
TTIC 31190: Natural Language Processing

Lecture 10: Neural Language Modeling 
& Sequence-to-Sequence Modeling

Fall 2023



Announcements

• Assignment 2 due on Nov 2, 11:59 pm

• Literature review project midpoint check due on Nov 9, 11:59 pm

• Final exam schedule: Tuesday December 5, 3-5pm
• Pass/fail option available for this course



• Language Model: a probability distribution over strings in a 
language.

Language Models



• Goal: compute the probability of a sequence of words:

• Related task: probability of next word:

• A model that computes either of these:

                                     or

is called a language model (LM)

Language Modeling

[SLP3: Chapter 3]



Language Modeling

• Building language models
• Generating from a language model
• Evaluating a language model

• Count-based language models
• MLE estimation
• Smoothing

• Neural language models
• Feed-forward models
• RNN models
• Attention models



Overview

• Neural language models
• Feed-forward models
• RNN models
• Attention models

• Machine Translation & Sequence-to-sequence models
• Machine translation
• Encoder decoder structures
• + Attention & applications



• This is just a probabilistic classification problem!

• We can use any tools from the previous lectures: linear model with 
features, neural networks, etc.

Language Modeling



Count-based Language Models

• Idea 1: make an k-th order Markov assumption

• E.g. Trigram LM (k=2)



Count-based Language Models

• Idea 1: make an k-th order Markov assumption

• Maximum likelihood (e.g. k=2)



• Equivalent to MLE solution with a linear model with feature vector 
given by n-grams.

Count-based Language Models



• Equivalent to MLE solution with a linear model with feature vector 
given by n-grams.

Count-based Language Models

Data sparsity



• Idea 2: Use a neural network over of word embeddings 

Neural Language Model



• Idea 2: Use a neural network over of word embeddings 

Neural Language Model



• Idea: use a neural network for n-gram language modeling

Neural Language Model



Neural Language Model



• We can think of a neural network as a continuous function with some 
learnable parameters

• it has inputs and outputs, which are usually vectors
• it’s typically a nonlinear function

• Neural networks / deep learning is best thought of as a modeling 
strategy that combines:

• distributed representations (e.g., word embeddings)
• representation learning
• nonlinear functions

Recap: Neural Networks



• given two previous words, compute probability distribution over 
possible next words

A Simple Neural Trigram Language Model

• input is concatenation of vectors (embeddings) of previous two 
words:



• output is a vector      containing probabilities of all possible next 
words:

A Simple Neural Trigram Language Model

…



• to get    , do matrix multiplication of parameter matrix        and input, 
then “softmax” transformation

A Simple Neural Trigram Language Model

“fully-connected layer”



• to get    , do matrix multiplication of parameter matrix        and input, 
then “softmax” transformation

A Simple Neural Trigram Language Model

…

…



• function that maps a vector     of real values (called “logits” or 
“scores”) to a vector     of probabilities:

• exponentiate scores (this makes them positive), then normalize to get 
probabilities

• using scalar notation (computing a single probability     ):

softmax



• What are the dimensionalities?

A Simple Neural Trigram Language Model

…

…

dimensionalities:



• what are the parameters in this model?

• how many total parameters are in this model?

A Simple Neural Trigram Language Model

…

…

function                  parameters                                 parameters



• trigram language model
• separate parameters for every 

combination of 
• so, approx.         parameters
• # parameters is exponential in 

n-gram size
• most parameters are zero
• even with smoothing, many 

parameters can remain zero

• neural trigram language model
– only has             parameters
–     can be chosen to scale                 

# parameters up or down
– # parameters linear in n-gram size
– no parameters are zero
– no explicit smoothing, though 

smoothing done implicitly via  
distributed representations

Comparing Models of             



Learning

…

…

…



• with n-gram models, we used maximum likelihood estimation (MLE), which has a 
simple closed-form solution

• however, with neural language models, MLE does not have a closed form!

• solution: minimize log loss using gradient-based optimization

…

…

…



Adding a Hidden Layer

…

…

…



Adding a Hidden Layer

…

…

…

affine
transformation

nonlinearity, 
also called 

“activation function”



tanh:



(logistic) sigmoid:



rectified linear unit (ReLU):



• if g is linear, then we can rewrite the above as a single affine 
transformation (use distributivity of matrix multiplication)

• so, to benefit from multiple layers, we need some kind of nonlinearity

Recap: Why nonlinearities?

network with 1 hidden layer:



• “The computer that I just put into the machine room on the fifth 
floor is crashing.”

• “The computers that I just put into the machine room on the fifth 
floor are crashing.”

Language Modeling

…

…



• “The computer that I just put into the machine room on the fifth 
floor is crashing.”

• “The computers that I just put into the machine room on the fifth 
floor are crashing.”

• Feed-forward neural language models cannot model long-range 
dependencies

• Problem: How can we encode variable-sized input
   into fixed dimensional vector    so we can apply
• Summing, max-pooling…? Recurrence?

Language Modeling



• Hidden state is a function of 
previous hidden state and 
current input

• Same weights at each state!

RNN Language Model



• Hidden state is a function of 
previous hidden state and 
current input

• Same weights at each state!

RNN Language Model



RNN Language Model



RNN Language Model



No Markov 
assumption!

RNN Language Model



RNN Language Model

What is ?



RNN Language Model

RNN LMs 
(unsurprisingly) 
generalize 
feedforward LMs



RNN Language Model: Learning



RNN Language Model: Learning



RNN Language Model: Learning



RNN Language Model: Learning



RNN Language Model: Learning



• RNNs can theoretically model infinite history? 

• Practical Issues: gradient vanishing or exploding

• Empirical solutions:
• Gradient clipping
• RNN variants: LSTM, GRU, etc.

RNN Language Model: Learning



• Language Modelling on Penn Treebank (Word Level)

Language Modeling

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word



Language Modeling



• How do we sample from              ? 

RNN Language Model: Sampling



• How do we sample from              ? 

RNN Language Model: Sampling



• How do we sample from              ? 

RNN Language Model: Sampling



• How do we sample from              ? 

RNN Language Model: Sampling



Overview

• Neural language models
• Feed-forward models
• RNN models
• Attention models

• Machine Translation & Sequence-to-sequence models
• Machine translation
• Encoder decoder structures
• + Attention & applications



• input is a sentence (typically)
• output is another sentence

• Machine translation: representing its translation in another language

Sequence-to-sequence Models

<s> ich werde das stoppen . </s>

<s> i ’m going to stop that . </s>



• input and output are sequences of symbols (not necessarily the same 
length)

• model:

• training loss: 

Sequence-to-sequence Models



Machine Translation



Machine Translation



• $40 billion industry
• Google: translates 100 billion words a day

Machine Translation



Machine Translation (MT) History



• Complex pipelines, all trained separately

Phrase Based MT



• Alignment model

Phrase Based MT



• No pipelines. Single model trained end-to-end with backprop.
• Essentially a conditional language model

Neural Machine Translation (NMT)



• English-German

Machine Translation Progress



Machines vs. Human



Sequence-to-sequence Modeling



• data: <input sequence, output sequence> pairs

• use one network (encoder) to represent input sequence as a 
sequence of hidden vectors

• use another network (decoder) to produce the output sequence from 
the hidden vectors

• more generally called “encoder-decoder” models

Sequence-to-sequence Modeling



Pure Encoder-Decoder Framework



Seq2seq for NMT

[Sutskever et al. (2014): Sequence to Sequence Learning with Neural Networks]



Seq2seq for NMT

[Sutskever et al. (2014)] 



Seq2seq for NMT

[Sutskever et al. (2014)] 



Seq2seq for NMT

[Sutskever et al. (2014)] 



Seq2seq for NMT

[Sutskever et al. (2014)] 



Seq2seq for NMT



Seq2seq for NMT



Seq2seq for NMT



Seq2seq for NMT



Seq2seq for NMT



Seq2seq for NMT



Seq2seq for NMT



Seq2seq for NMT



Seq2seq for NMT

[Sutskever et al. (2014)] 



• All input information communicated through fixed-size hidden vector.
                                                  Encoder(input)

• Training: All gradients have to flow through single bottleneck.
• Test: All input encoded in single vector.

Communication Bottleneck



Neural Attention



Neural Attention



Neural Attention



Neural Attention



Neural Attention



Neural Attention

[Bahdanau et al. (2015)] 



Attention-based NMT

[Bahdanau et al. (2015)] 



Attention-based NMT

[Bahdanau et al. (2015)] 



Attention-based NMT

[Bahdanau et al. (2015)] 



Attention-based NMT

[Bahdanau et al. (2015)] 



Attention-based NMT

[Bahdanau et al. (2015)] 























Performance vs. Length



Attention Visualization

[Bahdanau et al. 2015] 



Attention Model as a “Hidden Layer”



Attention Applications



• Machine Translation (Bahdanau et al., 2015; Luong et al., 2015)
• Question Answering (Hermann et al., 2015; Sukhbaatar et al., 2015)
• Natural Language Inference (Rockt ̈aschel et al., 2016; Parikh et al., 2016)
• Algorithm Learning (Graves et al., 2014, 2016; Vinyals et al., 2015a)
• Parsing (Vinyals et al., 2015b)
• Speech Recognition (Chorowski et al., 2015; Chan et al., 2015)
• Summarization (Rush et al., 2015)
• Caption Generation (Xu et al., 2015)
• and more...

Attention Applications



Image Captioning (Xu et al., 2015)



Speech Recognition (Chan et al., 2015)



Summarization (Rush et al., 2015)



Image-to-Latex (Deng et al., 2016)



Attention  Transformers

[Vaswani et al. 2017]



• Some practical implementations to think about in more details

Practice



Summary

• Neural language models
• Feed-forward models

• Classifier on next word prediction
• Concatenate past word representations as features
• Resolved data sparsity issues; learned dense parameters

• RNN models
• Model long history
• Extends feed-forward LMs
• Practical issues: vanishing / exploding gradient
• Variants: LSTM, GRU, etc.



Summary

• Machine Translation & Sequence-to-sequence models
• Machine translation

• History: statistical MT  Neural MT
• Encoder decoder structures for sequence-to-sequence modeling

• RNN models
• Information bottleneck

• Encoder decoder with attention
• Selecting different “focus” in the source for each step
• Compute context vectors to summarize the information to condition on
• Very effective for MT and many applications

• Attention applications
• Neural machine translation
• Image captioning, speech recognition, text summarization, etc.
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