
A* Beats Dynamic Programming

Pedro Felzenszwalb
University of Chicago
pff@cs.uchicago.edu

David McAllester
TTI at Chicago

mcallester@tti-c.org

Abstract

We generalize Dijkstra’s shortest path algorithm, A* search,
and abstraction heuristics to the problem of computing light-
est weight derivations for general weighted logic programs.
This generalization gives an essentially mechanical way of
improving the ef£ciency of a wide variety of dynamic pro-
graming algorithms. We discuss examples in natural lan-
guage processing and computer vision. As a demonstration
we develop a novel algorithm for £nding contours in images.
The logic programming framework also allows a clean ap-
proach to the pipeline problem — the problem of passing in-
formation back and forth between various levels of process-
ing in perceptual inference.

Introduction

Dynamic programming (Bellman 1957) is one of the most
fundamental techniques for designing ef£cient algorithms.
It is known that some dynamic programming problems can
be solved using Dijkstra’s shortest path algorithm (Dijkstra
1959) while avoiding the computation of unnecessary val-
ues. This idea can be pushed further by using A* search
(Hart, Nilsson, & Raphael 1968) which is one of the most
successful paradigms in arti£cial intelligence. More recently
admissible heuristics derived from abstractions have been
used to greatly improve the power of A* search (Holte et
al. 1994; Culberson & Schaeffer 1998). Here we bring
these ideas together within the formal setting of bottom-up
logic programming. We show, in essence, that for every
dynamic programming algorithm there exists a Dijkstra’s
shortest path version, an A* version, and a mechanical way
of constructing admissible heuristics from abstractions.

This work was originally motivated by a dynamic pro-
gramming algorithm for £nding optimal embeddings of ¤ex-
ible models in images (Felzenszwalb 2005). This algorithm,
as with most dynamic programming algorithms, can be for-
mulated as inference rules for using table entries to £ll in
more table entries. In general one gives a name P to each
table of a dynamic programming algorithm and models a
table entry by an assertion P (x1, , . . . , xn). Given a rep-
resentation of tables as assertions, a dynamic programming
algorithm can be formulated as inference rules for £lling in
tables. In the case of £nding optimal embeddings of mod-
els in images we realized that the inferences performed by
these rules could be done in increasing order of cost yielding
a “Dijkstra lightest derivation” algorithm for this problem.

Furthermore, it is possible to formulate a notion of admissi-
ble heuristic and give an A* version of the algorithm.

Statistical parsing systems have long used Dijkstra light-
est derivation methods involving a priority queue so that
derivations are enumerated in order of increasing cost (Cara-
ballo & Charniak 1996). More recently, heuristic £gures of
merit have been replaced in some parsers by admissible A*
heuristics (Klein & Manning 2003). Some of our results can
be viewed as a generalization of A* statistical chart parsing
to arbitrary dynamic programming problems.

Abstractions provide a way of automatically constructing
admissible heuristics for A* search. A simple example is
solving the Rubik’s cube. Suppose we ignore the edge and
center pieces and consider solving only the corners. The
shortest solution for the corners is a lower bound on the
shortest solution for all pieces. In general, any function
on a state space de£nes a new state space where each new
state represents a set of the original states. Each concrete
move, such as the rotation of a face in Rubik’s cube, yields
an abstract move between abstract states. The set of abstract
states together with abstract moves de£nes an abstract search
space and least cost solutions in the abstract space de£ne
lower bounds — admissible heuristics — on the cost of so-
lutions in the concrete space. Admissible heuristics derived
from abstraction can be viewed as a re£nement of abstrac-
tion spaces in planning (Sacerdoti 1977).

Here we show that the process of deriving an admissi-
ble heuristic from an abstraction can be generalized to any
abstraction function on the assertions used in a weighted
logic program. Any given abstraction function on asser-
tions, and any given set of inference rules on the concrete
(not abstracted) assertions, de£nes a set of abstract inference
rules derived by “projecting” the concrete rules onto the ab-
stract assertions. The cost of a lightest derivation using ab-
stract assertions and abstract rules gives a lower bound on
the weight of a concrete derivation. The use of abstract as-
sertions and abstract derivations seems related to the notion
of proof planning in automated reasoning (Bundy 1988).

Our work is related to the work on logical algorithms in
(Ganzinger & McAllester 2002). Many algorithms, espe-
cially dynamic programming algorithms, are naturally rep-
resented as inference rules. However, in order to use infer-
ence rules formulations as a foundation for algorithm design
one must give a precise model of the run time of a set of in-
ference rules (a logic program). This is non-trivial as many
logic program compilers use sophisticated indexing and uni-

£cation algorithms and the order of run time of a logic pro-
gram can depend, for example, on the indexing constructed
by the compiler. The logical algorithms work shows that it is
possible to give relatively simple models of the run time of
logic programs that are consistent with compilation to stan-
dard random access computers. We plan to explore this idea
in the future.

Admissible heuristics derived from abstractions are often
stored in tables that are fully computed in advance. This
approach is limited to tables that remain £xed over differ-
ent problem instances, or small tables if the heuristic must
be recomputed for each instance. However it is possible to
construct heuristic values on the ¤y using a search over ab-
stract solutions that is done simultaneously with the search
for concrete solutions. A hierarchy of heuristics can be con-
structed each guiding the search for solutions at the level be-
low (Holte 1996). Here we show that when using a hierarchy
of abstractions all of these searches can be done in parallel
using a single priority queue interleaving the computation.
The priorities on this queue represent lower bounds on the
cost of concrete solutions of the overall problem.

A fundamental problem in statistical AI systems is the
“pipeline problem”. In the general case we have a concate-
nation of systems where each stage is feeding information to
the next. In vision, for example, we might have an edge de-
tector feeding edges to a system for £nding contours which
in turn feed contours into a system for image segmentation
which feeds segments into an object recognition system. Be-
cause of the need to build and compose modules with clean
interfaces, pipelines are often forced to make hard decisions
at module boundaries. For example, an edge detector typ-
ically constructs a Boolean array which indicates at each
image point whether or not an edge was detected at that
point. But there is general recognition that the presence of an
edge at a certain point can depend on the context around that
point. People can see an edge at places where the image gra-
dient is zero if, at higher cognitive level, it is clear that there
is actually an object boundary at that point. Speech recog-
nition systems often return n-best lists which may or may
not contain the actual utterance. We would like the speech
recognition system to be able to take higher level level infor-
mation into account and avoid the hard decision of exactly
what strings to output in its n-best list. We show here that
if all stages of the pipeline are written as lightest inference
logic programs with pattern-based admissible heuristics then
the entire pipeline, as well as the computation of heuristic
values, can be run simultaneously in a way that allows each
stage to be controlled by heuristic values derived form the
entire downstream pipe. In this case partial results obtained
by high-level processing can guide low-level processing.

Our main example in this paper is a new algorithm for
£nding salient contours in images. A salient contour is
a curve that optimizes a score based on its length (longer
contours are better), its shape (smooth contours are better)
and the image gradient along its path. Most methods use a
saliency score that is expressed in terms of subscores based
on local contour properties (Montanari 1971). In this case
the problem of £nding the most salient contour of length up
to L can be solved ef£ciently using dynamic programming

— O(nL) time for an image with n pixels. However, these
models have dif£culty capturing non-local shape constraints.
For example, they can not be used to look for lines that are
almost straight. Here we consider a different model for con-
tours in which long distance shape constraints are express-
ible. A dynamic programming algorithm for this model is
too slow for practical use. However, we show that there is an
A* version of the algorithm that is fast in practice. We feel
that the A* version of this contour £nding algorithm, and
the pattern-derived heuristic function in particular, would be
very dif£cult to formulate without the general framework in-
troduced here.

Formal Preliminaries
The lightest derivation problem can be formalized as fol-
lows. LetΣ be a set of statements and R be a set of inference
rules of the following form,

A1 = w1

...
An = wn

C = g(w1, . . . , wn)

Here the antecedents Ai and the conclusion C are state-
ments in Σ, the wi are real valued variables and g is a real
valued function. Intuitively, the rule says that if there are
derivations of the antecedents Ai with weights wi then we
can derive the conclusion C with weight g(w1, . . . , wn).
The goal is to compute the lightest derivations of a set of
statements. Note that a derivation of C can be represented
by a tree rooted at a rule A1, . . . , An/C with n children,
where the i-th child is a derivation of Ai. The leaves of this
tree are rules with no antecedents.

We will always assume that for each rule in R the weight
of the conclusion is at least as large as the weights of the
antecedents g(w1, . . . , wn) ≥ wi. This implies that in a
derivation tree the weights of the conclusions increase in a
path from a leaf to the root. We will also assume that g is
monotone — increasing the weight of an antecedent can not
decrease the weight of the conclusion. This implies that sub-
trees of lightest derivation trees are lightest derivation trees
themselves.

Most dynamic programming algorithms can be seen as
solving a lightest derivation problem. In dynamic program-
ming there is an ordering of the statements (B1, . . . , Bk)
such that for any rule with conclusion Bi the antecedents
are statements that come before Bi in the ordering. Using
this ordering lightest derivations can be computed sequen-
tially by iterating from i = 1 to k. At each step the lightest
derivation of Bi is obtained by minimizing over all rules that
can be used as a £nal derivation for Bi.

Rules for CKY chart parsing are shown in Figure 1. We
assume that we are given a weighted context free grammar
in Chomsky normal form, i.e., a weighted set of productions
of the form X → y and X → Y Z where X , Y and Z are
nonterminal symbols and y is a terminal symbol. The input
string is given by a sequence of terminals (s1, . . . , sn). The
£rst set of rules state that if the grammar contains a produc-

(1) phrase(X, i, i+ 1) = w(X → si)

(2)

phrase(Y, i, j) = w1

phrase(Z, j, k) = w2

phrase(X, i, k) = w1 + w2 + w(X → Y Z)

Figure 1: The derivation rules for CKY chart parsing.

tion X → si then there is a phrase of type X generating the
i-th entry of the input with weight w(X → si). The second
set of rules state that if the grammar contains a production
X → Y Z and there is phrase of type Y from i to j and
a phrase of type Z from j to k then there is an, appropri-
ately weighted, phrase of type X from i to k. Let S be the
start symbol of the grammar. The goal of parsing is to £nd
the lightest derivation of phrase(S, 1, n + 1). A dynamic
programming solution can be obtained by picking an order-
ing of the statements such that phrase(X, i, j) comes before
phrase(Y, k, l) when |i − j| > |k − l|. The order among
different phrases of the same length is irrelevant.

Dijkstra Lightest Derivation
We de£ne a bottom-up logic programming language in
which we can easily express the algorithms we wish to dis-
cuss. A program is de£ned by a set of rules with priorities
and a goal statement. We encode the priority of a rule by
writing it along the line separating the antecedents and the
conclusion,

A1 = w1

...
An = wn

p(w1, . . . , wn)
C = g(w1, . . . , wn)

The execution of a set of prioritized rules P with goal
statement goal is de£ned by the algorithm in Figure 2. We
keep track of a set S and a priority queue Q of assignments
of the form (B = w). Initially S is empty and Q contains
the conclusions of all rules with no antecedents at the prior-
ities given by those rules. We iteratively remove the lowest
priority assignment (B = w) from Q. If B already has an
assigned weight in S then the assignment is ignored. Oth-
erwise we add (B = w) to S and “expand it” — every as-
signment derivable from (B = w) and other assignments in
S using a single rule in P is added to Q at the priority spec-
i£ed by the rule. The program stops as soon as a weight is
assigned to goal.

We can compute the lightest derivation of a statement goal
under a set of rules R using an algorithm similar to Dijkstra’s
shortest path. The algorithm is de£ned in terms of rules with
priorities as follows,

De£nition 1 (Dijkstra’s lightest derivation) Given R, de-
£ne a set of rules with prioritiesD(R) by setting the priority
of each rule to be the weight of its conclusion.

Algorithm Run(P, goal)
1. S ← ∅
2. Initialize Q with conclusions of no-antecedent rules at

the priorities speci£ed by those rules.
3. repeat
4. Remove lowest priority element (B = w) from Q.
5. if (B = w′) 6∈ S
6. S ← S ∪ {(B = w)}
7. if B = goal stop
8. Insert conclusions derivable from (B = w) and

other assignments in S using a single rule intoQ
at the priorities speci£ed by the rule.

Figure 2: Running a set of rules with priorities.

Let `(B) denote the weight of the lightest derivation of B
using the rules in R when B is derivable and in£nity other-
wise. It can be shown that if goal is derivable thenD(R)will
£nd its lightest derivation. Moreover if (B = w) ∈ S then
w = `(B) and `(B) ≤ `(goal). This means that all assign-
ments in S represent lightest derivations and only statements
B such that `(B) ≤ `(goal) will be expanded. The main ad-
vantage of D(R) over a dynamic programming solution to
the lightest derivation problem is that D(R) only expands a
subset of all statements.

A* Lightest Derivation
Let h be a heuristic function assigning a cost to each state-
ment in Σ. We say that h is monotone if for every rule
A1, . . . , An/C in R,

`(Ai) + h(Ai) ≤ g(`(A1), . . . , `(An)) + h(C). (1)

We can compute the lightest derivation of goal under the
rules in R using a type of A* search that takes into account
the value of a monotone heuristic function. As before the
algorithm is de£ned in terms of rules with priorities,

De£nition 2 (A* lightest derivation) Given R and h, de-
£ne a set of rules with priorities A(R) by setting the prior-
ity of each rule to be the weight of its conclusion plus the
heuristic value, g(w1, . . . , wn) + h(C).

It can be shown that if goal is derivable then A(R) will
£nd its lightest derivation. Moreover if (B = w) ∈ S then
w = `(B) and `(B) + h(B) ≤ `(goal) + h(goal). As in
standard A* search A(R) avoids expanding statements that
are not promising according to the heuristic function.

In standard A* search good heuristic functions can be au-
tomatically constructed using abstractions. This idea can
also be applied to our situation. In what follows we consider
only problems de£ned by sets of rules where the weight of
a conclusion is always the sum of the weights of the an-
tecedents plus a non-negative value v. We denote such a
rule by A1, . . . , An →v C. We can think of v as the weight
of the rule. Note that the weight of a derivation using these
types of rules is just the sum of the weights of the rules that
appear in the derivation tree.

Let context(B) be a derivation of goal with a hole that
can be £lled by a derivation of B. Each context has a weight

which is the sum of weights of the rules in it. It can also
be seen as the weight it assigns to goal assuming that B
can be derived with zero weight. We de£ne `(context(B))
to be the weight of a lightest context for B. This is anal-
ogous to the distance from a node to the goal in standard
search problems. Note that it is possible that `(B) is in£-
nite while `(context(B)) is £nite. Lightest contexts can be
computed by solving the following problem. For each rule
A1, . . . , An →v C in R we de£ne,

context(C) = w

context(Ai) = v +
∑

j 6=i `(Aj) + w

The base case is the context of goal which by de£nition
equals zero. This can be captured by a rule with no an-
tecedents,→0 context(goal).

Let abs be a an abstraction mapping statements in Σ to
a set of abstract statements. The abstraction can be used
to obtain an abstract lightest derivation problem with rules
abs(R) as follows. For each rule in A1, . . . , An →v C in R
we de£ne an abstract rule,

abs(A1), . . . , abs(An)→v abs(C).

Note that `(abs(C)) ≤ `(C). If we let the goal of the
abstract problem be abs(goal) we can use abstract con-
texts to de£ne a heuristic function for A*. To see that
`(context(abs(C))) is a monotone heuristic function con-
sider a rule A1, . . . , An →v C in R. For any such rule
there is a corresponding abstract rule and by the de£nition
of context we have,

`(context(abs(Ai))) ≤ v +
∑

j 6=i

`(abs(Aj)) +

`(context(abs(C))).

We know that `(abs(Ai)) ≤ `(Ai) which is enough to see
that `(context(abs(C))) is monotone.

In practice we can compute lightest abstract derivations
and contexts using dynamic programming or Dijkstra’s
lightest derivation. If the set of abstract statements is small
this is signi£cantly more ef£cient than using dynamic pro-
gramming or Dijkstra’s lightest derivation on the concrete
problem. Another option is to build a single program that
computes abstract weights and abstract contexts at the same
time that we are computing lightest derivations of the con-
crete problem. This idea is explored in the next section.

Hierarchical A* Lightest Derivation
We de£ne an abstraction hierarchy to be a sequence of dis-
joint sets of statements Σ0, . . ., Σm plus a single abstraction
function abs. For i < m the abstraction maps Σi onto Σi+1

and Σm contains a single statement ⊥ with abs(⊥) = ⊥.
Since abs is onto we have |Σi+1| ≤ |Σi| with |Σm| = 1.
We denote by absi the abstraction from Σ0 to Σi obtained
by composing abs with itself i times.

As an example consider the eight puzzle where absi re-
places tiles numbered i or less with a black tile. For A ∈ Σi

we have that abs(A) replaces the tile numbered i + 1 with
a black tile. In this example |Σi| declines exponentially as

START1: vmin

context(⊥) = 0

START2: goali = w
w

context(goali) = 0

UP: context(abs(C)) = wc

A1 = w1

...
An = wn

v + w1 + · · ·+ wn + wc

C = v + w1 + · · ·+ wn

DOWN: context(C) = wc

A1 = w1

...
An = wn

v + wc + w1 + · · ·+ wn

context(Ai) = v + wc + w1 + · · ·+ wn − wi

Figure 3: The hierarchical algorithmH(R). Here vmin is the
smallest weight associated with a no-antecedent rule in R.
START2 rules are de£ned for 1 ≤ i < m. UP and DOWN
rules are de£ned for each rule A1, . . . , An →v C ∈ absi(R)
with 0 ≤ i < m for UP and 1 ≤ i < m for DOWN.

i increases. This makes it much more ef£cient to compute
derivations and contexts in Σi as i increases. On the other
hand contexts in Σi provide better heuristic for solving the
eight puzzle as i decreases.

In general we consider a lightest derivation problem with
statements in Σ0, rule set R and goal statement goal. The
abstraction can be used to de£ne a set of problems with
statements in Σi, rules absi(R) and goal statement goali =
absi(goal). For any statement B in the abstraction hierarchy
we de£ne `(B) and `(context(B)) in terms of these prob-
lems. Note that we always have `(abs(B)) ≤ `(B) and
`(context(abs(B))) ≤ `(context(B)).

The hierarchical A* lightest derivation algorithm H(R)
is de£ned by the set of rules with priorities in Figure 3. The
rules labeled START1 and START2 compute the context of
the goal in each abstract problem. Rules labeled UP com-
pute derivations of statements in Σi using the contexts of
their abstractions in Σi+1 as a heuristic. Rules DOWN de-
rive contexts in each abstract level using derivations at that
level. Intuitively the algorithm starts by deriving the con-
text of ⊥, it can then derive statements in Σm−1. Once the
lightest derivation of goalm−1 is found the algorithm starts
computing contexts of statements in Σm−1 and so on.

The correctness of the hierarchical algorithm H(R) can
be proved from a more general theorem. Consider an arbi-
trary set of prioritized rules M with statements in Γ. De£ne
`(Φ,M) to be the weight of a lightest derivation of Φ using
the rules in M ignoring priorities. It is not hard to show that
`(goal,H(R)) equals `(goal). We now state general condi-

Edges

Edges

Edges

Recognition

Recognition

RecognitionContours

Contours

Contours

PSfrag replacements

Σ0

Σ1

Σm

Figure 4: A vision system with several levels of process-
ing. Forward arrows represent the normal ¤ow of informa-
tion from one stage of processing to the next. Downward ar-
rows represent the in¤uence of contexts. Backward arrows
represent the computation of contexts.

tions under which executing a set of prioritized rules M with
the algorithm in Figure 2 correctly computes `(goal,M).

A function q : Γ×R→ R will be called a proper priority
function for M if it satis£es the following conditions:

• q represents priority — in every instance of a rule in M
with antecedents of the form Ψi = `(Ψi,M) and conclu-
sion Φ = w we have that q(Φ, w) equals the priority of
the rule instance.

• Inference never reduces priority — in every instance
of a rule in M with antecedents of the form Ψi =
`(Ψi,M) and conclusion Φ = w we have that q(Φ, w) ≥
q(Ψi, `(Ψi,M)) for all antecedents Ψi.

• Priority is monotonic in weight — if w < w′ then
q(Φ, w) < q(Φ, w′).

Theorem 1 Let M be a set of rules with priorities. If there
exists a proper priority function for M and goal is derivable
then the algorithm in Figure 2 will £nd a lightest derivation
of goal. Moreover if (Φ = w) ∈ S then w = `(Φ,M) and
q(Φ, `(Φ,M)) ≤ q(goal, `(goal,M)).

For the rule set H(R) we can de£ne the priority function
as follows,

q(A,w) = w + `(context(abs(A))) (2)

q(context(A), w) = w + `(A) (3)

The correctness of H(R) and a bound on the number of
statements H(R) expands follows from the following the-
orem which we state without proof.

Theorem 2 The function q de£ned by (2) and (3) is a proper
priority function forH(R).

Figure 4 illustrates a hypothetical case where R represents
the processing “pipeline” of a vision system. Statements
from one stage of processing provide input to the next stage
and the system ultimately derives statements about the ob-
jects in a scene. The hierarchical algorithm H(R) provides
a mechanism by which a processing stage can be in¤uenced
by later stages.

b

ca
l

h

Figure 5: A curve with endpoints (a, c) is formed by com-
posing curves with endpoints (a, b) and (b, c), where b is
equally distant from a and c. The cost of the composition is
proportional to (h/l)2. This cost is scale invariant and en-
courages contours to be straight by pulling b toward the line
containing a and c.

Finding Salient Contours in Images
Now we turn to the problem of £nding salient contours in
images. Essentially we want to look for contours that are
long, do not bend too much and tend to go along paths with
high image gradient. Here we consider a new type of model
that can be used to capture more global shape constraints
than is possible with previous methods. The problem of £nd-
ing the most salient contour in an image using this model can
be solved using dynamic programming, but this approach is
too slow for practical use. On the other hand, our experi-
ments show that using a heuristic derived from a simple ab-
straction we obtain a fast A* algorithm.

Let C1 be a curve with endpoints a and b and C2 be a
curve with endpoints b and c. The two curves can be com-
posed to form a curve C with endpoints a and c. We de£ne
the cost of the composition to be the sum of the costs of C1

and C2 plus a “shape” cost which depends on the geometric
arrangement of the points (a, b, c). Figure 5 illustrates the
composition of two curves and the shape cost that we use.
Besides the composition rule we assume that if a and b are
neighboring locations in the image then there is a curve with
endpoints a and b whose cost depends only on the image
data. This forms the base case for creating longer curves.
Rules for £nding the best curve between each pair of end-
points are shown below.

curve(a, b) = w1

curve(b, c) = w2

curve(a, c) = w1 + w2 + shape(a, b, c)

||a− b|| < 2

curve(a, b) = D(a) +D(b)

In practice we use a data cost D(a) that is zero if a is on
a ridge of the image gradient and a positive constant other-
wise. Ridges of the image gradient are exactly the locations
labeled as edges by the Canny edge detector (Canny 1986).

The costs just de£ned are not a good measure of saliency
by themselves because they always prefer short curves over
long ones. A saliency measure should prefer longer contours
if they have good shape and are supported by the image data.
We de£ne the saliency of a curve to be its cost minus the
distance between its endpoints. In this case the problem of

£nding the most salient contour in the image can be solved
by looking for the lightest derivation of goal using,

curve(a, b) = w

goal = w − ||a− b||+K

Here K is any constant large as the maximum distance
between endpoints to ensure that the weight of goal is at
least the weight of curve(a, b). Computing the most salient
contour using the rules de£ned above is a simple example
of the pipeline problem. The naive way to £nd the most
salient contour is to £rst compute the lightest curve between
every pair of endpoints and then check which of those is
most salient. In contrast, we can use the rules for computing
lightest curves together with the rule for £nding the most
salient contour to de£ne a single lightest derivation problem.

Using Dijkstra’s lightest derivation is not enough for com-
puting the most salient contour quickly. In particular K is
relatively large and it causes too many short curves to be ex-
plored before the goal is derived. This can be avoided by
using a heuristic function de£ned in terms of abstract con-
texts. If we partition the image into a grid of boxes there is a
natural abstraction taking an image location to the box con-
taining it. We can extend this abstraction to statements pa-
rameterized by image locations. For example, each abstract
statement about curves is of the form curve(A,B) where
A and B are boxes in the image. The lightest derivation of
curve(A,B) gives a lower bound on the cost of any concrete
curve from A to B.

A coarse heuristic function is able to capture that most
short curves can not be extended to a long curve so A* con-
centrates its efforts in building curves in a sparse set of lo-
cations. Figure 6 illustrates some of results obtained by the
A* algorithm and also which areas of the input image were
heavily explored. In each case the most salient contour was
found in about one second. In part (d) of Figure 6 we can
see how the A* spent most of its time exploring the back of
the penguin, exactly the location of the most salient contour.
There are other places with good curves but the heuristic
function can “see” that those curves will not be very long.

References
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.

Bundy, A. 1988. The use of explicit plans to guide induc-
tive proofs. In 9th Conf. on Automated Deduction.

Canny, J. 1986. A computational approach to edge detec-
tion. IEEE Transactions on PAMI 8(6).

Caraballo, S. A., and Charniak, E. 1996. Figures of
merit for best-£rst probabilistic chart parsing. In Empir-
ical Methods in Natural Language Processing.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3).

Dijkstra, E. W. 1959. A note on two problems in connec-
tion with graphs. Numerical Mathematics 1.

Felzenszwalb, P. 2005. Representation and detection of
deformable shapes. IEEE Transactions on PAMI 27(2).

(a) (b)

(c) (d)

Figure 6: Images (a) and (b) show the most salient contours
in a picture using different model parameters. The contour in
(a) was obtained by penalizing curvature more aggressively
than in (b). Images (c) and (d) represent how many times
each possible endpoint was in a conclusion asserted by A*
when £nding the optimal contours in (a) and (b) respectively.

Ganzinger, H., and McAllester, D. 2002. Logical algo-
rithms. In International Conf. on Logic Programming.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimal cost paths.
IEEE Trans. Syst. Science and Cybernetics 4(2).
Holte, R.; Drummond, C.; Perez, M.; Zimmer, R.; and
MacDonald, A. 1994. Searching with abstractions: A uni-
fying framework and new high-performance algorithm. In
Canadian Arti£cial Intelligence Conf.
Holte, R. 1996. Hierarchical a*: Searching abstraction
hierarchies ef£ciently. In AAAI.
Klein, D., and Manning, C. 2003. A* parsing: Fast exact
viterbi parse selection. In HLT-NAACL.
Montanari, U. 1971. On the optimal detection of curves in
noisy pictures. Commun. of the ACM 14(5).
Sacerdoti, E. D. 1977. A Structure for Plans and Behavior.
New York, NY: American Elsevier.

