TTIC 31190: Natural Language Processing

Lecture 10: Neural Language Modeling
& Sequence-to-Sequence Modeling

Fall 2023

Announcements

* Assignment 2 due on Nov 2, 11:59 pm
* Literature review project midpoint check due on Nov 9, 11:59 pm

* Final exam schedule: Tuesday December 5, 3-5pm
* Pass/fail option available for this course

Language Models

* Language Model: a probability distribution over strings in a
language.

Plx) * =x1,%2,...,Z%y

P(I'm not a cat) = 0.0000004
P(He is hungry) = 0.000025

P(Dog the asd@sdf 1124 17) =~ 0

Language Modeling

* Goal: compute the probability of a sequence of words:
P(x1.,) = P(x1, 22, ..., Tp)
* Related task: probability of next word:
P(xy | 21,22, x3)
* A model that computes either of these:

P(x1.,) or P(zg|z1,29,....,28_1)

is called a language model (LM)

[SLP3: Chapter 3]

Language Modeling

* Building language models
* Generating from a language model
* Evaluating a language model

* Count-based language models * Neural language models
* MLE estimation * Feed-forward models
* Smoothing * RNN models

e Attention models

Overview

* Neural language models

e Feed-forward models
* RNN models

* Machine Translation & Sequence-to-sequence models
* Machine translation
* Encoder decoder structures
* + Attention & applications

Language Modeling

P(ZBlzn) — P(ﬂ?l,fL‘Q, ,CIZ‘n) — H‘P(QZ‘Z ‘ L1,L2, ...,Zlfi_l)‘
1=1

* This is just a probabilistic classification problem!

* We can use any tools from the previous lectures: linear model with
features, neural networks, etc.

Count-based Language Models

n

P(ZBlzn) — P(Qfl,flfg, ,CEn) — HP(ZIZ’Z ‘ L1,L2, ...,Zlﬁi_l)
1=1

* |[dea 1: make an k-th order Markov assumption
P(z; | <s> z1,...,Ti—2,27i—1) = P(x; | zi—k, ..., Tiz2, Ti—1)

e E.g. Trigram LM (k=2)
P(mat|the cat sat on the) ~ P(mat|on the)

Count-based Language Models

n

P(ZBlzn) — P(Qfl,flfg, ,ZIZn) — HP(ZIZ’Z ‘ L1,L2, ...,Zlﬁi_l)
1=1

* |dea 1: make an k-th order Markov assumption
P(x; | <s>,21,...,@i—2,%—1) = P(x; | Zi—p, ..., Ti—2, Ti—1)
* Maximum likelihood (e.g. k=2)

H(Ti—2, -1, 74)
#(5131_2 s Li—1)

P(:i'f,i \;_1.‘.5_2 s Lj— 1) —

Count-based Language Models

* Equivalent to MLE solution with a linear model with feature vector
given by n-grams.

Number of
dimensions

e

1 if last two words
are “on the” 0

=VF o

0 otherwise

Count-based Language Models

* Equivalent to MLE solution with a linear model with feature vector
given by n-grams.

0 Py (:L’) (0
Number of IV‘Q . |V\2
dimensions | - N | O
1
/ . V| Pz |z, 2")
1 if last two words 0 ~) 0
are “on the” 0 l

0
0 otherwise Data sparsity 9 -

Neural Language Model

* |dea 2: Use a neural network over of word embeddings

Number of - 0 - - 0 -

dimensions ~ V|
/ 0 0

: - 1if x4_o
1 if ¢—1 = "the”
IT Tt e o : /

on

1"

Neural Language Model

* |dea 2: Use a neural network over of word embeddings

0

1
‘/ ‘/ ol =word embedding of “the”
\ ;

d X |V| input embedding matrix

Neural Language Model

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC @IRO.UMONTREAL.CA

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

* |dea: use a neural network for n-gram language modeling
/ //
Pz | 2", 2")

Neural Language Model

i-th output = P(w, =

= i | context)
sofimax
[X] o000)
%,
5 LY
most| computation here A
A
\
\
|
tanh !
[

3 X
Table [~.. ~, Matnx C]
]DDk_u T T T T R] LL i o B .
i g shared parameters
' & across words 1
index for w;_,.

index for w;_ index for wy_,

Recap: Neural Networks

* We can think of a neural network as a continuous function with some
learnable parameters
* it has inputs and outputs, which are usually vectors
* it’s typically a nonlinear function

* Neural networks / deep learning is best thought of as a modeling
strategy that combines:
e distributed representations (e.g., word embeddings)
* representation learning
* nonlinear functions

A Simple Neural Trigram Language Model

e given two previous words, compute probability distribution over
possible next words

Pz |z, 2")
* input is concatenation of vectors (embeddings) of previous two

words:
c OO0 OO0

emb(x') emb(x")

c = cat(emb(z’), emb(z"))

A Simple Neural Trigram Language Model

e output is a vector S containing probabilities of all possible next
words:
S
m Pleat | o, 2"
P(dog | ', 2")

g eecejecee

- AN)
Y Y

emb(x') emb(z")

A Simple Neural Trigram Language Model

* to get S, do matrix multiplication of parameter matrix W and input,
then “softmax” transformation

s = softmax(Wc) “fully-connected layer”

A Simple Neural Trigram Language Model

* to get S, do matrix multiplication of parameter matrix W and input,
then “softmax” transformation

s = softmax(Wc)

softmax

 function that maps a vector v of real values (called “logits” or
“scores”) to a vector P of probabilities:

exp{v}

D> explv;}

p = softmax(v) =

e exponentiate scores (this makes them positive), then normalize to get
probabilities

* using scalar notation (computing a single probability p;):
exp{v; }
= . OC eXP1V;
p’L Zj eXp{Uj} p’L p{ ’L}

A Simple Neural Trigram Language Model

e What are the dimensionalities?
dimensionalities:

emb(-) € R

c ¢ R*?

-3 0 0000 000000000

s = softmax(Wc)

s ¢ RV
AN
Y Y W < R|V|><2d

A Simple Neural Trigram Language Model

* what are the parameters in this model?
emb(-) function: |V| x d parameters W : |V| x 2d parameters

* how many total parameters are in this model?

V| x 3d

3N 0 0000 000000000

s = softmax(Wc)

Comparing Models of P(x | z', 2")

* trigram language model neural trigram language model

separate parameters for every
. . / //
combinationof x,x ", x

SO, approx. \V\S parameters
parameters is exponential in

— only has 3d|V| parameters

_d can be chosen to scale
parameters up or down

n-gram size — # parameters linear in n-gram size
most parameters are zero — no parameters are zero

even with smoothing, many — no explicit smoothing, though
parameters can remain zero smoothing done implicitly via

distributed representations

Learning

Py (cat | ', 2")
Py (dog | 2*, 2")

emb(x') emb(x")

with n-gram models, we used maximum likelihood estimation (MLE), which has a
simple closed-form solution

however, with neural language models, MLE does not have a closed form!

solution: minimize log loss using gradient-based optimization

108810g(<17”>7$7 9) — —lOg Pﬂ (.CU | $,,$”)

Adding a Hidden Layer

-3 0 0 000000000000

Adding a Hidden Layer

-3 0 0 000000000000

s = softmax(Wh)

h =g(Uc+b)

affine
transformation

AN /
Y Y nonlinearity,

emb(x/) emb(a:”) also called
“activation function”

tanh:

X: 2.22044x107"

y: 2.22044x107°

1
14 exp{—=x}

(logistic) sigmoid: Y

rectified linear unit (ReLU): y = max(0, x)

Y

Recap: Why nonlinearities?

network with 1 hidden layer: h' = W'h + b’
h=g(Wx+Db)

* if g is linear, then we can rewrite the above as a single affine
transformation (use distributivity of matrix multiplication)

* 50, to benefit from multiple layers, we need some kind of nonlinearity

Language Modeling

* “The computer that I just put into the machine room on the fifth
flooris crashing.”

* “The computers that | just put into the machine room on the fifth
floor are crashing.”

3N 0 0000 000000000

s = softmax(Wc)

Language Modeling

* “The computer that I just put into the machine room on the fifth
flooris crashing.”

* “The computers that | just put into the machine room on the fifth
floor are crashing.”

* Feed-forward neural language models cannot model long-range
dependencies

* Problem: How can we encode variable-sized input € = 1, x2,...,Ty,
into fixed dimensional vectorc so we can apply s = softmax(Wc)

 Summing, max-pooling...? Recurrence?

RNN Language Model

e Hidden state is a function of ® © o O
previous hidden state and : : : :
- —_— —

current Input e e e e
- @ o o

» Same weights at each state! T @ T T
@ O O ©

O » O O

O O ® O

cheap and very tasty

RNN Language Model

* Hidden state is a function of
previous hidden state and
current input

* Same weights at each state!

OO0e — eo0000
S

CeO — eo0000
=
>

cheap

00 — o0000O0
=
>

and

O0Oe — eo0000

.

very tasty

Coe

RNN Language Model

Whh

Wa:h

hi = f(Whnhi—1 + Wenzt)

Coe

RNN Language Model

Whh U

Wa:h

he = f(Whrhi—1 + Wepaxe)
S = Uht

po(Tsiq | 21, - - ., %) = softmax(s)

Tt4+1

RNN Language Model

Cote o

o

o HY/?]? ® HY/?]? ® HY/?]? ®
e — 6 —> 6 —— o
o
o

T Wa:h T Wa:h T Wa:h T th

o O O o
O ® O O
@) O O O

cheap and very tasty

No Markov
assumption!

(

2d x 2d block matrix

0

Lixa

RNN Language Model

0
0

) ()
W
W:L‘h .
) | U /
2d X 'V matrix

f = identity

Whatis h; = f(” nhhe—1 + Wq;hili‘t) ?

(

I{Th h —

RNN Language Model

0

Lixa

0
0

/

2d x 2d block matrix

RNN LMs
(unsurprisingly)
generalize

ht — f(”"rhh ht—l s W:I:hmt)

feedforward LMs

f = identity

= Wz, Way_1]

—
W
W$h =
L9
2d x 'V matrix

RNN Language Model: Learning

o

Co0e

o) JXO

and very

cheap

RNN Language Model: Learning

i]..¢ Ly = —logpg(xt |21, .., Tt—1)
tu
o o [
® WV, ® W, ®
® — 0 — 0 —
o @ ®
o o ®
TW:ch 1W:ch TWa:h
O O O
O O O
O O o

cheap and very

RNN Language Model: Learning

Li—o L Ly

and Véry tasty Lt = = logpg(xt | 'Tln LR ?xt—l)
to tu tu

o) @ @

o @) O
O ® @)
O @) o

cheap and very

RNN Language Model: Learning

Li—o Ly Ly
and very tasty Ly = —logpg(| '1:1! .o Ty—1)
tv tu tu
° ® ° L=-=1lo L
® HY/?/? ® HY/?/? ® g pe Z t
® — 0 — 0 —
o o o
o o ®
Tth 1 W:ch Tth
[@) @)
@ ® @)
@ O ®

cheap and very

RNN Language Model: Learning

Li—o Li
and very
tU tU

‘ - \
‘
|
{

- |

O0e — 00000
S

CeO — 00000
5

cheap

and

‘ - \
‘
|
{

- |

000 — e0000FO0
=
>

Ly
tasty

tu

very

Ly = —108299(3% | 55‘1; coey Lf— 1)

L = —logpy(x ZLt

Obtain Vg via backpropagation
as usual (“backpropagation
through time”)

0 = {U, Wi, Wan }
0 < 0+ aVyglogpy(x)

RNN Language Model: Learning

* RNNs can theoretically model infinite history?
* Practical Issues: gradient vanishing or exploding

* Empirical solutions:

* Gradient clipping
* RNN variants: LSTM, GRU, etc.

Language Modeling

* Language Modelling on Penn Treebank (Word Level)

Zaremba et al. (2014) - LSTM (large)
-
e
. Recurrént-highway networks
= — g
x --.- .
s | AWD-LSTM +sontinuous cache pointer
o r AWD-LSTM=Mo5 + dynamic eval
w W ——
i GPT-2
£ P __BERT-Large-CAS
L e
25 GPT=Z.(Zero-Shot)

-
Jan'15 Jul'l5 Jan'l6 Jul'l6 Jan'l7 Jull7 Jan’lE Jul'l8 Jan'19 Jul'19 Jan'20 Jul'20 Jan'2l ppl = 20 5

Other models -» Models with lowest Test perplexity

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Language Modeling

English Penn Treebank

Perplexity Year
Count-based (5-grams) 141.2 2012
RNN 124.7 2012
Deep RNN 107.5 2013
LSTM /8.4 2014
Fancy LSTM cell found with RL 64.0 2016
Vanilla LSTM + Hyperparameter tuning 58.3 2018
Transformer 54.5 2019
Fancier LSTM cell 50.1 2020
GPT2 35.8 2019
GPT3 20.5 2020

RNN Language Model: Sampling

* How do we sample from Py(x) ?

RNN Language Model: Sampling

* How do we sample from Py(x) ?
X, ~ p(x;|start)

sphinx

RNN Language Model: Sampling

* How do we sample from Py(x) ?

x; ~ p(x, | start) x, ~ p(x, | sSphinx)
SPRINX -~ ~===vwmensn;) S————
4 4
& &
¢)
& &
4 I\

RNN Language Model: Sampling

* How do we sample from Py(x) ?

x; ~ p(x,| start) X, ~ p(x, | sphinx) x, ~ p(x, | sphinx of)
SRR~ == == smerinanny Dt -ssnasmssnsnssm black
A A A
& & &
® ® &
@ @ @
R A A

Overview

* Neural language models

e Feed-forward models
* RNN models

* Machine Translation & Sequence-to-sequence models
* Machine translation
* Encoder decoder structures
* + Attention & applications

Sequence-to-sequence Models

* input is a sentence (typically)

e output is another sentence
* Machine translation: representing its translation in another language

€ — <s>ich werde das stoppen . </s>

Y = <s>i’'m going to stop that. </s>

Sequence-to-sequence Models

* input and output are sequences of symbols (not necessarily the same
length)
Y|

pe(y | x) = HP@(yt | T, Y1:4-1)
t=1

* model:

* training loss:
Kl

loss(z, y) = » —logpe(y: | =, y1.4—1)
t=1

Machine Translation

Hp Text B Documents & Websites

DETECT LANGUAGE ENGLISH GERMAN GEORGIAN 4 Pl GERMAN ENGLISH UKRAINIAN v

Machine Translation Tools: Translate Content with X Tools fiir maschinelle Ubersetzung: Ubersetzen Sie ¥
Al Software in 2022 ® Inhalte mit KI-Software im Jahr 2022

& < 69 /5,000 - o) 0O G <

Send feedback

O * 2,

History Saved Contribute

<

Machine Translation

In our comparative study
of machine translation
usability for website
translation,

S Source: Machine Translation Usability for
WEGLOT Nimdi Website Translation: A Comparative Study

Machine Translation

* S40 billion industry
* Google: translates 100 billion words a day

e Great A.L. Awakening
How Google used artificial intelligence to transform Google Translate, one of its more popular
services — and how machine learning is poised to reinvent computing itself.

Machine Translation (MT) History

mT Qua ’T"y

lofo%rbss n m—r
A Neuea) Y
S"I’Q'l.lftd 'LS "F
|olsS 0
Ll Phpase - nT remaining
(M- | xd Bos pmb'bmc !
2‘!::'\/ (oe.ln) (.U'"""J) y
Coodo\m @) -

Ié

L lw

B — -
1954~ 1746 1982)993 2003 2005 2016

Phrase Based MT

 Complex pipelines, all trained separately

dpaynoual

(i)

axtl;:fﬁﬂn 1 ;
/Phrase tnmn/ / agm /| / agcsim /
N o :

Fid
Src Moses)—ﬂ bests LM reacuringa——

Trg

* Alignment model

im

tbrigen

15t

s]
diesbezlgliche
kostenantwickliung
volhg

unter

kontrolle

whal

Phrase Based MT

-]
mora

redative
dynamic

cost

completely
under

Word ahgnments

der ||
dan
das
das
dia
iat |
ist
daa ist
das imt
e ist
es lat
ain ||
ein
klein
klain
klainean
kleines
haus |
alt ||
altes
gibt |
an q!h:

| small |

q-vll | | 3 ﬁ
thara ia

Phrase table

Neural Machine Translation (NMT)

* No pipelines. Single model trained end-to-end with backprop.
 Essentially a conditional language model

Cizgiyi gectin | </s>

Over the line ! <s> Cizgiyi gectin !

Machine Translation Progress

* English-German

30
20

10

0

Phrase-based Montreal (2014) Stanford (2015) Google NMT Facebook (2017) Google (2017)
(2014) (20186)

Translation quality

Machines vs. Human

~ perfect translation

human
neural (GNMT)

phrase-based (PBMT)

English English English Spanish French Chinese
> - - >

> >
Spanish French Chinese English English English
Translation model

Sequence-to-sequence Modeling

Sequence-to-sequence Modeling

* data: <input sequence, output sequence> pairs

* use one network (encoder) to represent input sequence as a
sequence of hidden vectors

* use another network (decoder) to produce the output sequence from
the hidden vectors

* more generally called “encoder-decoder” models

Pure Encoder-Decoder Framework

Input (sentence, image, etc.)

A 4

Fixed-Size Encoder (MLP, RNN, CNN)

Encoder(input) € R”

4

Decoder

Decoder(Encoder(input))

Seqg2seq for NMT

Sequence to Sequence Learning
with Neural Networks

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasufgoogle.com vinyals@google.com gvligoogle.com
Abstract

Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper. we present a general end-to-end approach 1o sequence
learning that makes minimal assumptions on the sequence structure. Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
o a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French
translation task from the WMT-14 dataset, the translations produced by the LSTM
achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU
score was penalized on out-of-vocabulary words. Additionally, the LSTM did not
have difficulty on long sentences. For comparison, a phrase-based SMT system
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM
Lo rerank the 1000 hypotheses produced by the aforementioned SMT system, its
BLEU score increases to 36.5, which is close to the previous state of the art. The
LSTM also leamed sensible phrase and sentence representations that are sensitive
to word order and are relatively invarant to the active and the passive voice. Fi-
nally, we found that reversing the order of the words in all source sentences (but
not target sentences) improved the LSTM's performance markedly, because doing
so introduced many short term dependencies between the source and the target
sentence which made the optimization problem casier.

[Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks]

Seqg2seq for NMT

Source sentence: X = [x1,...,27]

Target sentence: y = |y1,....yr]

4

@ hy = RNN(xy, hy—1) (Encoder RNN)

[Sutskever et al. (2014)]

Seqg2seq for NMT

Source sentence: X = [x7,...,T7]

Target sentence: y = [y1,...,y1]

4

@ hy = RNN(xy, hy—1) (Encoder RNN)

@ hp = Last hidden state of RNN encoder (summary of source)

[Sutskever et al. (2014)]

Seqg2seq for NMT

Source sentence: X = [x1,...,27]

Target sentence: y = [y1,...,y1]

4

@ hy = RNN(xy, hy—1) (Encoder RNN)
@ hp = Last hidden state of RNN encoder (summary of source)

e ¢; = RNN(y;,q;—1) (Decoder RNN)

[Sutskever et al. (2014)]

Seqg2seq for NMT

Source sentence: X = [x1,...,27]

Target sentence: y = [y1,...,y1]

4

@ hy = RNN(xy, hy—1) (Encoder RNN)

@ hp = Last hidden state of RNN encoder (summary of source)
e ¢; = RNN(y;,q;—1) (Decoder RNN)

® p(yily<i,x) = softmax(MLP([g;. hr]))

@ Training: word-level maximum likelihood

L

arg max Z log p(vily<i, x)

o = [Sutskever et al. (2014)]

Over

the

line

Over

the

line

Over the line ! <S>

Over

the

line

Cizglyi

<S>

Cizglyi

-
‘..l.l‘
-
-
-
-
-
-
-
-
-
-
-
-

-
-
s
—-
-
-
-
-
-
—
-
o =

Cizglyi

<S>

line

the

Over

Over

the

line

Cizglyi

gectin

<S>

Cizglyi

Over

the

line

Cizglyi

gectin

<S>

Cizglyi

gectin

Over

the

line

Cizglyi

gectin

</s>

<S>

Cizglyi

gectin

Seqg2seq for NMT

Sentence
meaning
isbuiltup
Source i Proteste waren am Wochenende eskaliert <E0S>
sentence

The ;kr})t ests

tsjcalate over

Translation
generated

weekend Feedingin
last word

[Sutskever et al. (2014)]

Communication Bottleneck

* All input information communicated through fixed-size hidden vector.
Encoder(input)

* Training: All gradients have to flow through single bottleneck.
 Test: All input encoded in single vector.

Neural Attention

Input (sentence, image, etc.)

Neural Attention

Input (sentence, image, etc.)

4

Memory-Bank Encoder (MLP, RNN, CNN)

Encoder(input) = zy,x9,...,xp

Neural Attention

Input (sentence, image, etc.)

4

Memory-Bank Encoder (MLP, RNN, CNN)

Encoder(input) = zy,x9,...,xp

\ 4

Attention Distribution Annotation Function

“Where" “what”

Neural Attention

Input (sentence, image, etc.)

4

Memory-Bank Encoder (MLP, RNN, CNN)

Encoder(input) = zy,x9,...,xp

\ 4

Attention Distribution Annotation Function

“Where" “what”

\ 4

Context Vector (“soft selection™)

Neural Attention

Input (sentence, image, etc.)

4

Memory-Bank Encoder (MLP, RNN, CNN)

Encoder(input) = zy,x9,...,xp

\ 4

Attention Distribution Annotation Function

“Where" “what”

\ 4

Context Vector (“soft selection™)

\ 4

Decoder

Neural Attention

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio*
Université de Montréal

[Bahdanau et al. (2015)]

Attention-based NMT

Source sentence: x = |71, ..., 27

Target sentence: y = [:"}'L e g?}L]

&

[Bahdanau et al. (2015)]

Attention-based NMT

Source sentence: x = |71, ..., 27

Target sentence: y = [:"}'L e g?}L]

&

@ |hy,...,hp] = RNN(x) (Memory/Annotation Function)

® ¢; = RNN(y;,qi—1) (Decoder RNN)

[Bahdanau et al. (2015)]

Attention-based NMT

Source sentence: x = |71, ..., 27

Target sentence: y = [:"}'L e g?}L]

&

@ |hy,...,hp] = RNN(x) (Memory/Annotation Function)

® ¢; = RNN(y;,qi—1) (Decoder RNN)

;KD(@J ht)
Zj:l EXP(‘?;rhj)

® ;= (Attention distribution)

[Bahdanau et al. (2015)]

Attention-based NMT

Source sentence: x = |71, ..., 27

Target sentence: y = [:"}'L e g?}L]

&

@ |hy,...,hp] = RNN(x) (Memory/Annotation Function)

® ¢; = RNN(y;,qi—1) (Decoder RNN)

;KD(@J ht)
Zj:l EXP(‘?;rhj)

® ;= (Attention distribution)

@ ¢; = Z§:1 o +hy (Context vector)

[Bahdanau et al. (2015)]

Attention-based NMT

Source sentence: x = |71, ..., 27

&

Target sentence: y = |y1,...,YL]
@ |hy,...,hp] = RNN(x) (Memory/Annotation Function)
® ¢; = RNN(y;,qi—1) (Decoder RNN)

;KD(@J ht)
Zj:l EXP(‘?;rhj)

® ;= (Attention distribution)

@ ¢; = Z§:1 o +hy (Context vector)

® p(?ﬁ'tl?f{i X) — SOH’HlaX(I\"‘ILP([Qi? (ED)
[Bahdanau et al. (2015)]

Over

the

line

<S>

Over the line ! <S>

Over e line ! <S>

Over e line ! <S>

Over the line ! <S>

Over the line ! <S>

ver the line ! <S>

gectin

o e e e

ver the line | <s> Cizgiyi

-
_ -
o
—— - - - ’
.-_‘.dd" ..-4---" - - #
-—.F__..pi- _..-.;-#-" - #
-F-'F.-"-' - - C
-'-'-'i- - - rd
-F-F-H-‘- - - e
_,...4-""'-“.' - - _,.-"' #
- . . "
i -
- - "" ’!
- J,
_ &
s

Cizgiyi gectin '

-
-
- -
-
-‘--h
-|-¢_=-|.|__ :
== ==
=ESzzs
L

Over
the line
!
<s> Cizglyi
gyl gectin

! </s>

Over the line | <s> Cizgiyi gectin |

Performance vs. Length

25¢

-

urs, no atn (BLEU 13.9)
urs, local=p attn (BLELU 20.9)
urs, best sysiem (ELEL 23.0)

WMT 14 best (BLEU 20.7)
et al., 2015 (BLEU 21.6

Attention Visualization

c
2 5
() o] = A

L Q 9 Q 3 yo!

() O C © N
[w S O o wn C o O c
C ODc o 530 OO _ 3O 4
F @ 05 W w< 2 n £ g~ Vv

LI

accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

[Bahdanau et al. 2015]

Attention Model as a “Hidden Layer”

der ||| tha ||| 0.3
dan tha ||| 0.4
= das it JI1 9.1
e £ £ das ||| this ||| 0.2
s o = = die ||| the ||| 0.3
g ‘-.,!EE E'g iat | is ||| 1.0
o E£92 8308 ist s |[] 1.0
: das ist it is ||| 0.2
wn das imt thia 1-| 0.8
rigen o3 ist it ia ||| 0.8
- ea igt | thia 1a | 0.2
ist ein || a||] 1.0
ein an ||| 1.0
die q klein | small ||| 0.8
diasbazdglicha klain littla | 0.8
'J kleinea I amall ||| 0.2
kostenantwicklung kleines litHT {1l 0.2
haue ||| house 1.0
wéillig alt || ald |||
unter altes old
gibe | q-vll | | 1. 'I'.'
kontrolke an q'!b'r_ thara ia ||

Word alignments Phrase table

Attention Applications

Attention Applications

* Machine Translation (Bahdanau et al., 2015; Luong et al., 2015)

e Question Answering (Hermann et al., 2015; Sukhbaatar et al., 2015)

* Natural Language Inference (Rockt aschel et al., 2016; Parikh et al., 2016)
e Algorithm Learning (Graves et al., 2014, 2016; Vinyals et al., 2015a)

e Parsing (Vinyals et al., 2015b)

* Speech Recognition (Chorowski et al., 2015; Chan et al., 2015)

e Summarization (Rush et al., 2015)

e Caption Generation (Xu et al., 2015)

 and more...

Image Captioning (Xu et al., 2015)

(b) A woman is throwing a frisbee in a park.

Speech Recognition (Chan et al., 2015)

Alignment between the Characters and Audio

Summarization (Rush et al., 2015)

X >
7 c_.,"}’ ® o & 0&, @gf—’ 60'9\,
R S S S S
- <s>
russian
defense
minister

T ivanov
] called

sunday

m for
the
] creation
o
| f a
] joint
[] front
' for
= combating

global

I tcrrorism

Image-to-Latex (Deng et al., 2016

sl Wat sal Q _ { 33}) ())) Jopdras j p) Ne(Maq |

-
e L]

b { Jsa Jealg _ {3} } })} u vigh

Lr L]

Attention = Transformers

self attention works <ES= <ES= Translation

T T T T T Predictor
o o) o)

A A A

-~ 2 'MLpl |M|_p| |MLP| lMLPI |MLF'ﬂ
[s (A
MLP! IMLP! IMLP! IMLP! I MLP » Dot-Product Inter-Attention Decoder
Encoder T T T Stack
Stack 7 r
r - I A

-

.| | DotProduct Seit-Atiention - Dot-Product Self-Attention N
T 1t 1 ¥ A T T F 1 Eeeing
@—)Emb Emb Emb] [Emb Emb rEmb] Emb] [Emb [Emb] Embi—@
I 1 B A I 2 <SS> self attention works <ES>

[Vaswani et al. 2017]

Practice

 Some practical implementations to think about in more details

@ How to set up data for batch training? (source/target sentences

have varying lengths)
@ What type of encoder/decoder architecture (GRU/LSTM/CNN)?
@ How to find argmaxyy p(y[x)?

@ How to deal with unknown tokens?

Summary

* Neural language models

* Feed-forward models
 Classifier on next word prediction
* Concatenate past word representations as features
* Resolved data sparsity issues; learned dense parameters

* RNN models
* Model long history
e Extends feed-forward LMs

 Practical issues: vanishing / exploding gradient
* Variants: LSTM, GRU, etc.

Summary

 Machine Translation & Sequence-to-sequence models

* Machine translation
 History: statistical MT = Neural MT
* Encoder decoder structures for sequence-to-sequence modeling
* RNN models
* Information bottleneck
* Encoder decoder with attention
» Selecting different “focus” in the source for each step
* Compute context vectors to summarize the information to condition on
* Very effective for MT and many applications
* Attention applications
* Neural machine translation
* Image captioning, speech recognition, text summarization, etc.

	TTIC 31190: Natural Language Processing
	Announcements
	Slide Number 3
	Slide Number 4
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124

