
TTIC 31190: Natural Language Processing

Lecture 10: Neural Language Modeling
& Sequence-to-Sequence Modeling

Fall 2023

Announcements

• Assignment 2 due on Nov 2, 11:59 pm

• Literature review project midpoint check due on Nov 9, 11:59 pm

• Final exam schedule: Tuesday December 5, 3-5pm
• Pass/fail option available for this course

• Language Model: a probability distribution over strings in a
language.

Language Models

• Goal: compute the probability of a sequence of words:

• Related task: probability of next word:

• A model that computes either of these:

 or

is called a language model (LM)

Language Modeling

[SLP3: Chapter 3]

Language Modeling

• Building language models
• Generating from a language model
• Evaluating a language model

• Count-based language models
• MLE estimation
• Smoothing

• Neural language models
• Feed-forward models
• RNN models
• Attention models

Overview

• Neural language models
• Feed-forward models
• RNN models
• Attention models

• Machine Translation & Sequence-to-sequence models
• Machine translation
• Encoder decoder structures
• + Attention & applications

• This is just a probabilistic classification problem!

• We can use any tools from the previous lectures: linear model with
features, neural networks, etc.

Language Modeling

Count-based Language Models

• Idea 1: make an k-th order Markov assumption

• E.g. Trigram LM (k=2)

Count-based Language Models

• Idea 1: make an k-th order Markov assumption

• Maximum likelihood (e.g. k=2)

• Equivalent to MLE solution with a linear model with feature vector
given by n-grams.

Count-based Language Models

• Equivalent to MLE solution with a linear model with feature vector
given by n-grams.

Count-based Language Models

Data sparsity

• Idea 2: Use a neural network over of word embeddings

Neural Language Model

• Idea 2: Use a neural network over of word embeddings

Neural Language Model

• Idea: use a neural network for n-gram language modeling

Neural Language Model

Neural Language Model

• We can think of a neural network as a continuous function with some
learnable parameters

• it has inputs and outputs, which are usually vectors
• it’s typically a nonlinear function

• Neural networks / deep learning is best thought of as a modeling
strategy that combines:

• distributed representations (e.g., word embeddings)
• representation learning
• nonlinear functions

Recap: Neural Networks

• given two previous words, compute probability distribution over
possible next words

A Simple Neural Trigram Language Model

• input is concatenation of vectors (embeddings) of previous two
words:

• output is a vector containing probabilities of all possible next
words:

A Simple Neural Trigram Language Model

…

• to get , do matrix multiplication of parameter matrix and input,
then “softmax” transformation

A Simple Neural Trigram Language Model

“fully-connected layer”

• to get , do matrix multiplication of parameter matrix and input,
then “softmax” transformation

A Simple Neural Trigram Language Model

…

…

• function that maps a vector of real values (called “logits” or
“scores”) to a vector of probabilities:

• exponentiate scores (this makes them positive), then normalize to get
probabilities

• using scalar notation (computing a single probability):

softmax

• What are the dimensionalities?

A Simple Neural Trigram Language Model

…

…

dimensionalities:

• what are the parameters in this model?

• how many total parameters are in this model?

A Simple Neural Trigram Language Model

…

…

function parameters parameters

• trigram language model
• separate parameters for every

combination of
• so, approx. parameters
• # parameters is exponential in

n-gram size
• most parameters are zero
• even with smoothing, many

parameters can remain zero

• neural trigram language model
– only has parameters
– can be chosen to scale

parameters up or down
– # parameters linear in n-gram size
– no parameters are zero
– no explicit smoothing, though

smoothing done implicitly via
distributed representations

Comparing Models of

Learning

…

…

…

• with n-gram models, we used maximum likelihood estimation (MLE), which has a
simple closed-form solution

• however, with neural language models, MLE does not have a closed form!

• solution: minimize log loss using gradient-based optimization

…

…

…

Adding a Hidden Layer

…

…

…

Adding a Hidden Layer

…

…

…

affine
transformation

nonlinearity,
also called

“activation function”

tanh:

(logistic) sigmoid:

rectified linear unit (ReLU):

• if g is linear, then we can rewrite the above as a single affine
transformation (use distributivity of matrix multiplication)

• so, to benefit from multiple layers, we need some kind of nonlinearity

Recap: Why nonlinearities?

network with 1 hidden layer:

• “The computer that I just put into the machine room on the fifth
floor is crashing.”

• “The computers that I just put into the machine room on the fifth
floor are crashing.”

Language Modeling

…

…

• “The computer that I just put into the machine room on the fifth
floor is crashing.”

• “The computers that I just put into the machine room on the fifth
floor are crashing.”

• Feed-forward neural language models cannot model long-range
dependencies

• Problem: How can we encode variable-sized input
 into fixed dimensional vector so we can apply
• Summing, max-pooling…? Recurrence?

Language Modeling

• Hidden state is a function of
previous hidden state and
current input

• Same weights at each state!

RNN Language Model

• Hidden state is a function of
previous hidden state and
current input

• Same weights at each state!

RNN Language Model

RNN Language Model

RNN Language Model

No Markov
assumption!

RNN Language Model

RNN Language Model

What is ?

RNN Language Model

RNN LMs
(unsurprisingly)
generalize
feedforward LMs

RNN Language Model: Learning

RNN Language Model: Learning

RNN Language Model: Learning

RNN Language Model: Learning

RNN Language Model: Learning

• RNNs can theoretically model infinite history?

• Practical Issues: gradient vanishing or exploding

• Empirical solutions:
• Gradient clipping
• RNN variants: LSTM, GRU, etc.

RNN Language Model: Learning

• Language Modelling on Penn Treebank (Word Level)

Language Modeling

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Language Modeling

• How do we sample from ?

RNN Language Model: Sampling

• How do we sample from ?

RNN Language Model: Sampling

• How do we sample from ?

RNN Language Model: Sampling

• How do we sample from ?

RNN Language Model: Sampling

Overview

• Neural language models
• Feed-forward models
• RNN models
• Attention models

• Machine Translation & Sequence-to-sequence models
• Machine translation
• Encoder decoder structures
• + Attention & applications

• input is a sentence (typically)
• output is another sentence

• Machine translation: representing its translation in another language

Sequence-to-sequence Models

<s> ich werde das stoppen . </s>

<s> i ’m going to stop that . </s>

• input and output are sequences of symbols (not necessarily the same
length)

• model:

• training loss:

Sequence-to-sequence Models

Machine Translation

Machine Translation

• $40 billion industry
• Google: translates 100 billion words a day

Machine Translation

Machine Translation (MT) History

• Complex pipelines, all trained separately

Phrase Based MT

• Alignment model

Phrase Based MT

• No pipelines. Single model trained end-to-end with backprop.
• Essentially a conditional language model

Neural Machine Translation (NMT)

• English-German

Machine Translation Progress

Machines vs. Human

Sequence-to-sequence Modeling

• data: <input sequence, output sequence> pairs

• use one network (encoder) to represent input sequence as a
sequence of hidden vectors

• use another network (decoder) to produce the output sequence from
the hidden vectors

• more generally called “encoder-decoder” models

Sequence-to-sequence Modeling

Pure Encoder-Decoder Framework

Seq2seq for NMT

[Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks]

Seq2seq for NMT

[Sutskever et al. (2014)]

Seq2seq for NMT

[Sutskever et al. (2014)]

Seq2seq for NMT

[Sutskever et al. (2014)]

Seq2seq for NMT

[Sutskever et al. (2014)]

Seq2seq for NMT

Seq2seq for NMT

Seq2seq for NMT

Seq2seq for NMT

Seq2seq for NMT

Seq2seq for NMT

Seq2seq for NMT

Seq2seq for NMT

Seq2seq for NMT

[Sutskever et al. (2014)]

• All input information communicated through fixed-size hidden vector.
 Encoder(input)

• Training: All gradients have to flow through single bottleneck.
• Test: All input encoded in single vector.

Communication Bottleneck

Neural Attention

Neural Attention

Neural Attention

Neural Attention

Neural Attention

Neural Attention

[Bahdanau et al. (2015)]

Attention-based NMT

[Bahdanau et al. (2015)]

Attention-based NMT

[Bahdanau et al. (2015)]

Attention-based NMT

[Bahdanau et al. (2015)]

Attention-based NMT

[Bahdanau et al. (2015)]

Attention-based NMT

[Bahdanau et al. (2015)]

Performance vs. Length

Attention Visualization

[Bahdanau et al. 2015]

Attention Model as a “Hidden Layer”

Attention Applications

• Machine Translation (Bahdanau et al., 2015; Luong et al., 2015)
• Question Answering (Hermann et al., 2015; Sukhbaatar et al., 2015)
• Natural Language Inference (Rockt ̈aschel et al., 2016; Parikh et al., 2016)
• Algorithm Learning (Graves et al., 2014, 2016; Vinyals et al., 2015a)
• Parsing (Vinyals et al., 2015b)
• Speech Recognition (Chorowski et al., 2015; Chan et al., 2015)
• Summarization (Rush et al., 2015)
• Caption Generation (Xu et al., 2015)
• and more...

Attention Applications

Image Captioning (Xu et al., 2015)

Speech Recognition (Chan et al., 2015)

Summarization (Rush et al., 2015)

Image-to-Latex (Deng et al., 2016)

Attention  Transformers

[Vaswani et al. 2017]

• Some practical implementations to think about in more details

Practice

Summary

• Neural language models
• Feed-forward models

• Classifier on next word prediction
• Concatenate past word representations as features
• Resolved data sparsity issues; learned dense parameters

• RNN models
• Model long history
• Extends feed-forward LMs
• Practical issues: vanishing / exploding gradient
• Variants: LSTM, GRU, etc.

Summary

• Machine Translation & Sequence-to-sequence models
• Machine translation

• History: statistical MT  Neural MT
• Encoder decoder structures for sequence-to-sequence modeling

• RNN models
• Information bottleneck

• Encoder decoder with attention
• Selecting different “focus” in the source for each step
• Compute context vectors to summarize the information to condition on
• Very effective for MT and many applications

• Attention applications
• Neural machine translation
• Image captioning, speech recognition, text summarization, etc.

	TTIC 31190: Natural Language Processing
	Announcements
	Slide Number 3
	Slide Number 4
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124

