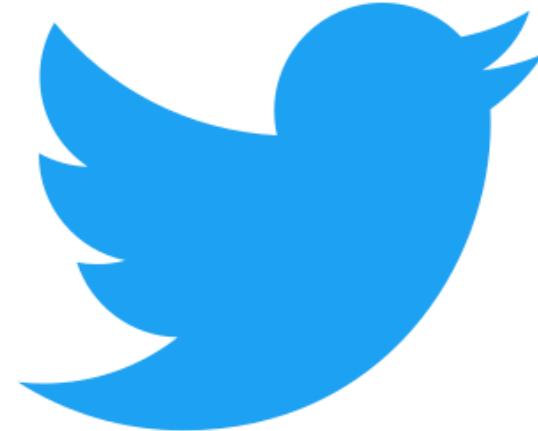


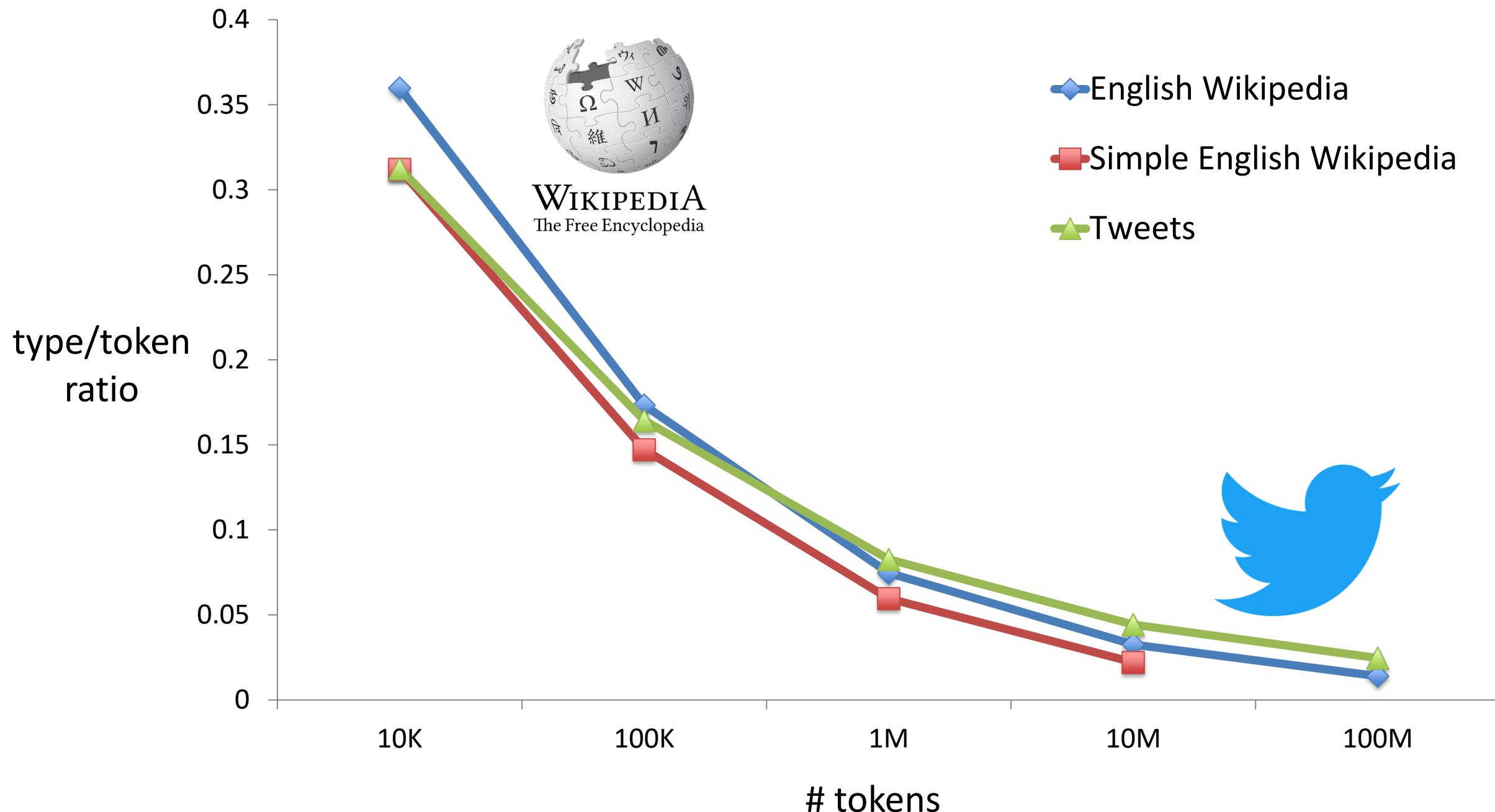


WIKIPEDIA

The Free Encyclopedia

VS.





224571	really	38	really2	12	reaaaaaally
1189	rly	37	reaaaaally	12	rreally
1119	realy	35	reallyyyyy	11	reaallyy
731	rlly	31	reely	11	reallllyyy
590	realllly	30	realllyyy	11	reeeally
234	realllly	27	reaaly	11	reeeeallly
216	reallyy	27	realllyy	10	reaaaly
156	relly	26	realllyyyy	10	reallyreallyreally
146	realllllly	25	realllllllly	9	r)eally
132	rily	22	reaaallly	9	really-really
104	reallyyy	21	really-	9	reallys
89	realllllly	19	reeaally	9	reeeeeeally
89	reeeally	18	reallllyyy	8	realky
84	reaaally	16	reaaaallly	8	reallyyyyyyy
82	reaally	15	reaallly	8	reallyyyyyyyyy
72	reeeeally	15	realllllllly	8	reeeaally
65	reaaaally	15	reallllyy	7	r3ally
57	reallyyyy	15	reallyreally	7	raelly
53	rilly	15	realyy	7	reaaaaaaally
50	realllllly	14	reallllyyyy	7	realllllllllllly
48	reeeeeally	14	reeeeeeally	7	reallllllyyy
41	reeally	13	reeeaally	7	reeeeaaally

7 reeeealy	5 rrly	3 realiy
7 reeeeeeeeally	5 rrrreally	3 realllllllllllllly
7 relaly	4 reaaaaly	3 realllllly
6 r-e-a-l-l-y	4 reaaallly	3 reallllllyyy
6 r-really	4 reaaalllyy	3 reallllllyyyyy
6 reaaaaallly	4 reaallly	3 reallllyyyyy
6 realllllllllly	4 reaalllyy	3 reallllyyyyy
6 realllyyyyy	4 reallllllyyyy	3 realluy
6 realyl	4 reallllyyyy	3 really)
6 reeeaaaally	4 reaaaaally	3 reallyl
6 reeeaaallly	4 reeealy	3 reallyyyyyyyy
6 reeeaaalllyyy	4 reeeeeeeeeally	3 reeaallly
5 reaaaaallly	4 rlly	3 reeaalllyyy
5 reaaaallly	3 r34lly	3 reeaaly
5 reaalllyy	3 r]eally	3 reallly
5 realllllllllllly	3 reaaaaaaaally	3 reealy
5 realllllllllly	3 reaaaaaly	3 reeeaaalllyyy
5 reeallyyy	3 reaaaallly	3 reeeaaallly
5 reeeeaaallly	3 reaaaalllyy	3 reeeeaaaally
5 reeeeaaally	3 reaaallyy	3 reeeeallly
5 reeeeeeeeally	3 reaallly	3 reeeealllyyy
5 relly	3 reaallyyyy	2 reaaaaaaaally


```
1 realllllllllllllllllly
1 reallllllllllllllyyyyyy
1 reallllllllllllyyyyy
1 reallllllllllyyy
1 reallllllllllyyyy
1 reallllllllllyyyyy
1 reallllllllllyyyyy
1 reallllllllllyyyyyy
1 reallllllllllyyyyy
1 reallllllllllyyyyyy
1 reallllllllllyyyyy
1 reallllllllllyyyyyy
1 reallllllllyz
1 reallllllyly
1 reallllllyyyyyy
1 reallllyyyyyyyyy
1 reallllyyyyyyyyyy
1 realllylyyyy
1 realllyyyyyyyyy
1 realllyyyyyyyyyy
1 really(really
1 really//'
1 really/really/really
1 really100
1 really2x
1 really: ')
1 really^^
1 really_
1 reallyii
1 reallyreallyreallyreallyreallyr331ly
1 reallyreallyreallyreallyreallyreally
reallyreallyreallyreallyreallyreallyreally
reallyreallyreallyreallyreallyreally
```

1 reeeealllyy
1 reeeealllyy
1 reeeealllyyy
1 reeeealllyyyy
1 reeeeeaaaaalllllyy
1 reeeeeaaaaally
1 reeeeeaaallly
1 reeeeeaaalllyyy
1 reeeeeaaallly
1 reeeeealllyyyy
1 reeeealyy
1 reeeeeaaaaally
1 reeeeeaaaaalllyyyy
1 reeeeeaaaaally
1 reeeeeaaaallly
1 reeeeeaaally
1 reeeeeaaaly
1 reeeeeallly
1 reeeeealllyyyy
1 reeeeeaaaallly
1 reeeeeaaaally
1 reeeeeeeeallly
1 reeeeeeeealllyyyy
1 reeeeeeeeaaaaalllllyyyyyy
1 reeeeeeeeaaaaaaaalllllllyyyyyyyyy
1 reeeeeeeeaaaaaaaalllllllyyyyyyyyy
1 reeeeeeeeaaaaaaaalllyyyy
1 reeeeeeeeaaaally
1 reeeeeeeeaaaally
1 reeeeeeeeallly
1 reeeeeeeeaaaally

1 rlyy
1 rraarreellyy
1 rreaalllyyy
1 rreaally
1 rreeaaalllyyyy
1 rreeaalllyy
1 rreeaallyy
1 rreealy
1 rreeaaaaalllyyyy
1 rreeeaalllyyy
1 reeeeeeaaaaalllllllyyyyyy
1 reeeeeeallly
1 reeeeeeely
1 rrreallyyy
1 rrreeeaalllyyy
1 rrreeealllyyy
1 rrreeeaalllyy
1 rrreeeaallly
1 rrrlyyy
1 rrrreeeeally
1 rrrreeeeeaaaaalllllllyyyyyy
1 rrrrreeeaallly
1 rrrrreeeaalllyy
1 rrrrrrreally
1 rrrrrrrealy
1 rrrrrrreeeeeaaaalllllyyyyyy
1 rrrrrrrrrrrrrrealy
1 rrrrrrrrrrrrrreeeeeeeeaaaaalllllllyyyyyy

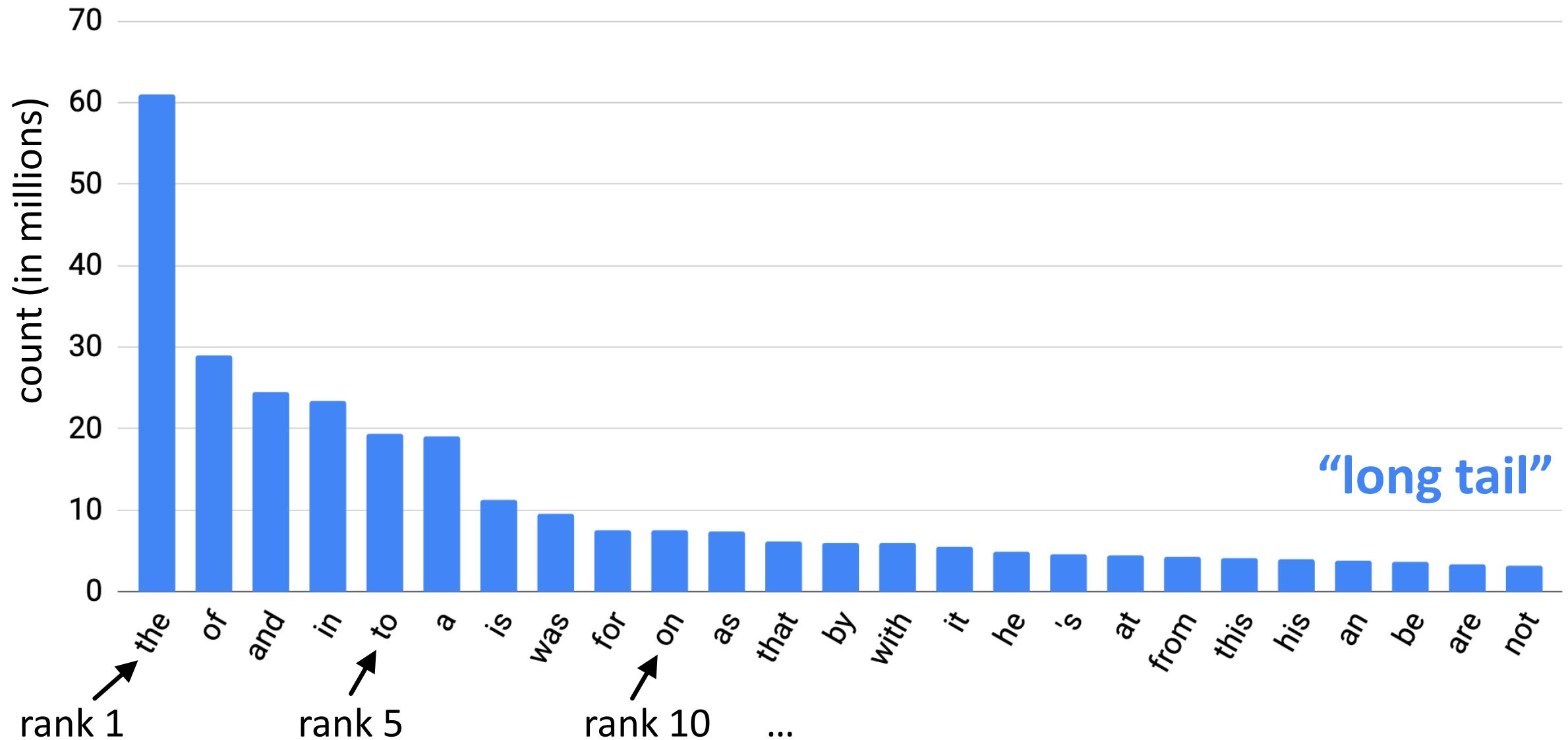
How many words are there?

- size of vocabulary continues to grow as you collect more data
- you'll never find all the words

How are words distributed?

224571	really	1	rreeeeeaaaaalllllllyyyyyy
1189	rly	1	rreeeeeallly
1119	realy	1	rreeeeeely
731	rlly	1	rrreallyyy
590	really	1	rrreeaaalllyyy
234	realllly	1	rrreeealllyyy
216	reallyy	1	rrreeeaallllyy
156	relly	1	rrreeeallly
146	realllly	1	rrrlyyy
132	rily	1	rrrreeeally
104	reallyyy	1	rrrreeeeeaaaaalllllllyyyyyy
89	realllllly	1	rrrrreeeeaaallly
89	reeeally	1	rrrrreeeeaaallly
84	reaaally	1	rrrrrreally
82	reaally	1	rrrrrrealy
72	reeeeally	1	rrrrrrreeeeeaaaalllllyyyyyy
65	reaaaally	1	rrrrrrrrrrrrrrrealy
...		1	rrrrrrrrrrrrrrreeeeeaaaaalllllllyyyyyy

Zipf's law: frequency of a word is inversely proportional to its rank in the word frequency list



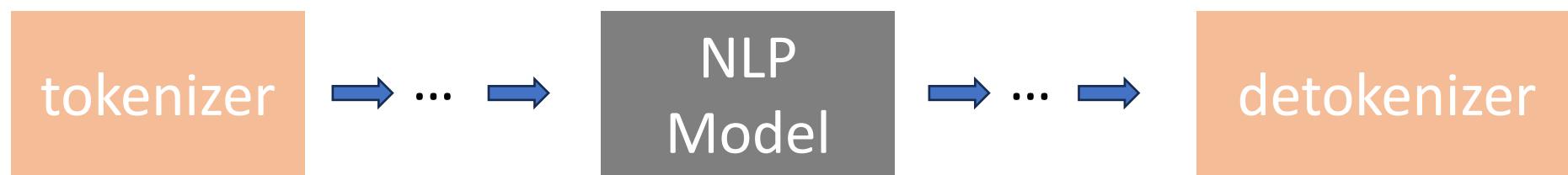
The Long Tail

- there are so many word types!
- but words have **internal structures** and **semantic relationships**

really	play
rly	plays
realy	played
rlly	playing
really	player
reallly	players
reallyyy	replay
rely	replays
realllly	gameplay
rily	horseplay

Tokenization in NLP Systems

Raw text input



Raw text output

a token is the basic unit of text for NLP models

Issues in Tokenization

- White space tokenizer
a lot of word types (I, I'm, I.)
- Can't just blindly remove punctuations
Ph.D. AT&T numbers (\$45.55)
- Rule based tokenizers
Complexity of rules to cover all use cases

Data-Driven Tokenizers

- segment words into pieces (**subword units** or **wordpieces**) based on common character sequences in a dataset
- most popular methods:
 - Byte pair encoding (BPE)
 - SentencePiece's unigram language model (LM)
- these are efficient and effective, but they don't necessarily correspond to morphology; splits may be arbitrary
- very popular when using neural networks (BERT, GPT, etc)

Byte Pair Encoding (BPE)

(Gage, 1994)

- simple data compression technique
- iteratively replaces most frequent pair of bytes in a sequence with a single, unused byte
- Sennrich et al. (2016) adapted BPE for segmenting words

Byte Pair Encoding for Words

- “merge”: operation that combines two consecutive units into a single unit
 - initially, units are characters (e.g., s or t)
 - after merges, units become character sequences (e.g., st or books)
- greedy algorithm:
 - merge 2 units with the largest 2-unit sequence count, produce merged unit
 - replace all instances of that 2-unit sequence with the merged unit, recompute counts

Example from movie review dataset (Stanford Sentiment Treebank):

word that was not in training set:

writer/director/producer

BPE segmenter based on training set

writ@@ er@@ /@@ direct@@ or@@ /@@ producer

(recover original text by removing “@@ ”)

It wouldn't be my preferred way of spending 100 minutes or \$ 7.00 .

likely good: “prefer” is the lemma of “preferred”

It wouldn't be my prefer@0 red way of sp@0 ending 100 minutes or \$ 7@0 .@0 00 .

maybe bad: “spending” is not related to “ending”

Byte Pair Encoding (BPE)

```
function BYTE-PAIR ENCODING(strings  $C$ , number of merges  $k$ ) returns vocab  $V$ 
   $V \leftarrow$  all unique characters in  $C$            $\#$  initial set of tokens is characters
  for  $i = 1$  to  $k$  do                       $\#$  merge tokens til  $k$  times
     $t_L, t_R \leftarrow$  Most frequent pair of adjacent tokens in  $C$ 
     $t_{NEW} \leftarrow t_L + t_R$                    $\#$  make new token by concatenating
     $V \leftarrow V + t_{NEW}$                        $\#$  update the vocabulary
    Replace each occurrence of  $t_L, t_R$  in  $C$  with  $t_{NEW}$      $\#$  and update the corpus
  return  $V$ 
```

Extension

How does ChatGPT (GPT-2 etc.) tokenize texts from different languages, with a unified tokenizer and fixed vocabulary size?